1
|
Zhang H, Xiao Y, Peng Y, Tian L, Wang Y, Tang Y, Cao Y, Wei Z, Wu Z, Zhu Y, Guo Q. Selective degradation of ceftriaxone sodium by surface molecularly imprinted BiOCl/Bi3NbO7 heterojunction photocatalyst. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Zhang C, Shi Y, Wang Z, Liu C, Hou Y, Bi J, Wu L. Electrostatic interaction and surface S vacancies synergistically enhanced the photocatalytic degradation of ceftriaxone sodium. CHEMOSPHERE 2023; 311:137053. [PMID: 36332732 DOI: 10.1016/j.chemosphere.2022.137053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
ZnIn2S4 ultrathin 2D nanosheets with a positive surface charge are synthesized by a hydrothermal method and different contents of surface S vacancies are induced via heat treatment of as-prepared ZnIn2S4 (ZIS). As the S vacancies contents increased, the photocatalytic degradation efficiency of ceftriaxone (CTRX) sodium is promoted. Especially, ZIS-300 shows the best degradation efficiency (88.8%) for an initial CTRX concentration of 10 mg L-1 in 2 h. It is found that S vacancies cause the electron density of surface metal atoms (Zn, In) to be decreased, which makes the effective adsorption and activation of ceftriaxone anions through electrostatic adsorption interactions. Meanwhile, S vacancies also serve as active centers to promote the absorption of O2 and gather electrons to form •O2- species. The photogenerated holes quickly transfer to the surface of the catalyst to directly degrade the adsorbed CTRX. Thus, the photocatalytic CTRX degradation efficiency is significantly improved. Finally, a possible mechanism for over defective ZIS is proposed. This work provides a feasible strategy for the efficient degradation of antibiotics from the perspective of electrostatic adsorption and molecule activation.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Yingzhang Shi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Zhiwen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Cheng Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China
| | - Jinhong Bi
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China; Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, China.
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian, 350116, PR China.
| |
Collapse
|
3
|
Wang J, Guo Q, Li Q, Zheng L, Yang X, Wang X, Nie G. A “signal-off” type photoelectrochemical immunosensor for detecting carcinoembryonic antigen based on TiO2 NRs/BiOI heterojunction and SiO2/PDA-Au inhibitor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Aziz FFA, Jalil AA, Hassan NS, Fauzi AA, Azami MS, Jusoh NWC, Jusoh R. A review on synergistic coexisting pollutants for efficient photocatalytic reaction in wastewater remediation. ENVIRONMENTAL RESEARCH 2022; 209:112748. [PMID: 35101397 DOI: 10.1016/j.envres.2022.112748] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/26/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
With the tremendous development of the economy and industry, the pollution of water is becoming more serious due to the excessive chemical wastes that need to remove thru reduction or oxidation reactions. Simultaneous removal of dual pollutants via photocatalytic redox reaction has been tremendously explored in the last five years due to effective decontamination of pollutants compared to a single pollutants system. In a photocatalysis mechanism, the holes in the valence band can remarkably promote the oxidation of a pollutant. At the same time, photoexcited electrons are also consumed for the reduction reaction. The synergistic between the reduction and oxidation inhibits the recombination of electron-hole pairs extending their lifetime. In this review, the binary pollutants that selectively removed via photocatalysis reduction or oxidation are classified according to heavy metal-organic pollutant (HM/OP), heavy metal-heavy metal (HM/HM) and organic-organic pollutants (OP/OP). The intrinsic between the pollutants was explained in three different mechanisms including inhibition of electron-hole recombination, ligand to metal charge transfer and electrostatic attraction. Several strategies for the enhancement of this treatment method which are designation of catalysts, pH of mixed pollutants and addition of additive were discussed. This review offers a recent perspective on the development of photocatalysis system for industrial applications.
Collapse
Affiliation(s)
- F F A Aziz
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M S Azami
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N W C Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - R Jusoh
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| |
Collapse
|
5
|
Alsheheri SZ, Shawky A, Alsaggaf WT, Zaki ZI. Visible-light responsive ZnSe-anchored mesoporous TiO 2heterostructures for boosted photocatalytic reduction of Cr(VI). NANOTECHNOLOGY 2022; 33:305701. [PMID: 35439748 DOI: 10.1088/1361-6528/ac6816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of Cr(VI) ions in water can cause serious influences on the environment and human health. This work reports a humble synthesis of ZnSe nanoparticles anchored to the sol-gel prepared TiO2for visible-light-driven photocatalytic reduction of Cr(VI) ions. The 7.9 nm ZnSe nanoparticles were attached to TiO2surfaces at a content of 1.0-4.0 wt% as experiential by TEM investigation. The designed nanocomposite unveiled mesostructured surfaces exhibiting surface areas of 176-210 m2g-1. The impregnation of ZnSe amended the visible-light absorption of TiO2due to the bandgap decrease from 3.14 to 2.90 eV. The photocatalytic reduction of Cr(VI) applying the optimized portion of 3.0 wt% ZnSe/TiO2was achieved at 177μmol min-1. This photocatalytic activity is higher than the common Degussa P25 and pristine TiO2by 20 and 30 times, respectively. The improved performance is signified by the efficient interfacial separation of charge carriers by the introduction of ZnSe. This innovative ZnSe/TiO2has also shown photocatalytic stability for five consecutive runs.
Collapse
Affiliation(s)
- Soad Z Alsheheri
- Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80200, Jeddah 21589, Saudi Arabia
| | - Ahmed Shawky
- Nanomaterials and Nanotechnology Department, Advanced Materials Institute, Central Metallurgical R&D Institute (CMRDI) PO Box 87 Helwan 11421, Cairo, Egypt
| | - Wejdan T Alsaggaf
- Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80200, Jeddah 21589, Saudi Arabia
| | - Z I Zaki
- Department of Chemistry, College of Science, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
6
|
Shawky A, Mohamed R, Alahmadi N, Zaki Z. Enhanced photocatalytic reduction of hexavalent chromium ions over S-Scheme based 2D MoS2-supported TiO2 heterojunctions under visible light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128564] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Shawky A, Alsheheri SZ, Alsaggaf WT, Al-Hajji L, Zaki Z. Promoted hexavalent chromium ion photoreduction over visible-light active RuO2/TiO2 heterojunctions prepared by solution process. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Chen Y, Li F, Chen H, Huang Y, Guo D, Li S. Synergistic effect of dielectric barrier discharge plasma and Ho-TiO2/rGO catalytic honeycomb ceramic plate for removal of quinolone antibiotics in aqueous solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.118723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
AttariKhasraghi N, Zare K, Mehrizad A, Modirshahla N, Behnajady MA. Zeolite 4A supported CdS/g-C3N4 type-II heterojunction: A novel visible-light-active ternary nanocomposite for potential photocatalytic degradation of cefoperazone. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Velmurugan S, Zhi-Xiang L, C-K Yang T, Juan JC. Rational design of built-in stannic oxide-copper manganate microrods p-n heterojunction for photoelectrochemical sensing of tetracycline. CHEMOSPHERE 2021; 271:129788. [PMID: 33556631 DOI: 10.1016/j.chemosphere.2021.129788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Tetracycline (TC), a popularly found drug pollutant, can be contaminated in food and aquatic regions and causes a severe impact on human health. In this research, a visible light active p-stannic oxide/n-copper manganate (p-SnO2/n-CuMnO2) heterojunction was synthesized and has been applied for a signal on photoelectrochemical sensing of antibiotic TC. Firstly, the n-SnO2 microrods were synthesized via a simple and efficient homogeneous precipitation method and the p-CuMnO2 nanoparticles were synthesized by a facile ultrasound-assisted hydrothermal method. The SnO2/CuMnO2 microrods p-n heterojunction was prepared through a simple impregnation method and physicochemical properties of the microrods are characterized by using X-ray diffraction (XRD), Raman, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), UV-Vis diffuse reflectance spectroscopy (UVDRS), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Mott-Schottky analyses. The photoelectrochemical sensing performance of SnO2/CuMnO2 microrods was 2.7 times higher than that of as-synthesized pure SnO2 microrods is due to the more visible light absorption ability and p-n heterojunction (synergy). The designed SnO2/CuMnO2/ITO sensor gives photocurrent signals for the detection of TC in the range of 0.01-1000 μM with the detection limit (LOD) of 5.6 nM. The practical applicability of the sensor was monitored in cow milk and the Taipei River water sample.
Collapse
Affiliation(s)
- Sethupathi Velmurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Liu Zhi-Xiang
- Precision and Materials Research Centre, National Taipei University of Technology, Taipei, Taiwan
| | - Thomas C-K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan; Precision and Materials Research Centre, National Taipei University of Technology, Taipei, Taiwan.
| | - Joon Ching Juan
- Nanotechnology and Catalysis Research Center (NANOCAT), University of Malaya, Kuala Lumpur-50603, Malaysia
| |
Collapse
|
11
|
Ferreira-Neto EP, Ullah S, Perissinotto AP, de Vicente FS, Ribeiro SJL, Worsley MA, Rodrigues-Filho UP. Prussian blue as a co-catalyst for enhanced Cr( vi) photocatalytic reduction promoted by titania-based nanoparticles and aerogels. NEW J CHEM 2021. [DOI: 10.1039/d1nj01141c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanostructured Prussian blue layer deposited on titania-based materials acts as an efficient electron acceptor/mediator greatly enhancing Cr(vi) photocatalytic reduction.
Collapse
Affiliation(s)
| | - Sajjad Ullah
- Institute of Chemistry
- São Paulo State University (UNESP)
- Araraquara
- Brazil
- Institute of Chemical Sciences
| | | | - Fábio S. de Vicente
- Institute of Geosciences and Exact Sciences
- Department of Physics
- São Paulo State University (UNESP)
- Rio Claro
- Brazil
| | | | - Marcus Andre Worsley
- Physical and Life Sciences Directorate
- Lawrence Livermore National Laboratory
- Livermore
- USA
| | | |
Collapse
|