1
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers (Basel) 2022; 14:1594. [PMID: 35458343 PMCID: PMC9025395 DOI: 10.3390/polym14081594] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, nanofibers have come to be considered one of the sustainable routes with enormous applicability in different fields, such as wastewater treatment. Electrospun nanofibers can be fabricated from various materials, such as synthetic and natural polymers, and contribute to the synthesis of novel nanomaterials and nanocomposites. Therefore, they have promising properties, such as an interconnected porous structure, light weight, high porosity, and large surface area, and are easily modified with other polymeric materials or nanomaterials to enhance their suitability for specific applications. As such, this review surveys recent progress made in the use of electrospun nanofibers to purify polluted water, wherein the distinctive characteristics of this type of nanofiber are essential when using them to remove organic and inorganic pollutants from wastewater, as well as for oil/water (O/W) separation.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Asir, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Al Jamiah, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, Gomha SM, Aly AA, Bräse S. Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers (Basel) 2022; 14:polym14081508. [PMID: 35458258 PMCID: PMC9029721 DOI: 10.3390/polym14081508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Electrospun techniques are promising and flexible technologies to fabricate ultrafine fiber/nanofiber materials from diverse materials with unique characteristics under optimum conditions. These fabricated fibers/nanofibers via electrospinning can be easily assembled into several shapes of three-dimensional (3D) structures and can be combined with other nanomaterials. Therefore, electrospun nanofibers, with their structural and functional advantages, have gained considerable attention from scientific communities as suitable candidates in biomedical fields, such as the regeneration of tissues and organs, where they can mimic the network structure of collagen fiber in its natural extracellular matrix(es). Due to these special features, electrospinning has been revolutionized as a successful technique to fabricate such nanomaterials from polymer media. Therefore, this review reports on recent progress in electrospun nanofibers and their applications in various biomedical fields, such as bone cell proliferation, nerve regeneration, and vascular tissue, and skin tissue, engineering. The functionalization of the fabricated electrospun nanofibers with different materials furnishes them with promising properties to enhance their employment in various fields of biomedical applications. Finally, we highlight the challenges and outlooks to improve and enhance the application of electrospun nanofibers in these applications.
Collapse
Affiliation(s)
- AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka 72341, Al Jouf, Saudi Arabia
- Correspondence: or (A.A.N.); (S.B.)
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt;
| | - Nasser S. Awwad
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Al Jouf, Saudi Arabia;
| | - Jinglei Wu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (J.W.); (X.M.)
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - Stefan Bräse
- Institute of Organic Chemistry, Organic Chemistry I, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: or (A.A.N.); (S.B.)
| |
Collapse
|
3
|
Yu P, Zhou G, Yang R, Li Y, Zhang L, Sun L, Fu X, Hao T. Green synthesis of ion-imprinted macroporous composite magnetic hydrogels for selective removal of nickel (II) from wastewater. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Naidu KCB, Kumar NS, Banerjee P, Reddy BVS. A review on the origin of nanofibers/nanorods structures and applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:68. [PMID: 34117944 PMCID: PMC8197713 DOI: 10.1007/s10856-021-06541-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/30/2021] [Indexed: 05/11/2023]
Abstract
In this review work, we highlight the origin of morphological structures such as nanofibers/nanorods in case of various materials in nano as well as bulk form. In addition, a discussion on different cations of different ionic radii and other intrinsic factors is provided. The materials (ceramic titanates, ferrites, hexaferrites, oxides, organic/inorganic composites, etc.,) exhibiting the nanofibers/nanorods like morphological structures are tabulated. Furthermore, the significance of nanofibers/nanorods obtained from distinct materials is elucidated in multiple scientific and technological fields. At the end, the device applications of these morphological species are also described in the current technology. The nucleation and growth mechanism of α-MnO2 nanorods using natural extracts from Malus domestica and Vitis vinifera [3].
Collapse
Affiliation(s)
- K Chandra Babu Naidu
- Department of Physics, GITAM Deemed to be University, Bangalore, 562163, Karnataka, India.
| | - N Suresh Kumar
- Department of Physics, JNTUA, Anantapuramu, 515002, Andhra Pradesh, India
| | - Prasun Banerjee
- Department of Physics, GITAM Deemed to be University, Bangalore, 562163, Karnataka, India
| | - B Venkata Shiva Reddy
- Department of Physics, GITAM Deemed to be University, Bangalore, 562163, Karnataka, India
- Department of Physics, The National College, Bagepalli, 561207, Karnataka, India
| |
Collapse
|