1
|
Shahzad K, Raza MA, Hussain A, Ko KC, Jeong HJ, Seralathan KK, Han SS, Park SH. Synthesis and characterization of self-crosslinked carboxymethyl chitosan-based hydrogel and its composites with gelatin and PEG-GO for drug delivery applications. Int J Biol Macromol 2025; 308:142256. [PMID: 40154681 DOI: 10.1016/j.ijbiomac.2025.142256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Hydrogels are widely employed in drug delivery, gene delivery, tissue engineering, and wound healing applications. However, many organic crosslinkers used in hydrogel fabrication exhibit poor water solubility, low biodegradation rates, and toxicity, limiting their biomedical utility. In this study, we developed a simple, cost-effective, and rapid method for synthesizing self-crosslinked carboxymethyl chitosan-based hydrogel (CMCH HG) using N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide (EDC) and N-Hydroxysuccinimide (NHS) chemistry instead of toxic organic crosslinkers. To enhance physicochemical properties, we prepared composites of self-crosslinked hydrogel with gelatin (CMCH/GL HG) and 6-arm polyethylene glycol amine-functionalized graphene oxide (CMCH/GL/PEG-GO HG). The fabrication and physicochemical characteristics of the self-crosslinked hydrogel and its composites were verified through analytical and spectroscopic techniques. The in-vitro drug release study using berberine chloride demonstrated that CMCH/GL/PEG-GO HG released only 30 % of the drug in the first 12 h and a total of 39 % after 96 h. Due to controlled drug release, excellent antioxidant activities, anticancer properties, biodegradability, and minimal toxicity, the composite of self-crosslinked carboxymethyl chitosan hydrogel with gelatin and graphene oxide represents a promising candidate as a drug carrier at tumor sites to minimize off-target effects of chemotherapy.
Collapse
Affiliation(s)
- Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Muhammad Asim Raza
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34113, Republic of Korea
| | - Hyeon-Jin Jeong
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Kurhade PI, Kodape SM, Das A, Bansod PG. Synergistic action of sumatriptan delivery and targeting magnesium deficiency using green, pH-responsive MgO nanoparticles synthesized from mahua flower extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7217-7236. [PMID: 37936045 DOI: 10.1007/s11356-023-30648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Magnesium oxide (MgO) nanoparticles were green synthesized using mahua (Madhuca longifolia) flower extracts by solvent evaporation and characterized by UV-visible spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), and Energy dispersive X-ray analysis (EDX). The drug loading of sumatriptan succinate (SS), an anti-migraine drug, was optimized using MINITAB's response surface methodology (RSM) Box Behnken model (BBD) model. The investigation of drug adsorption and release kinetics was further conducted using the optimized set obtained through RSM. The optimized parameters consisted of 23.53 mg of nanoparticles, a loading time of 6 h, and a pH of 9, yielding the experimental drug loading efficiency ~47%. The primary objective of this study is to investigate the potential of utilizing these green synthesized MgO nanoparticles for a dual purpose. The primary objective of this study is to investigate the viability of utilizing MgO nanoparticles synthesized through green route for the delivery of an anti-migraine medication. Additionally, the study aims to examine the degradation of these nanoparticles at physiological pH levels, with the intention of potentially enhancing cellular absorption. The investigation involved the assessment of drug release kinetics using various mathematical models, with a focus on the release of SS from MgO nanoparticles. This evaluation was conducted at different pH levels, specifically pH 5, 7, and 9. It has been found that the SS release increases as pH decreases, which is attributed to the dissolution of MgO nanoparticles, which therefore exhibits varied behavior at different pHs. The confirmation of the degradation of the green synthesized MgO nanoparticles was achieved through the execution of a degradation study, followed by the analysis of the obtained samples using FESEM and EDS. At neutral, the release data obtained adhered to the Higuchi model, which suggests that the release of the drug is based on diffusion. This finding is particularly advantageous for the controlled release of an anti-migraine drug. The results obtained from the study indicate that MgO nanoparticles have the potential to serve as a significant component in drug delivery systems, specifically as drug carriers.
Collapse
Affiliation(s)
- Pranali I Kurhade
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | - Shyam M Kodape
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India.
| | - Arijit Das
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | | |
Collapse
|
3
|
Verma A, Sharma G, Wang T, Kumar A, Dhiman P, Verma Y, Bhaskaralingam A, García-Penas A. Graphene oxide/chitosan hydrogels for removal of antibiotics. ENVIRONMENTAL TECHNOLOGY 2025:1-31. [PMID: 39985820 DOI: 10.1080/09593330.2025.2464267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
Antibiotic contamination in aquatic environments is a growing concern, posing risks to public health and ecosystems. To address this issue, advanced materials like graphene oxide (GO) and chitosan-based hydrogels are being extensively explored for their ability to effectively remove antibiotics from wastewater, owing to their distinct characteristics and synergistic benefits. This review comprehensively examines the synthesis, characterization, and applications of GO/chitosan hydrogels in addressing antibiotic pollution. The synthesis methods, including solution casting, crosslinking, and in situ polymerization, are discussed for their simplicity and scalability. The hydrogels' key properties, such as porosity, surface area, and mechanical strength, are essential for their efficient adsorption capabilities. Adsorption mechanisms, including electrostatic interactions, π-π stacking, hydrogen bonding, and surface functional groups, enable these hydrogels to achieve high adsorption capacities. Notable examples include rGO@ZIF-67@CS hydrogels, which achieved higher adsorption capacities of 1685.26 mg·g-1 for tetracycline at pH 4 and 1890.32 mg·g-1 for norfloxacin at pH 5, while the sulfonated CMC/GO-GCC composite hydrogel achieved 312.28 mg·g-1 for sulfamethoxazole at 298 K. Moreover, high adsorption efficiencies of 90.42% with GO-CTS and 97.06% were achieved using AGO-CTS hydrogel for diclofenac adsorption. The review also highlights the practical applications of these hydrogels in wastewater treatment, comparing their performance with other adsorbents and addressing challenges such as scalability and regeneration. Finally, the review explores future research directions to enhance the effectiveness and sustainability of GO/chitosan hydrogels, emphasizing their potential as scalable, eco-friendly solutions for antibiotic removal from water.
Collapse
Affiliation(s)
- Akshay Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Tongtong Wang
- Institute for Interdisciplinary and Innovate Research, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Aishwarya Bhaskaralingam
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Alberto García-Penas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, Legan'es, Spain
| |
Collapse
|
4
|
Ali Q, Shakoor A, Rehman G, Ur Rehman M, Khan M, Ahmad R, Ahmad I, AlAsmari AF, Alasmari F. Assessment of the potential and application of Be 12O 12 nanocage for removal of ciprofloxacin from water employing density functional theory. Sci Rep 2025; 15:1020. [PMID: 39762455 PMCID: PMC11704016 DOI: 10.1038/s41598-025-85155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
The modern world is facing the issue of emerging pollutants for its sustainable development. We report a detailed study on the abatement of ciprofloxacin (CIP) by Be12O12 nanocage. Five different geometries of Be12O12 nanocage with CIP i.e., Com-A, Com-B, Com-C, Com-D and Com-E are optimized. All the complexes show chemisorption with the highest adsorption energies (Eads) of - 39.86 kcal/mol for Com-E followed by Com-A, Com-B, Com-C and Com-D without any structural change. The O and F atoms of ciprofloxacin (CIP) interacts strongly with the Be atoms of the nanocage respectively. Charge transfer from the nanocage to CIP reveals strong interaction in all the optimized complexes, with maximum charge transfer of -0.199 e for Com-E with the smallest bond lengths of 1.52 Å and 1.63 Å. The decrease in the bandgap of the optimized geometries witnesses increase in the sensing ability of the adsorbent and demonstrates strong interaction between the adsorbent and adsorbate supporting the adsorption energies. The positive values of Hb and ∇2ρb for all complexes reveals strong interaction of electrostatic nature between CIP and Be12O12 nature which is supported by different tools of DFT. The overall study suggests Be12O12 an efficient, reusable adsorbent for the purification of water from CIP and therefore Be12O12 can be used effectively to eliminate antibiotics from water.
Collapse
Affiliation(s)
- Qaisar Ali
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Centre for Computational Materials Science, University of Malakand, Chakdara, Pakistan
| | - Abdul Shakoor
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Gul Rehman
- Centre for Computational Materials Science, University of Malakand, Chakdara, Pakistan
| | - Munir Ur Rehman
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4 Linyuan Road, Harbin, 150040, China
| | - Momin Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Rashid Ahmad
- Centre for Computational Materials Science, University of Malakand, Chakdara, Pakistan.
- Department of Chemistry, University of Malakand, Chakdara, Pakistan.
| | - Iftikhar Ahmad
- Centre for Computational Materials Science, University of Malakand, Chakdara, Pakistan
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Kurczewska J, Stachowiak M, Cegłowski M. Chitosan-based hydrogel beads with molecularly imprinted receptors on halloysite nanotubes for tetracycline separation in water and soil. ENVIRONMENTAL RESEARCH 2024; 262:119924. [PMID: 39276838 DOI: 10.1016/j.envres.2024.119924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Tetracycline (TC), a commonly utilized broad-spectrum antibiotic, is frequently detected in water and soil, posing a significant risk to the natural environment and human health. In the present study, the composite hydrogel beads based on chitosan (CS) and halloysite-supported molecularly imprinted polymers, synthesized by two procedures with significantly different solvent volumes (Hal@MIPa(b)), were obtained and used to adsorb the antibiotic. The presence of Hal improved the thermal stability of the hydrogel beads. The system with a thinner polymer layer (CS_Hal@MIPb), containing polymers produced under conditions of significantly higher reagent dilution, was more resistant to higher temperatures than CS_Hal@MIPa. The adsorptive properties were compared with pure CS beads, those containing incorporated Hal, and free polymers obtained by different protocols (MIPa(b)). In the optimized pH 5.0, the maximum adsorption capacities were 175.24 and 178.05 mg g-1 for CS_Hal@MIPa and CS_Hal@MIPb, respectively. The values were slightly lower compared to the systems with free polymers, but the materials achieved equilibrium more rapidly (12 h). The adsorption process was spontaneous and exothermic. Freundlich isotherm and pseudo-second-order kinetic models most accurately described the experimental data. The hydrogel beads retained high selectivity in the presence of other antibiotics, and their high efficiency in the TC removal from real water samples was maintained. Their addition to soil enhanced adsorption capacities, surpassing that of chitosan-based beads containing free polymers. Significantly, the quantity of TC desorption diminished due to the halloysite's presence, which limited its penetration into groundwater. The primary mechanism of tetracycline adsorption on the hydrogel beads studied is pore filling, but other interactions (hydrogen bonding, π-π stacking, electrostatic attraction) are also involved.
Collapse
Affiliation(s)
- Joanna Kurczewska
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| | - Maria Stachowiak
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Michał Cegłowski
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
6
|
Hou M, Liu L, Zhang Y, Pan Y, Ding N, Zhang Y. In vivo study of chelating agent-modified nano zero-valent iron: Biodistribution and toxicity in mice. WATER RESEARCH 2024; 257:121649. [PMID: 38718655 DOI: 10.1016/j.watres.2024.121649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024]
Abstract
In this study, the distribution and toxicity of nanoscale zero valent iron (nZVI) and nZVIs coated with citric acid and sodium tripolyphosphate (CA-nZVI and STPP-nZVI) in mice were investigated. nZVIs were primarily found in the livers and spleens, followed by the lungs, hearts, and kidneys. Histologic analysis revealed no significant histopathologic abnormalities or lesions in all organs except the liver at 14th d gavage. nZVIs did not have a noticeable impact on the body weight of the mice or the weight of their organs. Compared with the control group, there were no significant changes in hematology indexes in the nZVIs groups. However, the nZVIs groups exhibited varying levels of elevation in alanine aminotransferase, aspartate aminotransferase, and creatinine, suggesting liver and kidney inflammation in mice. The up-regulation of Nuclear Factor erythroid 2-Related Factor 2 and Heme oxygenase 1 in the nZVIs groups may be a response to nZVIs-induced oxidative stress. Immunohistochemical analysis confirmed the inflammatory response induced by the three nZVI groups. Chelating agents did not have a significant impact on the distribution or toxicity of nZVIs in mice. This study contributes to a comprehensive and detailed insight into nZVI toxicity in the environmental field.
Collapse
Affiliation(s)
- Minhui Hou
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Linwei Liu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuqing Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuwei Pan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ning Ding
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ying Zhang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
7
|
Elsherbiny AS, Galal A, Ghoneem KM, Salahuddin NA. Graphene oxide-based nanocomposites for outstanding eco-friendly antifungal potential against tomato phytopathogens. BIOMATERIALS ADVANCES 2024; 160:213863. [PMID: 38642516 DOI: 10.1016/j.bioadv.2024.213863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
To obtain the collaborative antifungal potential of nanocomposites conjugated with graphene oxide (GO), a combination of GO with chitosan (CS/GO) and GO with chitosan (CS) and polyaniline (PANI/CS/GO) was carried out. The synthesized GO-nanocomposites were recognized by several techniques. Vanillin (Van.) and cinnamaldehyde (Cinn.) were loaded on the prepared nanocomposites as antioxidants through a batch adsorption process. In vitro release study of Van. and Cinn. from the nanocomposites was accomplished at pH 7 and 25°C. The antimicrobial activity of GO, CS/GO, and PANI/CS/GO was studied against tomato Fusarium oxysporum (FOL) and Pythium debaryanum (PYD) pathogens. The loaded ternary composite PANI/CS/GO exhibited the best percent of reduction against the two pathogens in vitro studies. The Greenhouse experiment revealed that seedlings' treatment by CS/GO/Van. and PANI/CS/GO/Van significantly lowered both disease index and disease incidence. The loaded CS/GO and PANI/CS/GO nanocomposites had a positive effect on lengthening shoots. Additionally, when CS/GO/Cinn., CS/GO/Van. and PANI/CS/GO/Van. were used, tomato seedlings' photosynthetic pigments dramatically increased as compared to infected control. The results show that these bio-nanocomposites can be an efficient, sustainable, nontoxic, eco-friendly, and residue-free approach for fighting fungal pathogens and improving plant growth.
Collapse
Affiliation(s)
- Abeer S Elsherbiny
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Alyaa Galal
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Khalid M Ghoneem
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center (ID: 60019332), Giza 12112, Egypt
| | - Nehal A Salahuddin
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
8
|
Saeed AM, Taha AG, Dardeer HM, Aly MF. One-pot synthesis of novel chitosan-salicylaldehyde polymer composites for ammonia sensing. Sci Rep 2024; 14:239. [PMID: 38168141 PMCID: PMC10761969 DOI: 10.1038/s41598-023-50243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Chitosan (Chs)-salicylaldehyde (Sal) polymer derivatives were formed via the reaction of Chs-Sal with zinc oxide nanoparticles (ZnO NPs) and beta-cyclodextrin (β-CD). These polymers were synthesized through inclusion with β-CD and doping with ZnO NPs to give pseudopolyrotaxane and Chs-Sal/ZnO NPs composite, respectively, for low-temperature detection and sensing of NH3 vapors as great significance in environmental control and human health. Additionally, the polymer (Chs-Sal/β-CD/ZnO NPs) was prepared via the insertion of generated composite (Chs-Sal/ZnO NPs) through β-cyclodextrin ring. The structural and morphological characterizations of the synthesized derivatives were confirmed by utilizing FTIR, XRD and, SEM, respectively. Also, the optical properties and thermal gravimetric analysis (TGA) of the synthesized polymers were explored. The obtained results confirmed that using β-CD or ZnO NPs for modification of polymer (Chs-Sal) dramatically enhanced thermal stability and optical features of the synthesized polymers. Investigations on the NH3-sensing properties of Chs-Sal/β-CD/ZnO NPs composite were carried out at concentrations down to 10 ppm and good response and recovery times (650 s and 350 s, respectively) at room temperature (RT) and indicated that modification by β-CD and doping with ZnO NPs effectively improves the NH3-sensing response of Chs-Sal from 712 to 6192 using Chs-Sal/β-CD/ZnO NPs, respectively, with low LOD and LOQ of 0.12 and 0.4 ppb, respectively.
Collapse
Affiliation(s)
- Ahmed Muhammed Saeed
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Ahmed Gaber Taha
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Hemat Mohamed Dardeer
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Moustafa Fawzy Aly
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
9
|
Erol ÜH, Güncüm E, Işıklan N. Development of chitosan-graphene oxide blend nanoparticles for controlled flurbiprofen delivery. Int J Biol Macromol 2023; 246:125627. [PMID: 37406912 DOI: 10.1016/j.ijbiomac.2023.125627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/09/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
The use of natural polymeric nanoparticles (Nps) as drug carriers is a highly promising area of research in the field of drug delivery systems because of their high efficiency. In this study, flurbiprofen (FB) loaded chitosan-graphene oxide (CS-GO) blend Nps were synthesized as a controlled delivery system using the emulsion method. The crystalline, molecular, and morphological structures of the prepared CS-GO Nps were characterized using a variety of analytical methods, including Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-Ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was found that the introduction of GO into the CS nanoparticle formulation increased its thermal stability. The range of the average particle size was between 362 ± 5.06 and 718 ± 2.21 nm, with negative zeta potential values between -7.67 ± 4.16 and - 27.93 ± 2.26 mV. The effects of the CS/GO ratio, the FB/polymer ratio, the amount of span 80, and the cross-linker concentration were assessed on FB release profiles. In vitro release studies displayed a two-stage release behaviour with a fast initial release of the FB, followed by sustained and extended release, and the incorporation of GO into the CS Nps made the FB release more sustained and controlled manner. Besides, the cytotoxicity test of the FB-loaded CS-GO Nps was studied through MTT assay, and it was found that they were biocompatible. Based on these findings, it can be inferred that the prepared CS-GO Nps might be a promising candidate drug carrier system for FB.
Collapse
Affiliation(s)
- Ümit Haydar Erol
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey; Advanced Technology Application and Research Center, Kilis 7 Aralık University, 79000 Kilis, Turkey
| | - Enes Güncüm
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, 71450 Yahşihan, Kırıkkale, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Arts and Sciences, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey.
| |
Collapse
|
10
|
Abdouss H, Pourmadadi M, Zahedi P, Abdouss M, Yazdian F, Rahdar A, Díez-Pascual AM. Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells. Int J Biol Macromol 2023; 242:125134. [PMID: 37257532 DOI: 10.1016/j.ijbiomac.2023.125134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-C3N4) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-C3N4 nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively. Scanning electron microscopy (SEM) images revealed a spherical structure and confirmed the g-C3N4 impregnation into the CS/PAA matrix. Zeta potential and dynamic light scattering (DLS) provided information about the surface charge and average size distribution. High CUR loading and entrapment efficiencies were obtained, which were further improved upon addition of g-C3N4. The release kinetics of drug-loaded CS/PAA/g-C3N4 nanocomposites were investigated at pH = 5.4 and pH = 7.4, and the results showed an excellent controlled pH-sensitive release profile. Cell apoptosis and in vitro cytotoxicity were investigated using flow cytometry and MTT analyses. CS/PAA/g-C3N4/CUR resulted in the highest rate of apoptosis in MCF-7 breast cancer cells, demonstrating the excellent nanocomposite efficacy in eliminating cancerous cells. CS/PAA hydrogel coated with g-C3N4 shows great potential for pH-sensitive controlled drug release.
Collapse
Affiliation(s)
- Hamidreza Abdouss
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
11
|
Borzooee Moghadam N, Avatefi M, Karimi M, Mahmoudifard M. Graphene family in cancer therapy: recent progress in cancer gene/drug delivery applications. J Mater Chem B 2023; 11:2568-2613. [PMID: 36883982 DOI: 10.1039/d2tb01858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In the past few years, the development in the construction and architecture of graphene based nanocomplexes has dramatically accelerated the use of nano-graphene for therapeutic and diagnostic purposes, fostering a new area of nano-cancer therapy. To be specific, nano-graphene is increasingly used in cancer therapy, where diagnosis and treatment are coupled to deal with the clinical difficulties and challenges of this lethal disease. As a distinct family of nanomaterials, graphene derivatives exhibit outstanding structural, mechanical, electrical, optical, and thermal capabilities. Concurrently, they can transport a wide variety of synthetic agents, including medicines and biomolecules, such as nucleic acid sequences (DNA and RNA). Herewith, we first provide an overview of the most effective functionalizing agents for graphene derivatives and afterward discuss the significant improvements in the gene and drug delivery composites based on graphene.
Collapse
Affiliation(s)
- Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Mahnaz Karimi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
12
|
Tripathy D, Gadtya AS, Moharana S. Supramolecular Gel, Its classification, preparation, properties, and applications: A review. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Debajani Tripathy
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Ankita Subhrasmita Gadtya
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|
13
|
Design of new sensing layer based on ZnO/NiO/Fe3O4/MWCNTs nanocomposite for simultaneous electrochemical determination of Naproxen and Sumatriptan. J Pharm Biomed Anal 2023; 223:115091. [DOI: 10.1016/j.jpba.2022.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
|
14
|
Eltahir S, Al homsi R, Jagal J, Ahmed IS, Haider M. Graphene Oxide/Chitosan Injectable Composite Hydrogel for Controlled Release of Doxorubicin: An Approach for Enhanced Intratumoral Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4261. [PMID: 36500884 PMCID: PMC9736459 DOI: 10.3390/nano12234261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Intratumoral (IT) injection of chemotherapeutics into needle-accessible solid tumors can directly localize the anticancer drug in the tumor site, thus increasing its local bioavailability and reducing its undesirable effects compared to systemic administration. In this study, graphene oxide (GO)-based chitosan/β-glycerophosphate (CS/GP) thermosensitive injectable composite hydrogels (CH) were prepared and optimized for the localized controlled delivery of doxorubicin (DOX). A quality-by-design (QbD) approach was used to study the individual and combined effects of several formulation variables to produce optimal DOX-loaded GO/CS/GP CH with predetermined characteristics, including gelation time, injectability, porosity, and swelling capacity. The surface morphology of the optimal formulation (DOX/opt CH), chemical interaction between its ingredients and in vitro release of DOX in comparison to GO-free CS/GP CH were investigated. Cell viability and cellular uptake after treatment with DOX/opt CH were studied on MCF 7, MDB-MB-231 and FaDu cell lines. The statistical analysis of the measured responses revealed significant effects of the concentration of GO, the concentration of CS, and the CS:GP ratio on the physicochemical characteristics of the prepared GO/CS/GP CH. The optimization process showed that DOX-loaded GO/CS/GP CH prepared using 0.1% GO and 1.7% CS at a CS: GO ratio of 3:1 (v/v) had the highest desirability value. DOX/opt CH showed a porous microstructure and chemical compatibility between its ingredients. The incorporation of GO resulted in an increase in the ability of the CH matrices to control DOX release in vitro. Finally, cellular characterization showed a time-dependent increase in cytotoxicity and cellular uptake of DOX after treatment with DOX/opt CH. The proposed DOX/opt CH might be considered a promising injectable platform to control the release and increase the local bioavailability of chemotherapeutics in the treatment of solid tumors.
Collapse
Affiliation(s)
- Safaa Eltahir
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Reem Al homsi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
15
|
Rezaei A, Hooman Vahidi S, Nasrabadi M, Ali Beyramabadi S, Morsali A. Quantum chemical study of 2-hydroxypropyl-β-cyclodextrin and genipin-crosslinked chitosan nanocarriers functionalized with cytarabine anticancer drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Akpınar F, Gençdağ Şensoy K, Muti M. Electrochemical Determination of Dexrazoxane by Differential Pulse Voltammetry (DPV) Using a Graphene Oxide Nanosheet Modified Pencil Graphite Electrode (PGE). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2095567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Fatma Akpınar
- Department of Chemistry, Faculty of Arts and Sciences, Aydın Adnan Menderes University, Aydın, Turkey
| | - Kübra Gençdağ Şensoy
- Department of Food Processing, Köşk Vocational High School, Aydın Adnan Menderes University, Aydın, Turkey
| | - Mihrican Muti
- Department of Chemistry, Faculty of Arts and Sciences, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
17
|
Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater 2022; 151:1-44. [DOI: 10.1016/j.actbio.2022.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/25/2022]
|
18
|
Preparation and characterization of a novel magnetized nanosphere as a carrier system for drug delivery using Forssk. hydrogel combined with mefenamic acid as the drug model. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
20
|
Farhadnejad H, Mortazavi SA, Jamshidfar S, Rakhshani A, Motasadizadeh H, Fatahi Y, Mahdieh A, Darbasizadeh B. Montmorillonite-Famotidine/Chitosan Bio-nanocomposite Hydrogels as a Mucoadhesive/Gastroretentive Drug Delivery System. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e127035. [PMID: 36060919 PMCID: PMC9420228 DOI: 10.5812/ijpr-127035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
The main purpose of the present study was to fabricate mucoadhesive bio-nanocomposite hydrogels to prolong the drug retention time in the stomach. In these bio-nanocomposite hydrogels, chitosan (CH) was used as a bioadhesive matrix, montmorillonite (MMT) was applied to modulate the release rate, and tripolyphosphate (TPP) was the cross-linking agent. The test samples were analyzed via different methods such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Drug incorporation efficacy and mucoadhesive strength of these nanocomposite hydrogel beads were studied. Swelling and in vitro drug release behaviors of these bio-nanocomposite hydrogels were evaluated in simulated gastric fluid (SGF; pH 1.2). The optimized MMT-famotidine (FMT)/CH bio-nanocomposite hydrogels displayed a controllable and sustainable drug release profile with suitable mucoadhesion and prolonged retention time in the stomach. Thus, the results demonstrated that the fabricated mucoadhesive bio-nanocomposite hydrogels could remarkably increase the therapeutic efficacy and bioavailability of FMT by the oral route.
Collapse
Affiliation(s)
- Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research and Development Department, Varian Pharmed Pharmaceutical Company, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sanaz Jamshidfar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network, Tehran, Iran
| | - Athar Mahdieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Abstract
Chitosan (CS) and graphene oxide (GO) nanocomposites have received wide attention in biomedical fields due to the synergistic effect between CS which has excellent biological characteristics and GO which owns great physicochemical, mechanical, and optical properties. Nanocomposites based on CS and GO can be fabricated into a variety of forms, such as nanoparticles, hydrogels, scaffolds, films, and nanofibers. Thanks to the ease of functionalization, the performance of these nanocomposites in different forms can be further improved by introducing other functional polymers, nanoparticles, or growth factors. With this background, the current review summarizes the latest developments of CS-GO nanocomposites in different forms and compositions in biomedical applications including drug and biomacromolecules delivery, wound healing, bone tissue engineering, and biosensors. Future improving directions and challenges for clinical practice are proposed as well.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Khorsandi Z, Borjian-Boroujeni M, Yekani R, Varma RS. Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Far NL, Rostami E, Bardajee GR. Production, characterization, and application of a novel chitosan-g-maleic anhydride and modified graphene oxide nanocomposite, supported methane sulfonic acid, for efficient synthesis of 1-(benzothiazolylamino) methyl-2-naphtols. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04538-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Rezaei A, Morsali A, Bozorgmehr MR, Nasrabadi M. Quantum chemical analysis of 5-aminolevulinic acid anticancer drug delivery systems: Carbon nanotube, –COOH functionalized carbon nanotube and iron oxide nanoparticle. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Pooresmaeil M, Asl EA, Namazi H. Simple fabrication of biocompatible chitosan/graphene oxide microspheres for pH-controlled amoxicillin delivery. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Bhardwaj SK, Mujawar M, Mishra YK, Hickman N, Chavali M, Kaushik A. Bio-inspired graphene-based nano-systems for biomedical applications. NANOTECHNOLOGY 2021; 32. [PMID: 34371491 DOI: 10.1088/1361-6528/ac1bdb] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/08/2021] [Indexed: 05/15/2023]
Abstract
The increasing demands of environmentally sustainable, affordable, and scalable materials have inspired researchers to explore greener nanosystems of unique properties which can enhance the performance of existing systems. Such nanosystems, extracted from nature, are state-of-art high-performance nanostructures due to intrinsic hierarchical micro/nanoscale architecture and generous interfacial interactions in natural resources. Among several, bio-inspired nanosystems graphene nanosystems have emerged as an essential nano-platform wherein a highly electroactive, scalable, functional, flexible, and adaptable to a living being is a key factor. Preliminary investigation project bio-inspired graphene nanosystems as a multi-functional nano-platform suitable for electronic devices, energy storage, sensors, and medical sciences application. However, a broad understanding of bio-inspired graphene nanosystems and their projection towards applied application is not well-explored yet. Considering this as a motivation, this mini-review highlights the following; the emergence of bio-inspired graphene nanosystems, over time development to make them more efficient, state-of-art technology, and potential applications, mainly biomedical including biosensors, drug delivery, imaging, and biomedical systems. The outcomes of this review will certainly serve as a guideline to motivate scholars to design and develop novel bio-inspired graphene nanosystems to develop greener, affordable, and scalable next-generation biomedical systems.
Collapse
Affiliation(s)
| | - Mubarak Mujawar
- Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, United States of America
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark
| | - Nicoleta Hickman
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Sciences, Alliance University, Bengaluru 562 106, Karnataka, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, United States of America
| |
Collapse
|
27
|
Al Faruque MA, Syduzzaman M, Sarkar J, Bilisik K, Naebe M. A Review on the Production Methods and Applications of Graphene-Based Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2414. [PMID: 34578730 PMCID: PMC8469961 DOI: 10.3390/nano11092414] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Graphene-based materials in the form of fibres, fabrics, films, and composite materials are the most widely investigated research domains because of their remarkable physicochemical and thermomechanical properties. In this era of scientific advancement, graphene has built the foundation of a new horizon of possibilities and received tremendous research focus in several application areas such as aerospace, energy, transportation, healthcare, agriculture, wastewater management, and wearable technology. Although graphene has been found to provide exceptional results in every application field, a massive proportion of research is still underway to configure required parameters to ensure the best possible outcomes from graphene-based materials. Until now, several review articles have been published to summarise the excellence of graphene and its derivatives, which focused mainly on a single application area of graphene. However, no single review is found to comprehensively study most used fabrication processes of graphene-based materials including their diversified and potential application areas. To address this genuine gap and ensure wider support for the upcoming research and investigations of this excellent material, this review aims to provide a snapshot of most used fabrication methods of graphene-based materials in the form of pure and composite fibres, graphene-based composite materials conjugated with polymers, and fibres. This study also provides a clear perspective of large-scale production feasibility and application areas of graphene-based materials in all forms.
Collapse
Affiliation(s)
| | - Md Syduzzaman
- Nano/Micro Fiber Preform Design and Composite Laboratory, Department of Textile Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey; (M.S.); (K.B.)
- Department of Textile Engineering Management, Bangladesh University of Textiles, Dhaka 1208, Bangladesh
| | - Joy Sarkar
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Kadir Bilisik
- Nano/Micro Fiber Preform Design and Composite Laboratory, Department of Textile Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey; (M.S.); (K.B.)
| | - Maryam Naebe
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia;
| |
Collapse
|
28
|
Abbasalizadeh F, Alizadeh E, Bagher Fazljou SM, Torbati M, Akbarzadeh A. Anticancer Effect of Alginate-Chitosan Hydrogel Loaded with Curcumin and Chrysin on Lung and Breast Cancer Cell Lines. Curr Drug Deliv 2021; 19:600-613. [PMID: 34391378 DOI: 10.2174/1567201818666210813142007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We conducted the present study to investigate the anticancer effects of curcumin and chrysin loaded in the alginate-chitosan hydrogel on breast cancer (T47D) and lung cancer (A549). BACKGROUND Cancer, which is defined as abnormal cell growth, is one of the biggest public health problems in the world. Natural compounds, such as polyphenols, are used as chemo-preventive and chemotherapeutic agents in different types of cancer owing to their antioxidant, antineoplastic, and cytotoxic properties. To improve their bioavailability and releasing behavior, hydrogel systems with high drug loading and stability and hydrophilic nature have been designed. METHODS The curcumin-chrysin-loaded alginate-chitosan hydrogels were prepared through the ionic gelation mechanism utilizing CaCl2. The prepared hydrogels were studied by using the Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The MTT and DAPI staining assays were employed for cytotoxicity and apoptosis studies of curcumin-chrysin-loaded alginate-chitosan hydrogels. The effects of the curcumin-chrysin-loaded alginate-chitosan hydrogels on the cell cycle of cell lines T47D and A549 were also evaluated using the propidium iodide staining. RESULTS The FTIR indicated specific bands at 1607 and 1422 cm-1 (the carbonyl of alginate) at 834 cm-1 (sodium alginate), 1447 cm-1, and 1026 cm-1 (COOH and C-O stretching bands alginate and chitosan). The curcumin-chrysin-loaded alginate-chitosan hydrogels could significantly (p<0.05) reduce the viability and induce apoptosis, Morover, cause G2/M arrest of the cell cycle in both A549 and T47D cell lines. CONCLUSION The alginate-chitosan hydrogels could work best as an enhanced anticancer drug delivery system.
Collapse
Affiliation(s)
- Farhad Abbasalizadeh
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Department of Traditional Medicine, Faculty of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Kumar G, Chaudhary K, Mogha NK, Kant A, Masram DT. Extended Release of Metronidazole Drug Using Chitosan/Graphene Oxide Bionanocomposite Beads as the Drug Carrier. ACS OMEGA 2021; 6:20433-20444. [PMID: 34395991 PMCID: PMC8359167 DOI: 10.1021/acsomega.1c02422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/20/2021] [Indexed: 05/04/2023]
Abstract
This study depicts the facile approach for the synthesis of chitosan/graphene oxide bionanocomposite (Chi/GO) beads via the gelation process. This is the first-ever study in which these Chi/GO beads have been utilized as a drug carrier for the oral drug delivery of metronidazole (MTD) drug, and investigations were made regarding the release pattern of the MTD drug using these Chi/GO beads as a drug carrier for a prolonged period of 84 h. The MTD is loaded on the surface as well as the cavity of the Chi/GO beads to result in MTD-Chi/GO bionanocomposite beads. The MTD drug loading was found to be 683 mg/g. Furthermore, the in vitro release patterns of pure drug and the drug encapsulated with Chi/GO beads are explored in simulated gastric as well as simulated intestinal fluids with phosphate-buffered saline (PBS) of pH 1.2 and 7.4, respectively. As-synthesized bionanocomposite beads have shown excellent stability and capacity for extended release of the MTD drug as compared to the pure drug in terms of bioavailability in both media. The cumulative release data are fitted with the Korsmeyer-Peppas kinetics and first-order reaction kinetics at pH 1.2 and 7.4. The synthesized bionanocomposite beads have good potential to minimize the multiple-dose frequency with the sustained drug release property and can reduce the side effects due to the drug.
Collapse
Affiliation(s)
- Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Karan Chaudhary
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | | | - Arun Kant
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
30
|
Banivaheb S, Dan S, Hashemipour H, Kalantari M. Synthesis of modified chitosan TiO2 and SiO2 hydrogel nanocomposites for cadmium removal. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Peres RM, Forero JS, Corrêa RJ. Tuning the graphene oxide chemistry by excimer formation: The stabilization of electron/hole pair on sp2 surface. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Han Lyn F, Tan CP, Zawawi RM, Nur Hanani ZA. Enhancing the mechanical and barrier properties of chitosan/graphene oxide composite films using trisodium citrate and sodium tripolyphosphate crosslinkers. J Appl Polym Sci 2021. [DOI: 10.1002/app.50618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Foong Han Lyn
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Ruzniza Mohd Zawawi
- Department of Chemistry, Faculty of Science Universiti Putra Malaysia Seri Kembangan Malaysia
| | - Zainal Abedin Nur Hanani
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia Seri Kembangan Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Seri Kembangan Malaysia
| |
Collapse
|
33
|
Mary YS, Mary YS. Utilization of doped/undoped graphene quantum dots for ultrasensitive detection of duphaston, a SERS platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118865. [PMID: 32889339 DOI: 10.1016/j.saa.2020.118865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Recently nanocluster based drug delivery systems have become the most skillful to study. Interaction mechanism of duphaston (DPH) over graphene (G), carboxyl substituted graphene (COG) and doped COG-X (X = O/S/N/B) were investigated. We studied different spectroscopic properties of adsorbed DPH with nanoclusters. To study effect adsorption of DPH with nanoclusters, the adsorption energies were measured. To track DPH, surface enhanced Raman scattering is used since it is an efficient approach to vibrational spectroscopy. The DPH detection was investigated using GQDs SERS property. For the adsorption of DPH with COG-B nanocluster maximum energy interaction is determined. DPH works on the electrophilic site of nanoclusters as donor of electrons and adsorbs. Charge transfer is higher for to COG-B nanocluster than for other nanoclusters. Variations in chemical descriptors are also noted to understand sensing property of DPH molecule-nanoclusters. The analysis of different properties demonstrates enhancement effect which makes it significant in detecting DPH in other products.
Collapse
Affiliation(s)
- Y Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India.
| | - Y Shyma Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| |
Collapse
|
34
|
Are nickel- and titanium- doped fullerenes suitable adsorbents for dopamine in an aqueous solution? Detailed DFT and AIM studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114942] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Solomevich SO, Dmitruk EI, Bychkovsky PM, Salamevich DA, Kuchuk SV, Yurkshtovich TL. Biodegradable polyelectrolyte complexes of chitosan and partially crosslinked dextran phosphate with potential for biomedical applications. Int J Biol Macromol 2020; 169:500-512. [PMID: 33385446 DOI: 10.1016/j.ijbiomac.2020.12.200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 01/09/2023]
Abstract
Polyelectrolyte complexes (PECs) are spontaneously formed by mixing oppositely charged polyelectrolyte solutions without the use of organic solvents and chemical crosslinkers are great candidate carriers for drug delivery. Herein, biodegradable antimicrobial polyelectrolyte complexes of chitosan - dextran phosphate (DPCS) containing cefazolin were developed and characterized in order to assess their suitability for biomedical applications. For this purpose, the simultaneous partial crosslinking and functionalization of dextran with phosphoric acid in a urea melt under reduced pressure were studied. The functional group content and molecular weight of dextran phosphate were varied in order to establish their influence on gel fraction yield, thermal properties and morphologies of the hydrogels. The stoichiometric PECs of DPCS showed good in vitro biocompatibility, pH sensitivity and biodegradability depending on the hydrogel composition. The release of drug from cefazolin-loaded DPCS hydrogels was through non-Fickian diffusion and displayed long sustained-release time. The drug-loaded hydrogels showed antimicrobial activity against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. The tunable degradation behavior under physiological conditions in combination with biocompatibility of the pristine DPCS and high antibacterial efficacy drug-loaded hydrogels may render the presented materials interesting for biomedical applications.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220030, Belarus.
| | - Egor I Dmitruk
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220030, Belarus; Educational-scientific-production Republican Unitary Enterprise "UNITEHPROM BSU", 1 Kurchatova, Minsk 220045, Belarus
| | - Pavel M Bychkovsky
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220030, Belarus; Educational-scientific-production Republican Unitary Enterprise "UNITEHPROM BSU", 1 Kurchatova, Minsk 220045, Belarus
| | - Daria A Salamevich
- Belarusian State Medical University, 83, Dzerzhinsky Avenue, Minsk 220116, Belarus
| | - Sviatlana V Kuchuk
- Belarusian State Medical University, 83, Dzerzhinsky Avenue, Minsk 220116, Belarus
| | - Tatiana L Yurkshtovich
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya Street, Minsk 220030, Belarus
| |
Collapse
|