1
|
Khaksar Manshad A, Kabipour A, Mohammadian E, Yan L, A. Ali J, Iglauer S, Keshavarz A, Norouzpour M, Azdarpour A, Sajadi SM, Moradi S. Application of a Novel Green Nano Polymer for Chemical EOR Purposes in Sandstone Reservoirs: Synergetic Effects of Different Fluid/Fluid and Rock/Fluid Interacting Mechanisms. ACS OMEGA 2023; 8:43930-43954. [PMID: 38027330 PMCID: PMC10666271 DOI: 10.1021/acsomega.3c05921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
In this research, a novel natural-based polymer, the Aloe Vera biopolymer, is used to improve the mobility of the injected water. Unlike most synthetic chemical polymers used for chemical-enhanced oil recovery, the Aloe Vera biopolymer is environmentally friendly, thermally stable in reservoir conditions, and compatible with reservoir rock and fluids. In addition, the efficiency of the Aloe Vera biopolymer was investigated in the presence of a new synthetic nanocomposite composed of KCl-SiO2-xanthan. This chemically enhanced oil recovery method was applied on a sandstone reservoir in Southwest Iran with crude oil with an API gravity of 22°. The Aloe Vera biopolymer's physicochemical characteristics were initially examined using different analytical instruments. The results showed that the Aloe Vera biopolymer is thermally stable under reservoir conditions. In addition, no precipitation occurred with the formation brine at the salinity of 80,000 ppm. The experimental results showed that adding ethanol with a 10% volume percentage reduced interfacial tension to 15.3 mN/m and contact angle to 108°, which was 52.33 and 55.56% of these values, respectively. On the other hand, adding nanocomposite lowered interfacial tension and contact angle values to 4 mN/m and 48°, corresponding to reducing these values by 87.53 and 71.42%, respectively. The rheology results showed that the solutions prepared by Aloe Vera biopolymer, ethanol, and nanocomposite were Newtonian and fitted to the Herschel-Bulkley model. Finally, core flooding results showed that the application of a solution prepared by Aloe Vera biopolymer, ethanol, and nanocomposite was effective in increasing the oil recovery factor, where the maximum oil recovery factor of 73.35% was achieved, which could be attributed to the IFT reduction, wettability alteration, and mobility improvement mechanisms.
Collapse
Affiliation(s)
- Abbas Khaksar Manshad
- Department
of Petroleum Engineering, Abadan Faculty of Petroleum, Petroleum
University of Technology (PUT), Abadan 49658-15879, Iran
| | - Alireza Kabipour
- Department
of Petroleum Engineering, Abadan Faculty of Petroleum, Petroleum
University of Technology (PUT), Abadan 49658-15879, Iran
| | - Erfan Mohammadian
- Key
Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient
Development, Ministry of Education, Northeast
Petroleum University, Daqing 163318, China
- Joint
International Research Laboratory of Unconventional Energy Resources, Northeast Petroleum University, Daqing 163318, China
| | - Lei Yan
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jagar A. Ali
- Department
of Petroleum Engineering, Faculty of Engineering, Soran University, Soran, Kurdistan Region 44008, Iraq
- Scientific
Research Centre, Soran University, Soran, Kurdistan Region 44008, Iraq
| | - Stefan Iglauer
- Petroleum
Engineering Discipline, School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
- Centre
for Sustainable Energy and Resources, Edith
Cowan University, Joondalup, WA 6027, Australia
| | - Alireza Keshavarz
- Petroleum
Engineering Discipline, School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
- Centre
for Sustainable Energy and Resources, Edith
Cowan University, Joondalup, WA 6027, Australia
| | - Milad Norouzpour
- Department
of Petroleum Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht 73711-13119, Iran
| | - Amin Azdarpour
- Department
of Petroleum Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht 73711-13119, Iran
| | | | - Siyamak Moradi
- Department
of Petroleum Engineering, Abadan Faculty of Petroleum, Petroleum
University of Technology (PUT), Abadan 49658-15879, Iran
| |
Collapse
|
2
|
Marques LS, Dias Rodrigues P, Simonelli G, Assis DDJ, Quintella CM, de Carvalho Lima Lobato AK, Maria Cordeiro de Oliveira O, Lobato dos Santos LC. Optimization of enhanced oil recovery using ASP solution. Heliyon 2023; 9:e21797. [PMID: 38027580 PMCID: PMC10651510 DOI: 10.1016/j.heliyon.2023.e21797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Many studies have been conducted to focused on developing an optimal alkali/surfactant/polymer (ASP) composition to increase the recovered fraction of oil in reservoirs that have already undergone water injection. To analyze the effect of alkali (Na2CO3), surfactant (lauryl sodium sulfate), and polymer (commercial xanthan gum) concentration on oil recovery, a complete factorial experimental design was performed with combinations of three variables (alkali, surfactant, and polymer) and three central point replications (2³ + 3). The experiments were carried out on a core holder using rock samples from the Botucatu formation. The simulated oil reservoirs have an average permeability of 348 mD and a temperature of 60 °C. The crude oil was acquired from the Carmópolis field, with 25.72 °API. Synthetic production water containing 40,000 mg L-1 of NaCl and 13,000 mg L-1 of Na2SO4 was injected through an HPLC pump to saturate the rock samples and to recover the oil in the secondary step. From the experimental results, it was verified that the surfactant and polymer concentrations are the most statistically significant independent variables and that first-order interactions are not statistically significant for the process. The oil recovery factors in the secondary stage ranged between 30 and 36 % of the OOIP, which are within the range reported in the literature. The optimal composition of the ASP fluid obtained a recovered fraction of oil of 62 % in the advanced step. Other combinations reported in the literature used higher concentrations of alkali, surfactant, and polymer with lower recoveries and higher cost in the injection design. Thus, the present study highlights the necessity to investigate the performance of each component of the ASP solution. In addition, the results obtained in this study are very attractive for possible full-scale applications.
Collapse
Affiliation(s)
- Landson Soares Marques
- Oil, Gas, and Biofuels Research Group (PGBio), Postgraduate Program of Chemical Engineering (PPEQ), Federal University of Bahia (UFBA), R. Prof. Aristides Novis, 2, 2° floor, Federação, CEP 40210-630, Salvador, BA, Brazil
| | - Pamela Dias Rodrigues
- Institute and Center for Energy and Environment (CIENAM), Federal University of Bahia (UFBA), R. Av. Adhemar de Barros, s/n, 2° floor, Ondina, CEP 40301-110, Salvador, BA, Brazil
| | - George Simonelli
- Oil, Gas, and Biofuels Research Group (PGBio), Postgraduate Program of Chemical Engineering (PPEQ), Federal University of Bahia (UFBA), R. Prof. Aristides Novis, 2, 2° floor, Federação, CEP 40210-630, Salvador, BA, Brazil
| | - Denilson de Jesus Assis
- Engineering School, Salvador University (UNIFACS), Av. Tancredo Neves, 2131, Caminho das Árvores, CEP 40231-902, Salvador, BA, Brazil
| | - Cristina M. Quintella
- Institute and Center for Energy and Environment (CIENAM), Federal University of Bahia (UFBA), R. Av. Adhemar de Barros, s/n, 2° floor, Ondina, CEP 40301-110, Salvador, BA, Brazil
| | - Ana Katerine de Carvalho Lima Lobato
- Oil, Gas, and Biofuels Research Group (PGBio), Postgraduate Program of Chemical Engineering (PPEQ), Federal University of Bahia (UFBA), R. Prof. Aristides Novis, 2, 2° floor, Federação, CEP 40210-630, Salvador, BA, Brazil
- Engineering School, Salvador University (UNIFACS), Av. Tancredo Neves, 2131, Caminho das Árvores, CEP 40231-902, Salvador, BA, Brazil
| | - Olívia Maria Cordeiro de Oliveira
- Postgraduate Program of Geochemistry, Federal University of Bahia (UFBA), R. Av. Adhemar de Barros, s/n, 2° floor, Ondina, CEP 40301-110, Salvador, BA, Brazil
| | - Luiz Carlos Lobato dos Santos
- Oil, Gas, and Biofuels Research Group (PGBio), Postgraduate Program of Chemical Engineering (PPEQ), Federal University of Bahia (UFBA), R. Prof. Aristides Novis, 2, 2° floor, Federação, CEP 40210-630, Salvador, BA, Brazil
| |
Collapse
|
3
|
Verma C, Goni LKMO, Yaagoob IY, Vashisht H, Mazumder MAJ, Alfantazi A. Polymeric surfactants as ideal substitutes for sustainable corrosion protection: A perspective on colloidal and interface properties. Adv Colloid Interface Sci 2023; 318:102966. [PMID: 37536175 DOI: 10.1016/j.cis.2023.102966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Surfactants are well known for their colloidal and corrosion inhibition potential (CIP) due to their strong propensity to interact with metallic surfaces. However, because of their small molecular size and the fact that they are only effective at relatively high concentrations, their application in aqueous phase corrosion inhibition is often restricted. Polymeric surfactants, a unique class of corrosion inhibitors, hold the potential to eradicate the challenges associated with using surfactants in corrosion inhibition. They strongly bond with the metallic surface and offer superior CIP because of their macromolecular polymeric structure and abundance of polar functional groups. In contrast to conventional polymeric corrosion inhibitors, the inclusion of polar functional groups also aids in their solubilization in the majority of popular industry-based electrolytes. Some of the major functional groups present in polymeric surfactants used in corrosion mitigation include O (ether), glycidyl (cyclic ether), -CONH2 (amide), -COOR (ester), -SO3H (sulfonic acid), -COOH (carboxyl), -NH2 (amino), - + NR3/- + NHR2/- + NH2R/- + NH3 (quaternary ammonium), -OH (hydroxyl), -CH2OH (hydroxymethyl), etc. The current viewpoint offers state-of-the-art information on polymer surfactants as newly developing ideal alternatives for conventional corrosion inhibitors. The industrial scale-up, colloidal, coordination, adsorption properties, and structural requirements of polymer surfactants have also been established based on the knowledge obtained from the literature. Finally, the challenges, drawbacks, and potential benefits of using polymer surfactants have also been discussed.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, Saudi Arabia.
| | - Lipiar K M O Goni
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ibrahim Y Yaagoob
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hemlata Vashisht
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Mohammad A J Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Akram Alfantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, Saudi Arabia
| |
Collapse
|
4
|
Raut DS, Joshi VA, Khan S, Kundu D. A-Priori Screening of Deep Eutectic Solvent for Enhanced Oil Recovery Application Using COSMO-RS Framework. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Khoramian R, Kharrat R, Pourafshary P, Golshokooh S, Hashemi F. Spontaneous Imbibition Oil Recovery by Natural Surfactant/Nanofluid: An Experimental and Theoretical Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3563. [PMID: 36296753 PMCID: PMC9610698 DOI: 10.3390/nano12203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Organic surfactants have been utilized with different nanoparticles in enhanced oil recovery (EOR) operations due to the synergic mechanisms of nanofluid stabilization, wettability alteration, and oil-water interfacial tension reduction. However, investment and environmental issues are the main concerns to make the operation more practical. The present study introduces a natural and cost-effective surfactant named Azarboo for modifying the surface traits of silica nanoparticles for more efficient EOR. Surface-modified nanoparticles were synthesized by conjugating negatively charged Azarboo surfactant on positively charged amino-treated silica nanoparticles. The effect of the hybrid application of the natural surfactant and amine-modified silica nanoparticles was investigated by analysis of wettability alteration. Amine-surfactant-functionalized silica nanoparticles were found to be more effective than typical nanoparticles. Amott cell experiments showed maximum imbibition oil recovery after nine days of treatment with amine-surfactant-modified nanoparticles and fifteen days of treatment with amine-modified nanoparticles. This finding confirmed the superior potential of amine-surfactant-modified silica nanoparticles compared to amine-modified silica nanoparticles. Modeling showed that amine surfactant-treated SiO2 could change wettability from strongly oil-wet to almost strongly water-wet. In the case of amine-treated silica nanoparticles, a strongly water-wet condition was not achieved. Oil displacement experiments confirmed the better performance of amine-surfactant-treated SiO2 nanoparticles compared to amine-treated SiO2 by improving oil recovery by 15%. Overall, a synergistic effect between Azarboo surfactant and amine-modified silica nanoparticles led to wettability alteration and higher oil recovery.
Collapse
Affiliation(s)
- Reza Khoramian
- School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Riyaz Kharrat
- Department Petroleum Engineering, Montanuniversität, 8700 Leoben, Austria
| | - Peyman Pourafshary
- School of Mining and Geosciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Saeed Golshokooh
- Faculty of Petroleum and Natural Gas Engineering, Sahand University of Technology, Tabriz 513351996, Iran
| | - Fatemeh Hashemi
- Faculty of Chemistry, Shiraz University, Shiraz 7155713876, Iran
| |
Collapse
|
6
|
Feng R, Wu Y, Wang W, Fang Y, Chen M, Xia Y. Investigation of polymer−surfactant complexes by both micellar solubilization and pre-column derivatization capillary electrophoresis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Navaie F, Esmaeilnezhad E, Jin Choi H. Xanthan gum-added natural surfactant solution of Chuback: A green and clean technique for enhanced oil recovery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Gbadamosi A, Patil S, Kamal MS, Adewunmi AA, Yusuff AS, Agi A, Oseh J. Application of Polymers for Chemical Enhanced Oil Recovery: A Review. Polymers (Basel) 2022; 14:polym14071433. [PMID: 35406305 PMCID: PMC9003037 DOI: 10.3390/polym14071433] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polymers play a significant role in enhanced oil recovery (EOR) due to their viscoelastic properties and macromolecular structure. Herein, the mechanisms of the application of polymeric materials for enhanced oil recovery are elucidated. Subsequently, the polymer types used for EOR, namely synthetic polymers and natural polymers (biopolymers), and their properties are discussed. Moreover, the numerous applications for EOR such as polymer flooding, polymer foam flooding, alkali–polymer flooding, surfactant–polymer flooding, alkali–surfactant–polymer flooding, and polymeric nanofluid flooding are appraised and evaluated. Most of the polymers exhibit pseudoplastic behavior in the presence of shear forces. The biopolymers exhibit better salt tolerance and thermal stability but are susceptible to plugging and biodegradation. As for associative synthetic polyacrylamide, several complexities are involved in unlocking its full potential. Hence, hydrolyzed polyacrylamide remains the most coveted polymer for field application of polymer floods. Finally, alkali–surfactant–polymer flooding shows good efficiency at pilot and field scales, while a recently devised polymeric nanofluid shows good potential for field application of polymer flooding for EOR.
Collapse
Affiliation(s)
- Afeez Gbadamosi
- Department of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Shirish Patil
- Department of Petroleum Engineering, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Correspondence:
| | - Muhammad Shahzad Kamal
- Centre for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.K.); (A.A.A.)
| | - Ahmad A. Adewunmi
- Centre for Integrative Petroleum Research, College of Petroleum and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.K.); (A.A.A.)
| | - Adeyinka S. Yusuff
- Department of Chemical and Petroleum Engineering, Afe Babalola University, Ado-Ekiti PMB 5454, Nigeria;
| | - Augustine Agi
- Department of Petroleum Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Jeffrey Oseh
- Department of Petroleum Engineering, School of Engineering and Engineering Technology, Federal University of Technology, Owerri PMB 1526, Nigeria;
| |
Collapse
|
9
|
Abdiyev KZ, Maric M, Orynbayev BY, Toktarbay Z, Zhursumbaeva MB, Seitkaliyeva NZ. Flocculating properties of 2-acrylamido-2-methyl-1-propane sulfonic acid-co-allylamine polyampholytic copolymers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03994-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Quintero-García M, Gutiérrez-Cortez E, Bah M, Rojas-Molina A, Cornejo-Villegas MDLA, Del Real A, Rojas-Molina I. Comparative Analysis of the Chemical Composition and Physicochemical Properties of the Mucilage Extracted from Fresh and Dehydrated Opuntia ficus indica Cladodes. Foods 2021; 10:foods10092137. [PMID: 34574247 PMCID: PMC8471229 DOI: 10.3390/foods10092137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/04/2022] Open
Abstract
The development of sustainable extraction methods to obtain natural products constitutes a challenge for the food industry. The aim of this work was to compare yield, separation efficiency, chemical composition, and physicochemical properties of the mucilage extracted from fresh cladodes (FNM) and mucilage extracted from dehydrated cladodes (DNM) of O. ficus indica. Suspensions of fresh and dehydrated cladodes (4% w/w) were prepared for mucilage extraction by using a mechanical separation process. Subsequently, the separated mucilage was precipitated with ethyl alcohol (1:2 v/v) then, yield and separation efficiency were determined. The mucilage was characterized by measuring Z potential, viscosity, color, and texture attributes. Additionally, chemical proximate analysis, scanning electron microscopy, and thermogravimetric analysis (TGA) were conducted. No significant differences (p < 0.05) were detected in the yield and separation efficiencies between samples. Nevertheless, the dehydration process of cladodes prior to mucilage extraction increased protein, ashes, nitrogen free extract, and calcium content. The viscosity was higher in DNM than in FNM. The TGA revealed a different thermal behavior between samples. In addition, the DNM showed lower L (darkness/lightness), cohesiveness, adhesiveness, and springiness values than those of FNM. These results support that differences found between the chemical and physicochemical properties of DNM and those of FNM will determine the applications of the mucilage obtained from the O. ficus indica cladodes in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Michelle Quintero-García
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, Santiago de Querétaro C.P. 76010, Mexico; (M.Q.-G.); (M.B.); (A.R.-M.)
- Doctorado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, Santiago de Querétaro C.P. 76010, Mexico
| | - Elsa Gutiérrez-Cortez
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Departamento de Ingeniería y Tecnología, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54714, Mexico;
- Correspondence: (E.G.-C.); (I.R.-M.); Tel.: +52-56231919 (ext. 39602) (E.G.-C.); +52-442-192-1200 (ext. 75030) (I.R.-M.); Fax: +52-442-192-1302 (I.R.-M.)
| | - Moustapha Bah
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, Santiago de Querétaro C.P. 76010, Mexico; (M.Q.-G.); (M.B.); (A.R.-M.)
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, Santiago de Querétaro C.P. 76010, Mexico; (M.Q.-G.); (M.B.); (A.R.-M.)
| | - María de los Angeles Cornejo-Villegas
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Departamento de Ingeniería y Tecnología, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54714, Mexico;
| | - Alicia Del Real
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Juriquilla C.P. 76230, Mexico;
| | - Isela Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, Santiago de Querétaro C.P. 76010, Mexico; (M.Q.-G.); (M.B.); (A.R.-M.)
- Correspondence: (E.G.-C.); (I.R.-M.); Tel.: +52-56231919 (ext. 39602) (E.G.-C.); +52-442-192-1200 (ext. 75030) (I.R.-M.); Fax: +52-442-192-1302 (I.R.-M.)
| |
Collapse
|
11
|
Zandahvifard MJ, Elhambakhsh A, Ghasemi MN, Esmaeilzadeh F, Parsaei R, Keshavarz P, Wang X. Effect of Modified Fe3O4 Magnetic NPs on the Absorption Capacity of CO2 in Water, Wettability Alteration of Carbonate Rock Surface, and Water–Oil Interfacial Tension for Oilfield Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04857] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohammad Javad Zandahvifard
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, Shiraz University, Shiraz 7134851154, Iran
| | - Abbas Elhambakhsh
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, Shiraz University, Shiraz 7134851154, Iran
| | - Mohammad Noor Ghasemi
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, Shiraz University, Shiraz 7134851154, Iran
| | - Feridun Esmaeilzadeh
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, Shiraz University, Shiraz 7134851154, Iran
| | - Rafat Parsaei
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, Shiraz University, Shiraz 7134851154, Iran
| | - Peyman Keshavarz
- Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Advanced Research Group for Gas Condensate Recovery, Shiraz University, Shiraz 7134851154, Iran
| | - Xiaopo Wang
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| |
Collapse
|