1
|
Perinelli DR, Del Bello F, Vitali LA, Nabissi M, Cespi M, Quaglia W, Aguzzi C, Lupetti V, Giangrossi M, Bonacucina G. Dual function surfactants for pharmaceutical formulations: The case of surface active and antibacterial 1-tolyl alkyl biguanide derivatives. Int J Pharm 2024; 661:124388. [PMID: 38925239 DOI: 10.1016/j.ijpharm.2024.124388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
One interesting field of research in the view of developing novel surfactants for pharmaceutical and cosmetic applications is the design of amphiphiles showing further bioactive properties in addition to those commonly displayed by surface-active compounds. We propose here the chemical synthesis, and characterization of 1-o-tolyl alkyl biguanide derivatives, having different lengths of the hydrocarbon chain (C3, C6, and C10), and showing surface active and antibacterial/disinfectant activities toward both Gram-positive and Gram-negative bacteria. Both surface active properties in terms of critical micelle concentration (CMC) and surface tension at CMC (γCMC), as well as the antimicrobial activity in terms of minimum inhibitory concentrations (MICs), were strongly dependent on the length of the hydrocarbon chain. Particularly, the C6 and C10 derivatives have a good ability to decrease surface tension (γCMC <40 mN/m) at low concentrations (CMC < 12 mM) and a satisfactory antibacterial effect (MIC values between 0.230 and 0.012 mM against S. aureus strains and between 0.910 and 0.190 against P.aeruginosa strains). Interestingly, these compounds showed a disinfectant activity at the tested concentrations that was comparable to that of the reference compound chlorhexidine digluconate. All these results support the possible use of these amphiphilic compounds as antibacterial agents and disinfectants in pharmaceutical or cosmetic formulations.
Collapse
Affiliation(s)
- Diego Romano Perinelli
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino, 62032, Italy
| | - Fabio Del Bello
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino, 62032, Italy
| | - Luca Agostino Vitali
- Microbiology Unit, School of Pharmacy, University of Camerino, via Gentile III da Varano, Camerino, 62032, Italy
| | - Massimo Nabissi
- Department of Experimental Medicine, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Marco Cespi
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino, 62032, Italy
| | - Wilma Quaglia
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino, 62032, Italy
| | - Cristina Aguzzi
- Department of Experimental Medicine, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Veronica Lupetti
- Microbiology Unit, School of Pharmacy, University of Camerino, via Gentile III da Varano, Camerino, 62032, Italy
| | - Martina Giangrossi
- Department of Experimental Medicine, School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, Camerino, 62032, Italy
| | - Giulia Bonacucina
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, Camerino, 62032, Italy.
| |
Collapse
|
2
|
Diep E, Schiffman JD. Encapsulating bacteria in alginate-based electrospun nanofibers. Biomater Sci 2021; 9:4364-4373. [PMID: 34128000 DOI: 10.1039/d0bm02205e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Encapsulation technologies are imperative for the safe delivery of live bacteria into the gut where they regulate bodily functions and human health. In this study, we develop alginate-based nanofibers that could potentially serve as a biocompatible, edible probiotic delivery system. By systematically exploring the ratio of three components, the biopolymer alginate (SA), the carrier polymer poly(ethylene oxide) (PEO), and the FDA approved surfactant polysorbate 80 (PS80), the surface tension and conductivity of the precursor solutions were optimized to electrospin bead-free fibers with an average diameter of 167 ± 23 nm. Next, the optimized precursor solution (2.8/1.2/3 wt% of SA/PEO/PS80) was loaded with Escherichia coli (E. coli, 108 CFU mL-1), which served as our model bacterium. We determined that the bacteria in the precursor solution remained viable after passing through a typical electric field (∼1 kV cm-1) employed during electrospinning. This is because the microbes are pulled into a sink-like flow, which encapsulates them into the polymer nanofibers. Upon electrospinning the E. coli-loaded solutions, beads that were much smaller than the size of an E. coli were initially observed. To compensate for the addition of bacteria, the SA/PEO/PS80 weight ratio was reoptimized to be 2.5/1.5/3. Smooth fibers with bulges around the live microbes were formed, as confirmed using fluorescence and scanning electron microscopy. By dissolving and plating the nanofibers, we found that 2.74 × 105 CFU g-1 of live E. coli cells were contained within the alginate-based fibers. This work demonstrates the use of electrospinning to encapsulate live bacteria in alginate-based nanofibers for the potential delivery of probiotics to the gut.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-9303, USA.
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-9303, USA.
| |
Collapse
|