1
|
Lin P, Hayashi T, Dinh H, Nakata E, Kinoshita M, Morii T. Enzyme Reactions Are Accelerated or Decelerated When the Enzymes Are Located Near the DNA Nanostructure. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15775-15792. [PMID: 40075560 PMCID: PMC11912197 DOI: 10.1021/acsami.4c18192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/26/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
It is known experimentally that enzymatic reactions are often accelerated when the enzymes are assembled on the scaffold of DNA nanostructures. However, the exact mechanism by which this acceleration occurs remains unclear. Here, we study the reactions of enzymes with different catalytic mechanisms assembled on a DNA scaffold with various substrates. Analysis of the hydration properties of the substrates using our accurate statistical mechanics theory classifies the substrates into two groups that behave as hydrophilic and hydrophobic solutes, respectively. The reaction of the enzyme on the DNA scaffold is accelerated with a hydrophilic substrate but decelerated with a hydrophobic substrate. We propose a mechanism of acceleration or deceleration in which, due to the formation of a high-density layer of water near the DNA surface with high negative charge density, the concentration of a substrate with high energetic affinity for water within the layer becomes higher than that near a free enzyme, whereas that of a substrate with low energetic affinity becomes lower within the layer. This study provides chemical and physical insights into a general case of biocatalysts, where the rates of chemical reactions occurring at the interface of biomolecules in aqueous environments can differ substantially from those in the bulk solution due to variations in the local concentration of a given ligand.
Collapse
Affiliation(s)
- Peng Lin
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tomohiko Hayashi
- Interdisciplinary
Program of Biomedical Engineering, Assistive Technology, and Art and
Sports Sciences, Faculty of Engineering, Niigata University, Niigata 950-2181, Japan
| | - Huyen Dinh
- Tam
Anh Research Institute (TAMRI), Tan Binh
District, Hochiminh City 72108, Vietnam
| | - Eiji Nakata
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masahiro Kinoshita
- Graduate
School of Science, Chiba University, Chiba 263-8522, Japan
- Center
for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Morii
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department
of Health and Nutrition, Kyoto Koka Women’s
University, Ukyo-ku, Kyoto 615-0882, Japan
| |
Collapse
|
2
|
Inoue M, Hayashi T, Yasuda S, Kato M, Ikeguchi M, Murata T, Kinoshita M. Statistical-Mechanics Analyses on Thermodynamics of Protein Folding Constructed by Privalov and Co-Workers. J Phys Chem B 2024; 128:10110-10125. [PMID: 39376155 DOI: 10.1021/acs.jpcb.4c05811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Privalov and co-workers estimated the changes in hydration enthalpy and entropy upon ubiquitin unfolding and their temperature dependences denoted by ΔHhyd(T) and ΔShyd(T), respectively, from experimentally measured enthalpies and entropies of transfer of various model compounds from gaseous phase to water. We calculate ΔHhyd(T) and ΔShyd(T) for ubiquitin by our statistical-mechanics theory where molecular and atomistic models are employed for water and protein structure, respectively. ΔHhyd(T) and ΔShyd(T) calculated are in remarkably good agreement with those estimated by Privalov and co-workers. By examining relative magnitudes and signs of the changes in a variety of constituents of ΔHhyd(T) and ΔShyd(T), we confirm that the hydrophobic effect is an essential force driving a protein to fold. Detailed and comprehensive explanations are given for our claim that the prevailing views of the hydrophobic effect are not capable of elucidating its weakening at low temperatures, whereas our updated view is. We find out problematic points of the changes in enthalpy and entropy upon protein unfolding denoted by ΔH°(T) and ΔS°(T), respectively, which are measured using the differential scanning calorimetry at low pH, suggesting a theoretical method of calculating ΔH°(T) and ΔS°(T) at pH ∼ 7.
Collapse
Affiliation(s)
- Masao Inoue
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomohiko Hayashi
- Interdisciplinary Program of Biomedical Engineering, Assistive Technology, and Art and Sports Sciences, Faculty of Engineering, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Satoshi Yasuda
- Graduate School of Science and Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Minoru Kato
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takeshi Murata
- Graduate School of Science and Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Masahiro Kinoshita
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Yasuda S, Hayashi T, Murata T, Kinoshita M. Physical pictures of rotation mechanisms of F 1- and V 1-ATPases: Leading roles of translational, configurational entropy of water. Front Mol Biosci 2023; 10:1159603. [PMID: 37363397 PMCID: PMC10288849 DOI: 10.3389/fmolb.2023.1159603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
We aim to develop a theory based on a concept other than the chemo-mechanical coupling (transduction of chemical free energy of ATP to mechanical work) for an ATP-driven protein complex. Experimental results conflicting with the chemo-mechanical coupling have recently emerged. We claim that the system comprises not only the protein complex but also the aqueous solution in which the protein complex is immersed and the system performs essentially no mechanical work. We perform statistical-mechanical analyses on V1-ATPase (the A3B3DF complex) for which crystal structures in more different states are experimentally known than for F1-ATPase (the α3β3γ complex). Molecular and atomistic models are employed for water and the structure of V1-ATPase, respectively. The entropy originating from the translational displacement of water molecules in the system is treated as a pivotal factor. We find that the packing structure of the catalytic dwell state of V1-ATPase is constructed by the interplay of ATP bindings to two of the A subunits and incorporation of the DF subunit. The packing structure represents the nonuniformity with respect to the closeness of packing of the atoms in constituent proteins and protein interfaces. The physical picture of rotation mechanism of F1-ATPase recently constructed by Kinoshita is examined, and common points and differences between F1- and V1-ATPases are revealed. An ATP hydrolysis cycle comprises binding of ATP to the protein complex, hydrolysis of ATP into ADP and Pi in it, and dissociation of ADP and Pi from it. During each cycle, the chemical compounds bound to the three A or β subunits and the packing structure of the A3B3 or α3β3 complex are sequentially changed, which induces the unidirectional rotation of the central shaft for retaining the packing structure of the A3B3DF or α3β3γ complex stabilized for almost maximizing the water entropy. The torque driving the rotation is generated by water with no input of chemical free energy. The presence of ATP is indispensable as a trigger of the torque generation. The ATP hydrolysis or synthesis reaction is tightly coupled to the rotation of the central shaft in the normal or inverse direction through the water-entropy effect.
Collapse
Affiliation(s)
- Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research and Molecular Chirality Research Centers, Chiba University, Chiba, Japan
| | - Tomohiko Hayashi
- Interdisciplinary Program of Biomedical Engineering, Assistive Technology and Art and Sports Sciences, Faculty of Engineering, Niigata University, Niigata, Japan
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, Japan
- Membrane Protein Research and Molecular Chirality Research Centers, Chiba University, Chiba, Japan
| | - Masahiro Kinoshita
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
- Institute of Advanced Energy, Kyoto University, Kyoto, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Rosi BP, D’Angelo A, Buratti E, Zanatta M, Tavagnacco L, Natali F, Zamponi M, Noferini D, Corezzi S, Zaccarelli E, Comez L, Sacchetti F, Paciaroni A, Petrillo C, Orecchini A. Impact of the Environment on the PNIPAM Dynamical Transition Probed by Elastic Neutron Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benedetta P. Rosi
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Arianna D’Angelo
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 510 Rue André Rivière, 91405 Orsay, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Elena Buratti
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Marco Zanatta
- Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38123 Trento, Italy
| | - Letizia Tavagnacco
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Francesca Natali
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
- CNR-IOM, OGG, 71 Avenue des Martyrs, 38043 Grenoble, Cedex 9, France
| | - Michaela Zamponi
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Daria Noferini
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
- European Spallation Source ERIC, Box 176, 221 00 Lund, Sweden
| | - Silvia Corezzi
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Emanuela Zaccarelli
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Lucia Comez
- Dipartimento di Fisica e Geologia, CNR-IOM c/o Università di Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Andrea Orecchini
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Dipartimento di Fisica e Geologia, CNR-IOM c/o Università di Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
5
|
Kinoshita M. On the functioning mechanism of an ATP-driven molecular motor. Biophys Physicobiol 2021; 18:60-66. [PMID: 33954083 PMCID: PMC8049774 DOI: 10.2142/biophysico.bppb-v18.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Masahiro Kinoshita
- Graduate School of Science, Chiba University, Inage, Chiba 263-8522, Japan
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|