1
|
Tulsiyan KD, Panda SK, Rana MK, Biswal HS. Critical assessment of interactions between ct-DNA and choline-based magnetic ionic liquids: evidences of compaction. Chem Sci 2024; 15:5507-5515. [PMID: 38638223 PMCID: PMC11023040 DOI: 10.1039/d4sc00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Ionic liquids (ILs) have become an alternative green solvent for storage and for stability of DNA. However, an in-depth understanding of binding and molecular interactions between ILs and DNA is needed. In this respect, magnetic ILs (MILs) are promising due to their tunable physicochemical properties. Various spectroscopic techniques and molecular simulations have been employed to unravel the critical factors of the strength and binding mechanism of MILs with DNA. UV-vis spectra unravel the multimodal binding of MILs with DNA, and the intrusion of IL molecules into the minor groove of DNA has been observed from dye displacement studies. Fluorescence correlation spectroscopic studies and scanning electron microscopy confirm the compaction of the DNA. ITC and molecular docking studies estimate the binding affinity of DNA with MILs, of ∼7 kcal mol-1. The 1 μs long-MD simulations give insight into the structural changes in the DNA in the MIL environment. Due to strong interaction with choline ions in the close vicinity, DNA helixes bend or squeeze in length and dilate in diameter (elliptical → spherical), leading to compaction. The post-MD parameters suggest a stronger interaction with [Ch]2[Mn] IL than with [Ch][Fe] IL; hence, the former induces DNA compaction to a more significant extent. Furthermore, decompaction is observed with the addition of sodium salts and is characterized using spectroscopic methods.
Collapse
Affiliation(s)
- Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur Odisha-760010 India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur Odisha-760010 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda, PIN - 752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
2
|
Devi Tulsiyan K, Rani Prusty M, Biswal HS. Effect of Choline Amino Acid-Based Ionic Liquids on Stability and Structure of Hemoglobin. Chemphyschem 2023; 24:e202300201. [PMID: 37272734 DOI: 10.1002/cphc.202300201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
Ionic liquids (ILs) can stabilize or destabilize proteins, which motivates us to examine their effect on hemoglobin. The native state of hemoglobin (Hb) is disrupted at different physical conditions such as pressure, temperature, and solvents. Herein, we have monitored the stability of Hb in a nontoxic and biocompatible IL, i. e., choline amino acid-based Ils (ChAAILs), using various spectroscopic techniques like UV-Vis and fluorescence spectroscopy, circular dichroism (CD), and isothermal titration calorimetry (ITC) measurements. It was observed that Hb stays neither in its native state nor in its fully denatured state; rather, it achieves an intermediate state in the presence of ChAAILs. The research on the intermediate state of Hb is still unexplored. Research has been pursued to find a suitable ligand or IL that can stabilize the intermediate state of Hb. In that context, ChAAILs are among the best choices. Molecular docking studies unravel the binding of ChAAILs with Hb. The obtained binding energies of the docked complex are -7.2 kcal/mol and -8.7 kcal/mol for binding of Hb with [Chl][Gly] and [Chl][Met], respectively, which was in line with the ITC results. The quantum chemical calculations show that H-bond plays a significant role for the interaction between Hb and ChAAILs.
Collapse
Affiliation(s)
- Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Mallika Rani Prusty
- School of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Berhampur, Odisha, 760010, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Jatni, Khurda, Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
6
|
Tulsiyan K, Jena S, González-Viegas M, Kar RK, Biswal HS. Structural Dynamics of RNA in the Presence of Choline Amino Acid Based Ionic Liquid: A Spectroscopic and Computational Outlook. ACS CENTRAL SCIENCE 2021; 7:1688-1697. [PMID: 34729412 PMCID: PMC8554839 DOI: 10.1021/acscentsci.1c00768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 05/03/2023]
Abstract
Ribonucleic acid (RNA) is exceedingly sensitive to degradation compared to DNA. The current protocol for storage of purified RNA requires freezing conditions below -20 °C. Recent advancements in biological chemistry have identified amino acid-based ionic liquids as suitable preservation media for RNA, even in the presence of degrading enzymes. However, the mechanistic insight into the interaction between ILs and RNA is unclear. To the best of our knowledge, no attempts are made so far to provide a molecular view. This work aims to establish a detailed understanding of how ILs enable structural stability to RNA sourced from Torula yeast. Herein, we manifest the hypothesis of multimodal binding of IL and its minimal perturbation to the macromolecular structure, with several spectroscopic techniques such as time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) aided with molecular dynamics at microsecond time scales. Relevant structural and thermodynamic details from biophysical experiments confirm that even long-term RNA preservation with ILs is a possible alternative devoid of any structural deformation. These results establish a unifying mechanism of how ILs are maintaining conformational integrity and thermal stability. The atomistic insights are transferable for their potential applications in drug delivery and biomaterials by considering the advantages of having maximum structural retention and minimum toxicity.
Collapse
Affiliation(s)
- Kiran
Devi Tulsiyan
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhimpur-Padanpur, Via-Jatni, District, Khurda, 752050, Bhubaneswar, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhimpur-Padanpur, Via-Jatni, District, Khurda, 752050, Bhubaneswar, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - María González-Viegas
- Institut
für Biologie, Humboldt Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Rajiv K. Kar
- Faculty
II-Mathematics and Natural Sciences, Technische
Universität Berlin, Sekr. PC 14, Strasse des 17, Juni 135, D-10623 Berlin, Germany
| | - Himansu S. Biswal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhimpur-Padanpur, Via-Jatni, District, Khurda, 752050, Bhubaneswar, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- . Phone: +91-674-2494 185/186
| |
Collapse
|
7
|
Choudhury S, Jena S, Sahoo DK, Shekh S, Kar RK, Dhakad A, Gowd KH, Biswal HS. Gram-Scale Synthesis of 1,8-Naphthyridines in Water: The Friedlander Reaction Revisited. ACS OMEGA 2021; 6:19304-19313. [PMID: 34337267 PMCID: PMC8320145 DOI: 10.1021/acsomega.1c02798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The products of the Friedlander reaction, i.e., 1,8-naphthyridines, have far-reaching impacts in materials science, chemical biology, and medicine. The reported synthetic methodologies elegantly orchestrate the diverse synthetic routes of naphthyridines but require harsh reaction conditions, organic solvents, and expensive metal catalysts. Here, we introduce gram-scale synthesis of 1,8-naphthyridines in water using an inexpensive and biocompatible ionic liquid (IL) as a catalyst. This is the first-ever report on the synthesis of naphthyridines in water. This is a one-step reaction, and the product separation is relatively easy. The choline hydroxide (ChOH) is used as a metal-free, nontoxic, and water-soluble catalyst. In comparison to other catalysts reported in the literature, ChOH has the advantage of forming an additional hydrogen bond with the reactants, which is the vital step for the reaction to happen in water. Density functional theory (DFT) and noncovalent interaction (NCI) plot index analysis provide the plausible reaction mechanism for the catalytic cycle and confirm that hydrogen bonds with the IL catalyst are pivotal to facilitate the reaction. Molecular docking and molecular dynamics (MD) simulations are also performed to demonstrate the potentialities of the newly synthesized products as drugs. Through MD simulations, it was established that the tetrahydropyrido derivative of naphthyridine (10j) binds to the active sites of the ts3 human serotonin transporter (hSERT) (PDB ID: 6AWO) without perturbing the secondary structure, suggesting that 10j can be a potential preclinical drug candidate for hSERT inhibition and depression treatment.
Collapse
Affiliation(s)
- Shubhranshu
Shekhar Choudhury
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni,
Khurda, 752050 Bhubaneswar, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Subhrakant Jena
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni,
Khurda, 752050 Bhubaneswar, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Dipak Kumar Sahoo
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni,
Khurda, 752050 Bhubaneswar, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Shamasoddin Shekh
- Department
of Chemistry, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Rajiv K. Kar
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ambuj Dhakad
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni,
Khurda, 752050 Bhubaneswar, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Konkallu Hanumae Gowd
- Department
of Chemistry, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Himansu S. Biswal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni,
Khurda, 752050 Bhubaneswar, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|