1
|
Zhou J, Jia Y, Wei C, Li H, Liu Y. Reactive extraction of methanesulfonic acid from wastewater using trioctylamine. Sci Rep 2024; 14:30029. [PMID: 39627463 PMCID: PMC11615037 DOI: 10.1038/s41598-024-81916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024] Open
Abstract
Wastewater containing methanesulfonic acid (MSA) mainly originates from the production process of metal detergent, which also contributes significantly to environmental pollution. This study investigates the extraction of MSA from wastewater using trioctylamine (TOA). A thorough investigation was carried out into the factors that affect extraction efficiency, such as the type of extractant, phase ratio (O/A), temperature, stirring speed, and extraction time. An extraction efficiency of 96.1% was achieved using TOA at 25 °C, 1400 r·min- 1, and an extraction time of 30 min. Various techniques including FT-IR, XPS, and high-resolution ESI-MS were employed to investigate the extraction mechanism. The results of different techniques revealed that the complexation between TOA and MSA occurred through ionic and hydrogen bonding interactions. Moreover, TOA was successfully regenerated through back-extraction with sodium hydroxide. The proposed extraction system is advantageous for eco-friendly engineering applications.
Collapse
Affiliation(s)
- Jian Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou, 730070, China.
| | - Yu Jia
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Chengjia Wei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Huiru Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yufeng Liu
- Lanzhou lubricating oil research and development center, Lanzhou, 730070, China
| |
Collapse
|
2
|
Fernandes S, Flores D, Silva D, Santos-Vieira I, Mirante F, Granadeiro CM, Balula SS. Lindqvist@Nanoporous MOF-Based Catalyst for Effective Desulfurization of Fuels. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2887. [PMID: 36014754 PMCID: PMC9414597 DOI: 10.3390/nano12162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 05/14/2023]
Abstract
An effective and sustainable oxidative desulfurization process for treating a multicomponent model fuel was successfully developed using as a heterogeneous catalyst a composite material containing as an active center the europium Lindqvist [Eu(W5O18)2]9- (abbreviated as EuW10) encapsulated into the nanoporous ZIF-8 (zeolitic imidazolate framework) support. The EuW10@ZIF-8 composite was obtained through an impregnation procedure, and its successful preparation was confirmed by various characterization techniques (FT-IR, XRD, SEM/EDS, ICP-OES). The catalytic activity of the composite and the isolated EuW10 was evaluated in the desulfurization of a multicomponent model fuel containing dibenzothiophene derivatives (DBT, 4-MDBT and 4,6-DMDBT) with a total sulfur concentration of 1500 ppm. Oxidative desulfurization was performed using an ionic liquid as extraction solvent and aqueous hydrogen peroxide as oxidant. The catalytic results showed a remarkable desulfurization performance, with 99.5 and 94.7% sulfur removal in the first 180 min, for the homogeneous active center EuW10 and the heterogeneous EuW10@ZIF-8 catalysts, respectively. Furthermore, the stability of the nanocomposite catalyst was investigated by reusing and recycling processes. A superior retention of catalyst activity in consecutive desulfurization cycles was observed in the recycling studies when compared with the reusing experiments. Nevertheless, the nanostructure of ZIF-8 incorporating the active POM (polyoxometalate) was shown to be highly suitable for guaranteeing the absence of POM leaching, although structural modification was found for ZIF-8 after catalytic use that did not influenced catalytic performance.
Collapse
Affiliation(s)
- Simone Fernandes
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniela Flores
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Daniel Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Isabel Santos-Vieira
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fátima Mirante
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carlos M. Granadeiro
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Salete S. Balula
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Intermolecular interactions induced desulfurization/denitrification of oil with deep eutectic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels. Catalysts 2022. [DOI: 10.3390/catal12060581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A correlation between polyoxotungstate structures and their catalytic performance for oxidative desulfurization processes was investigated. Bridged lanthanopolyoxometalates that incorporate identical metallic centers with Keggin- Eu[PW11O39]11− and Lindqvist-type [Eu(W5O18)2]9− structures were used as catalysts for the oxidation of the most representative refractory sulfur compounds. Both compounds were able to desulfurize a multicomponent model diesel under sustainable conditions, i.e., using ionic liquid as an extraction solvent and hydrogen peroxide as an oxidant. However, the Lindqvist catalyst appeared to achieve complete desulfurization faster than the Keggin catalyst while using a lesser amount of catalyst and oxidant. Furthermore, the reusable capacity of the Lindqvist-type [Eu(W5O18)2]9− was confirmed for consecutive oxidative desulfurization processes. The contribution of the lanthanide metallic center for the catalytic performance of these compounds was investigated by studying the analogous [TB(W5O18)2]9− compound. Identical desulfurization efficiency was obtained, even reusing this catalyst in consecutive reaction cycles. These results indicate that the active catalytic center of these compounds is probably related to the octahedral tungsten centers. However, a higher number of tungsten centers in the polyoxometalate structure did not result in higher catalytic activity.
Collapse
|
5
|
Yang J, Ma W, Li M, He F, Zhang H, Zhang H. One-step synthesis of supported green catalyst by thermal polymerization and application of model oil desulfurization. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Julião D, Gomes AC, Cunha-Silva L, Pillinger M, Gonçalves IS, Balula SS. Dichloro and dimethyl dioxomolybdenum(VI)-bipyridine complexes as catalysts for oxidative desulfurization of dibenzothiophene derivatives under extractive conditions. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Guo Y, Liu X, Li J, Hu B. Optimization study on deep extractive oxidative desulfurization with tetrabutylammonium bromide/polyethylene glycol DES. RSC Adv 2021; 11:31727-31737. [PMID: 35496838 PMCID: PMC9042028 DOI: 10.1039/d1ra05295k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/05/2021] [Indexed: 11/21/2022] Open
Abstract
Green, efficient and inexpensive desulfurizing solvents have always been a considerable focus of petroleum desulfurization research. In this study, a series of deep eutectic solvents (DESs) based on tetrabutylammonium bromide (TBAB)/polyethylene glycol 200 (PEG-200) with different molar ratios were synthesized and characterized by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Dibenzothiophene (DBT) was removed deeply as the classic sulfide in model oil, and H2O2 was fully utilized by the new TBAB/PEG-200 desulfurization system in step extractive oxidative desulfurization. The reaction conditions were optimized further, and O/S = 8, DES/oil = 1 : 5, 40 °C and 75 minutes were chosen as the best reaction conditions. Meanwhile, other organic sulfides in crude oil were also removed, and the removal rates of DBT, 4,6-dimethyldibenzothiophene and benzothiophene were 99.65%, 96.71% and 93.52%, respectively. The DES was reused 7 times, and the desulfurization efficiency of the regenerated DES for DBT was maintained at 98.14%. Finally, the possible mechanism of the synergistic effect of two kinds of hydrogen bonds and the oxidant was proposed. Green, efficient and inexpensive desulfurizing solvents have always been a considerable focus of petroleum desulfurization research.![]()
Collapse
Affiliation(s)
- Yanwen Guo
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| | - Xingjian Liu
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| | - Jingwen Li
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| | - Bing Hu
- School of Materials and Chemical Engineering, Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
8
|
A simple desulfurization process to achieve high efficiency, sustainability and cost-effectivity via peroxotungstate catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Pan Z, Bo Y, Liang Y, Lu B, Zhan J, Zhang J, Zhang J. Intermolecular interactions in natural deep eutectic solvents and their effects on the ultrasound-assisted extraction of artemisinin from Artemisia annua. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Liu Y, Zuo P, Wang F, Lv Y, Wang R, Jiao W. Extraction combined oxidation desulfurization of dibenzothiophene using polyoxometalate-supported magnetic chitosan microspheres. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Desulfurization Performance of Choline Chloride-Based Deep Eutectic Solvents in the Presence of Graphene Oxide. ENVIRONMENTS 2020. [DOI: 10.3390/environments7110097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extractive catalytic oxidative desulfurization (ECODS) is the one of the recent methods used in fuel desulfurization which involved the use of catalyst in the oxidative desulfurization of diesel fuel. This study is aimed to test the effectiveness of synthesized choline chloride (ChCl) based deep eutectic solvent (DES) in fuel desulfurization via ECODS method, with the presence of graphene oxide (GO) as catalyst and hydrogen peroxide (H2O2) as oxidant. In this study, 16 DESs based on choline chloride were synthesized using glycerol (GLY), ethylene glycol (EG), tetraethylene glycol (TEG) and polyethylene glycol (PEG). The characterization of the synthesized DES was carried out via Fourier transform infrared spectroscopy (FTIR) analysis, density, and viscosity determination. According to the screening result, ChCl-PEG (1:4) was found to be the most effective DES for desulfurization using ECODS method, with a removal of up to 47.4% of sulfur containing compounds in model oil in just 10 min per cycle after the optimization of the reaction parameters, and up to 95% desulfurization efficiency could be achieved by six cycles of desulfurization. It is found that the addition of GO as catalyst does not increase the desulfurization performance drastically; hence, future studies for the desulfurization performance of DESs made up from ChCl and PEG and its derivatives can be done simply by using extraction desulfurization (EDS) method instead of ECODS method, for cost reduction purpose and easier regulation of DES waste into environment.
Collapse
|
12
|
Solvent-Free Desulfurization System to Produce Low-Sulfur Diesel Using Hybrid Monovacant Keggin-Type Catalyst. Molecules 2020; 25:molecules25214961. [PMID: 33120916 PMCID: PMC7663092 DOI: 10.3390/molecules25214961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022] Open
Abstract
Two quaternary ammonium catalysts based on the monovacant polyoxotungstate ([PW11O39]7−, abbreviated as PW11) were prepared and characterized. The desulfurization performances of the PW11-based hybrids (of tetrabutylammonium and trimethyloctadecylammonium, abbreviated as TBA[PW11] and ODA[PW11], respectively), the corresponding potassium salt (K7PW11O39, abbreviated as KPW11) and the peroxo-compound (TBA-PO4[WO(O2)2], abbreviated as TBA[PW4]) were compared as catalysts for the oxidative desulfurization of a multicomponent model diesel (2000 ppm S). The oxidative desulfurization studies (ODS) were performed using solvent-free systems and aqueous H2O2 as oxidant. The nature of the cation in the PW11 catalyst showed to have an important influence on the catalytic performance. In fact, the PW11-hybrid catalysts showed higher catalytic efficiency than the peroxo-compound TBA[PW4], known as Venturello compound. TBA[PW11] revealed a remarkable desulfurization performance with 96.5% of sulfur compounds removed in the first 130 min. The reusability and stability of the catalyst were also investigated for ten consecutive ODS cycles without loss of activity. A treated clean diesel could be recovered without sulfur compounds by performing a final liquid/liquid extraction diesel/EtOH:H2O mixture (1:1) after the catalytic oxidative step.
Collapse
|