1
|
Mansour EM, Hosny R, Mohamed AS, Abdelhafiz FM. Synthesis and evaluation of amino acid ionic liquid for enhanced oil recovery: experimental and modeling simulation studies. Sci Rep 2025; 15:2201. [PMID: 39820535 PMCID: PMC11739425 DOI: 10.1038/s41598-025-85560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Recovering the remaining oil after primary and secondary extraction methods poses a significant challenge. Enhanced oil recovery (EOR) techniques, which involve injecting fluids into reservoirs, aim to increase recovery rates. Ionic liquids, known for their adaptability, are emerging as promising agents in EOR, improving oil displacement by reshaping fluid properties and interacting with reservoir rocks. This study investigates the eco-friendly amino acid ionic liquid, AAIL [G0.5 C12][Pro], for EOR applications, focusing on its characterization and performance. Using pre-prepared quaternary ammonium salt PAMAM G0.5 C12 and proline, AAIL [G0.5 C12][Pro] was synthesized and confirmed via FTIR and 1H-NMR analyses. Rheological analysis identified 7 g of AAIL [G0.5 C12][Pro] as the optimal concentration for peak performance. Laboratory sand-pack displacement experiments demonstrated an 11% increase in oil recovery at this concentration. Further, a 3D reservoir model simulation validated the enhanced oil recovery potential of AAIL [G0.5 C12][Pro]. The study introduces the novel amino acid ionic liquid [G0.5 C12][Pro], which demonstrates superior effectiveness in enhancing oil recovery through significant wettability modification and interfacial tension reduction, underscoring its potential as an effective and environmentally friendly EOR agent compared to other ionic liquids and conventional methods.
Collapse
Affiliation(s)
- E M Mansour
- PVT Lab, Production Department, Egyptian Petroleum Research Institute, 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt.
- PVT Services Center, Egyptian Petroleum Research Institute, 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt.
| | - R Hosny
- EOR Lab., Production Department, Egyptian Petroleum Research Institute, 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt.
- Core Lab Center, Egyptian Petroleum Research Institute (EPRI), 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt.
| | - Ammona S Mohamed
- Petrochemicals Department, Egyptian Petroleum Research Institute, 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt
| | - Fatma M Abdelhafiz
- Petrochemicals Department, Egyptian Petroleum Research Institute, 1 Ahmed El Zomor St., Nasr City, Cairo, 11727, Egypt
| |
Collapse
|
2
|
Gomaa S, Salem KG, El-hoshoudy A. Enhanced heavy and extra heavy oil recovery: Current status and new trends. PETROLEUM 2024; 10:399-410. [DOI: 10.1016/j.petlm.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
3
|
Khattab H, Gawish AA, Hamdy A, Gomaa S, El-hoshoudy AN. Assessment of a Novel Xanthan Gum-Based Composite for Oil Recovery Improvement at Reservoir Conditions; Assisted with Simulation and Economic Studies. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:3363-3391. [DOI: 10.1007/s10924-023-03153-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 07/05/2024]
|
4
|
Selim MS, El-Hoshoudy AN, Zaki EG, El-Saeed AM, Farag AA. Durable graphene-based alkyd nanocomposites for surface coating applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43476-43491. [PMID: 38700767 PMCID: PMC11252194 DOI: 10.1007/s11356-024-33339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/11/2024] [Indexed: 07/05/2024]
Abstract
Recently, the scientific community's main goal is the long-term sustainability. Vegetable oils are easily accessible, non-depletable, and cost-effective materials. Vegetable oils are used to prepare polymeric alkyd surfaces. Novel and exciting designs of alkyd/graphene nanocomposites have provided eco-friendly thermal stability and protective coating surfaces. This review has briefly described important graphene-based alkyd nanocomposites along with their applications as protective coatings. These alkyd composites have high hydrophobicity, corrosion resistance, and durability. Graphene-based alkyd nanocoatings have many industrial and research interests because of their exceptional thermal and chemical properties. This work introduces an advanced horizon for developing protective nanocomposite coatings. The anti-corrosion properties and coatings' longevity may be improved by combining the synergistic effects of hybrid nanofillers introduced in this work.
Collapse
Affiliation(s)
- Mohamed S Selim
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt.
| | | | - ElSayed G Zaki
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Ashraf M El-Saeed
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| | - Ahmed A Farag
- Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, 11727, Egypt
| |
Collapse
|
5
|
Salem KG, Tantawy MA, Gawish AA, Salem AM, Gomaa S, El-hoshoudy A. Key aspects of polymeric nanofluids as a new enhanced oil recovery approach: A comprehensive review. FUEL 2024; 368:131515. [DOI: 10.1016/j.fuel.2024.131515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
6
|
Khattab H, Gawish AA, Gomaa S, Hamdy A, El-Hoshoudy AN. Assessment of modified chitosan composite in acidic reservoirs through pilot and field-scale simulation studies. Sci Rep 2024; 14:10634. [PMID: 38724544 PMCID: PMC11082220 DOI: 10.1038/s41598-024-60559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Chemical flooding through biopolymers acquires higher attention, especially in acidic reservoirs. This research focuses on the application of biopolymers in chemical flooding for enhanced oil recovery in acidic reservoirs, with a particular emphasis on modified chitosan. The modification process involved combining chitosan with vinyl/silane monomers via emulsion polymerization, followed by an assessment of its rheological behavior under simulated reservoir conditions, including salinity, temperature, pressure, and medium pH. Laboratory-scale flooding experiments were carried out using both the original and modified chitosan at conditions of 2200 psi, 135,000 ppm salinity, and 196° temperature. The study evaluated the impact of pressure on the rheological properties of both chitosan forms, finding that the modified composite was better suited to acidic environments, showing enhanced resistance to pressure effects with a significant increase in viscosity and an 11% improvement in oil recovery over the 5% achieved with the unmodified chitosan. Advanced modeling and simulation techniques, particularly using the tNavigator Simulator on the Bahariya formations in the Western Desert, were employed to further understand the polymer solution dynamics in reservoir contexts and to predict key petroleum engineering metrics. The simulation results underscored the effectiveness of the chitosan composite in increasing oil recovery rates, with the composite outperforming both its native counterpart and traditional water flooding, achieving a recovery factor of 48%, compared to 39% and 37% for native chitosan and water flooding, thereby demonstrating the potential benefits of chitosan composites in enhancing oil recovery operations.
Collapse
Affiliation(s)
- Hamid Khattab
- Petroleum Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Cairo, Egypt
| | - Ahmed A Gawish
- Petroleum Engineering Department, Faculty of Petroleum & Mining Engineering, Suez University, Cairo, Egypt
| | - Sayed Gomaa
- Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
- Department of Petroleum Engineering, Faculty of Engineering & Technology, Future University in Egypt, New Cairo, Egypt
| | - Abdelnaser Hamdy
- Reservoir Engineering Department, Khalda Petroleum Company, Cairo, Egypt
| | - A N El-Hoshoudy
- PVT lab, Production Department, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
- PVT service center, Egyptian Petroleum Research Institute, Cairo, 11727, Egypt.
| |
Collapse
|
7
|
Tian X, Zhang K, Zhang Y, Wang N, Wang H, Xu H, Guang S. Preparation and mechanism study of hydrogen bond induced enhanced composited gelatin microsphere probe. Int J Biol Macromol 2024; 266:130752. [PMID: 38467229 DOI: 10.1016/j.ijbiomac.2024.130752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Fluorescent probes offer rapid and efficient detection of metal ions. However, their properties, including high biotoxicity and low detection limits, often limit their utility in biological systems. In this study, we used a microfluidic approach to fabricate photocrosslinked gelatin microspheres with a micropore, providing a straightforward method for loading fluorescent probes into these microspheres based on the adsorption effect and hydrogen bonding interaction. The gelatin microsphere loaded probes, GelMA/TPA-DAP and GelMA/TPA-ISO-HNO were designed and obtained. The results show that these probes exhibit obviously low biotoxicity compared to the original molecular probes TPA-DAP and TPA-ISO-HNO. Simultaneously, it is found that GelMA/TPA-DAP and GelMA/TPA-ISO-HNO have better detection sensitivity, the detection limits are 35.4 nM for Cu2+, 16.5 nM for Co2+ and 20.5 nM for Ni2+ for GelMA/TPA-DAP probe. Compared to the original TPA-DAP they are improved by 37.2 %, 26.3 % and 22.6 % respectively. The corresponding coordination constants were 10.8 × 105, 4.11×105 and 6.04×105, which is larger than homologous TPA-DAP. Similar results were also verified in the GelMA/TPA-ISO-HNO probe. The mechanism was investigated in detail by theoretical simulations and advanced spectral analysis. The density functional theory (DFT) simulations show that the probes are anchored inside the microspheres and the molecular structure is modified due to the hydrogen bonding interaction between the microsphere and the molecular probe, which makes GelMA/TPA-DAP exhibit stronger coordination capacity with metal ions than homologous TPA-DAP. In addition, the adsorption effect also provided some synergistic enhancement contribution. Meanwhile, cellular experiments have also shown that the composite microspheres can improve the biocompatibility of the probe and will provide a wider range of applications towards bioassay. This simple and effective method will provide a convenient way to improve the performance of fluorescent probes and their biological applications.
Collapse
Affiliation(s)
- Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Kezhen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China
| | - Yu Zhang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Nan Wang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Huaping Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymers Materials, College of Materials Sciences and Engineering, Donghua University, Shanghai 201620, China.
| | - Shanyi Guang
- College of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Adsorption of BTX from produced water by using ultrasound-assisted combined multi-template imprinted polymer (MIPs); factorial design, isothermal kinetics, and Monte Carlo simulation studies. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Li J, Zhao G, Sun N, Liang L, Yang N, Dai C. Construction and evaluation of a graphite oxide Nanoparticle-Reinforced polymer flooding system for enhanced oil recovery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
El-hoshoudy AN. Experimental and Theoretical Investigation for Synthetic Polymers, Biopolymers and Polymeric Nanocomposites Application in Enhanced Oil Recovery Operations. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-06482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
El-hoshoudy AN. Experimental and Theoretical Investigation of Glycol-Based Hydrogels through Waterflooding Processes in Oil Reservoirs Using Molecular Dynamics and Dissipative Particle Dynamics Simulation. ACS OMEGA 2021; 6:30224-30240. [PMID: 34805657 PMCID: PMC8600538 DOI: 10.1021/acsomega.1c01533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Enhanced oil processing aims to retrieve petroleum fluids from depleted reservoirs after traditional processing. Hydrogels and polymeric macromolecules are considered effective displacing agents in oil reservoirs. In the current work, the authors used hydrophilic hydrogels based on poly(ethylene glycol)/poly(propylene glycol) (PEG/PPG) surfmers for oil displacement processes. Statistical modeling of the rheological properties at 80 °C for the two hydrogels indicates that the viscosity-shearing profile obeys the power-law model. Also, shear stress scanning follows the Herschel-Bulkley and the Bingham plastic models. The two hydrogels exhibit an initial yield stress owing to the formation of a three-dimensional (3D) structure at zero shearings. Furthermore, PEG and PPG hydrogels can retain the viscosity after a shear rate of 64.68 S-1. On the scale of surface activity, the two hydrogels exhibit higher surface areas (A m) of 0.1088 and 0.1058 nm2 and lower surface excess concentrations (Γm) of 1.529 and 1.567 × 1010 mol/cm2, respectively. A molecular dynamics (MD) simulation was conducted to explore the Flory-Huggins chi parameter, the solubility parameter, and the cohesive energy density. The results indicate a negative magnitude of chi parameter (χ ij ) for water and salt, which indicates that the two hydrogels have a good tendency toward saline formation water in the underground petroleum reservoir. Furthermore, the dissipative particle dynamics (DPD) was performed on a mesoscale to investigate the interfacial tension, the radius of gyration, the concentration profile, and the radial distribution function. The increased radius of gyration (R g) confirms that the two hydrogels are more overextended and can align perpendicularly toward the water/oil boundary. Experimental displacement was operated on a linear sandpack model using different slug concentrations. The oil recovery factor, the water-cut, and the differential pressure data during the flooding process were estimated as a function of the injected pore volume. The obtained results show that the oil recovery factor reaches 72 and 88% in the cases of PEG and PPG hydrogels at 80 °C with concentrations of 1.0 and 1.5 g/L, which reveals that both hydrogels are effective enhanced oil recovery (EOR) agents for the depleted reservoirs. This study establishes a new route that employs MD and DPD simulation in the field of enhanced oil recovery and the petroleum industry.
Collapse
|
12
|
Bai Y, Wang F, Shang X, Lv K, Dong C. Microstructure, dispersion, and flooding characteristics of intercalated polymer for enhanced oil recovery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Maghsoudian A, Tamsilian Y, Kord S, Soltani Soulgani B, Esfandiarian A, Shajirat M. Styrene intermolecular associating incorporated-polyacrylamide flooding of crude oil in carbonate coated micromodel system at high temperature, high salinity condition: Rheology, wettability alteration, recovery mechanisms. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Telles IM, Bombardelli RK, dos Santos AP, Levin Y. Simulations of electroosmotic flow in charged nanopores using Dissipative Particle Dynamics with Ewald summation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Imidazolium-based ionic liquids for asphaltene dispersion; experimental and computational studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114698] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
El-hoshoudy A, Soliman F, Abd El-Aty DM. Extractive desulfurization using choline chloride-based DES/molybdate nanofluids; Experimental and theoretical investigation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|