1
|
Akbari AA, Zarghampour A, Hashemzadeh N, Hemmati S, Rahimpour E, Jouyban A. Solubility and thermodynamics of mesalazine in aqueous mixtures of poly ethylene glycol 200/600 at 293.2-313.2K. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:800-812. [PMID: 38579928 DOI: 10.1016/j.pharma.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
In this study, the solubility of mesalazine was investigated in binary solvent mixtures of poly ethylene glycols 200/600 and water at temperatures ranging from 293.2K to 313.2K. The solubility of mesalazine was determined using a shake-flask method, and its concentrations were measured using a UV-Vis spectrophotometer. The obtained solubility data were analyzed using mathematical models including the van't Hoff, Jouyban-Acree, Jouyban-Acree-van't Hoff, mixture response surface, and modified Wilson models. The experimental data obtained for mesalazine dissolution encompassed various thermodynamic properties, including ΔG°, ΔH°, ΔS°, and TΔS°. These properties offer valuable insights into the energetic aspects of the dissolution process and were calculated based on the van't Hoff equation.
Collapse
Affiliation(s)
- Anali Ali Akbari
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynaz Zarghampour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nastaran Hashemzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5165665811 Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, Po Box: 99138, North Cyprus, Mersin 10, Nicosia, Turkey
| |
Collapse
|
2
|
Armani E, Jafari P, Hemmati S, Rahimpour E, Barzegar-Jalali M, Jouyban A. Solubility of mesalazine in pseudo-binary mixtures of choline chloride/ethylene glycol deep eutectic solvent and water at 293.15 K to 313.15 K. BMC Chem 2023; 17:171. [PMID: 38017539 PMCID: PMC10685619 DOI: 10.1186/s13065-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Mesalazine (5-ASA) is a medication utilized to treat inflammatory bowel diseases involving ulcerative colitis and Crohn's disease. Mesalazine has fewer side effects but the low solubility and bioavailability of it is responsible for its delayed onset of action. Hence, the goal of this study is to determine the molar solubility of 5-ASA in aqueous pseudo-binary mixtures containing low toxic biocompatible choline chloride/ethylene glycol deep eutectic solvent (ChCl/EG DES) with DES mass fraction of 0.0-1.0 using a shake-flask technique at 293.2-313.2 K and approximately 85 kPa. The experimental results indicated that the solubility of 5-ASA enhanced by addition of DES mass fraction and also increasing temperature. The molarity values of 5-ASA were then modelled by some traditional cosolvency models, and regressed each model parameters. The back-computed molarity of 5-ASA using the selected cosolvency models presented a good consistency with the experimental data (lower mean percentage deviation than 5.14%). Moreover, the Gibbs and van't Hoff equations were employed to compute the thermodynamic functions of 5-ASA dissolution process in ChCl/EG DES + water from the temperature dependency of solubility data. This analysis presented an endothermic and entropy-driven process of 5-ASA dissolution in ChCl/EG DES + water. Furthermore, enthalpy-entropy compensation analysis represented non-linear enthalpy dissolution vs. Gibbs free energy compensation plots with positive and negative slopes for 5-ASA whereas the positive and negative slopes were probably due to the enhance in solvation of 5-ASA by ChCl/EG DES molecules and the solvent-structure loosing, respectively.
Collapse
Affiliation(s)
- Elina Armani
- Student Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parisa Jafari
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Barzegar-Jalali
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Rahimpour E, Moradi M, Sheikhi-Sovari A, Rezaei H, Rezaei H, Jouyban-Gharamaleki V, Kuentz M, Jouyban A. Comparative Drug Solubility Studies Using Shake-Flask Versus a Laser-Based Robotic Method. AAPS PharmSciTech 2023; 24:207. [PMID: 37817041 DOI: 10.1208/s12249-023-02667-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Drug solubility is of central importance to the pharmaceutical sciences, but reported values often show discrepancies. Various factors have been discussed in the literature to account for such differences, but the influence of manual testing in comparison to a robotic system has not been studied adequately before. In this study, four expert researchers were asked to measure the solubility of four drugs with various solubility behaviors (i.e., paracetamol, mesalazine, lamotrigine, and ketoconazole) in the same laboratory with the same instruments, method, and material sources and repeated their measurements after a time interval. In addition, the same solubility data were determined using an automated laser-based setup. The results suggest that manual testing leads to a handling influence on measured solubility values, and the results were discussed in more detail as compared to the automated laser-based system. Within the framework of unavoidable uncertainties of solubility testing, it is a possibility to combine minimal experimental testing that is preferably automated with mathematical modeling. That is a practical suggestion to support future pharmaceutical development in a more efficient way.
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Moradi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Homa Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadis Rezaei
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstr. 30, 4132, Muttenz, Switzerland
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Pharmacy, Near East University, Mercin, Turkey.
| |
Collapse
|
4
|
Poturcu K, Zarghampour A, Rahimpour E, Hemmati S, Zhao H, Jouyban A. Solubility and thermodynamic study of mesalazine in propylene glycol + 2-propanol mixtures. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Study of mesalazine solubility in ternary mixtures of ethanol, propylene glycol, and water at various temperatures. J Pharm Sci 2022; 111:2758-2764. [PMID: 35908653 DOI: 10.1016/j.xphs.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/10/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
Abstract
Mesalazine is a low-permeable and low-soluble drug, which makes it a class IV drug in the Biopharmaceutics Classification System. Hence, its solubilization can be helpful for various stages of formulation development. The purpose of this study was to investigate the solubilization manner and thermodynamics of mesalazine in ternary solvent combinations of {ethanol (1) + propylene glycol (2) + water (3)} using the shake-flask technique at (298.2-313.2) K. In the following, the mathematical representation of the acquired solubility data using some popular models was evaluated. The accuracies of the applied models were described by percentages of mean relative deviation (MRD%). Based on obtained results (MRD% < 10.0), it can be concluded that the trained models can adequately predict the solubility of mesalazine in the investigated ternary solvent combinations. The findings also revealed that the solution composition and temperatures greatly influence the solubility of mesalazine. In addition, the thermodynamic characteristics of the mesalazine dissolution process indicate that the mesalazine dissolution process is endothermic and entropy-driven. The generating data in the current work also expands the available solubility database for mesalazine in the solvent mixtures.
Collapse
|
6
|
Mohammadian E, Foroumadi A, Hasanvand Z, Rahimpour E, Zhao H, Jouyban A. Simulation of mesalazine solubility in the binary solvents at various temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Shakeel F, Haq N, Alam P, Jouyban A, Ghoneim MM, Alshehri S, Martinez F. Solubility of sinapic acid in some (ethylene glycol + water) mixtures: Measurement, computational modeling, thermodynamics, and preferential solvation. J Mol Liq 2022; 348:118057. [DOI: 10.1016/j.molliq.2021.118057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|