1
|
Bedair HM, Hamed M, Mansour FR. New emerging materials with potential antibacterial activities. Appl Microbiol Biotechnol 2024; 108:515. [PMID: 39540988 PMCID: PMC11564324 DOI: 10.1007/s00253-024-13337-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The increasing prevalence of multidrug-resistant pathogens is a critical public health issue, necessitating the development of alternative antibacterial agents. Examples of these pathogens are methicillin-resistant Staphylococcus aureus (MRSA) and the emergence of "pan-resistant" Gram-negative strains, such as Pseudomonas aeruginosa and Acinetobacter baumannii, which occurred more recently. This review examines various emerging materials with significant antibacterial activities. Among these are nanomaterials such as quantum dots, carbon quantum dots, metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and layered double hydroxides, all of which demonstrate excellent antibacterial properties. Interestingly, including antibacterial agents within the structure of these materials can help avoid bacterial resistance and improve the long-term efficacy of the materials. Additionally, the antibacterial potential of liquid solvents, including ionic liquids and both deep eutectic solvents and natural deep eutectic solvents, is explored. The review discusses the synthesis methods, advantages, and antibacterial efficacy of these new materials. By providing a comprehensive overview of these innovative materials, this review aims to contribute to the ongoing search for effective solutions to combat antibiotic resistance. Key studies demonstrating antibacterial effects against pathogens like Escherichia coli, Staphylococcus aureus, and multidrug-resistant strains are summarized. MOFs have exhibited antibacterial properties through controlled ion release and surface interactions. COFs have enhanced the efficacy of encapsulated antibiotics and displayed intrinsic antibacterial activity. Other nanomaterials, such as quantum dots, have generated reactive oxygen species, leading to microbial inactivation. This review aims to provide insights into these new classes of antibacterial materials and highlight them for addressing the global crisis of antibiotic resistance. KEY POINTS: • Nanomaterials show strong antibacterial effects against drug-resistant bacteria • Emerging solvents like ionic liquids offer novel solutions for bacterial resistance • MOFs and COFs enhance antibiotic efficacy, showing promise in combating resistance.
Collapse
Affiliation(s)
- Hadeer M Bedair
- Department of Microbiology and Immunology, Faculty of Pharmacy, Misr University for Science and Technology, 6Th of October City, Egypt
| | - Mahmoud Hamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, 44971, Egypt
- MIU Chemistry Society (MIU-CS), Faculty of Pharmacy, Misr International University, Km 28 Ismailia Road, Cairo, 44971, Egypt
| | - Fotouh R Mansour
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, The Medical Campus of Tanta University, Elgeish Street, Tanta, 31111, Egypt.
| |
Collapse
|
2
|
Bhat AR, Patel R. Exploring the binding mechanism and esterase-like activity of human serum albumin with levofloxacin and its choline based conjugates: A biophysical approach. Int J Biol Macromol 2024; 274:133011. [PMID: 38852730 DOI: 10.1016/j.ijbiomac.2024.133011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Human serum albumin (HSA) effectively binds to compounds having different molecular weight and thus facilitates their distribution in the living organisms. Thus, the binding interactions between a potential antibacterial drug (levofloxacin) and synthesized choline based levofloxacinate conjugates with HSA have been explored. The binding efficacy and mechanism were explored by utilizing different spectroscopic techniques; UV-Visible, steady state fluorescence, time resolved fluorescence and esterase-like activity. The interactions between the ligands and protein were electrostatic as well as hydrophobic in nature. The influence of different ligands having different alkyl chain shows quenching of the fluorescence emission of HSA. The spontaneous binding/quenching of HSA with ligands was static in nature, validated by steady state and time resolved fluorescence spectroscopy. Also, the impact of these ligands on the conformation of the native HSA structure was evaluated by using circular dichroism spectroscopy. In combination to the structural change study, the native protein functionality was observed (in terms of 'esterase-like activity') which has been found to be on lower side due to ligand binding. Further, we have performed the reverse study to check the impact of HSA on the fluorescent fluoroquinolone drug. The current study may prove helpful in elucidating the chemico-biological interactions which may prove useful in the pharmaceuticals, pharmacology, and different biochemistry fields.
Collapse
Affiliation(s)
- Ab Raouf Bhat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
3
|
Raouf Bhat A, Ud Din Parray M, Imtiyaz K, Moshahid Alam Rizvi M, Patel R. Interaction and antibacterial activity of ciprofloxacin with choline based ionic liquid and CTAB: A comparative spectroscopic study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123770. [PMID: 38157746 DOI: 10.1016/j.saa.2023.123770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
In this study, the complexation of potential chemo-therapeutic antibacterial drug, ciprofloxacin (CIP) with varying concentrations of surface active compounds (SACs) i.e., (N-(2-hydroxyethyl)-N,N-dimethyl-1-dodecanaminium bromide (12Cho.Br) and cetyltrimethylammonium bromide (CTAB) has been studied. Multispectroscopic techniques were exploited to carry out the study. The higher binding constant (Kb) value for CIP-CTAB than CIP-12Cho.Br obtained from fluorescence data revealed stronger binding of CTAB than 12Cho.Br, owing to the stronger hydrophobic-hydrophobic interaction betweeen CIP and CTAB compared to CIP and 12Cho.Br. The time resolve fluorescence decay shows changes in average lifetime (τavg) with the increasing concentration of 12Cho.Br and CTAB. The changes in τavg suggests that complex formation is taking place between CIP and 12Cho.Br / CTAB. Further, the formation of micelles by 12Cho.Br / CTAB and the effect of alkyl chain length was studied by dynamic light scattering (DLS) and zeta potential to confirm the drug complexation with 12Cho.Br and CTAB. The antibacterial activity has been performed for CIP and 12Cho.Br and CTAB. It was observed that in presence of lower concentrations of 12Cho.Br/ CTAB, the activity of the drug increased. The activity was also found cationic alkyl chain length dependent. Moreover, in-vitro cytotoxicity of CIP and its combinations with 12Cho.Br and CTAB was performed using MTT assay on HEK293 (Human embryonic kidney cells).
Collapse
Affiliation(s)
- Ab Raouf Bhat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mehraj Ud Din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Khalid Imtiyaz
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
4
|
Bhat AR, Padder RA, Husain M, Patel R. Development of Cholinium-Based API Ionic Liquids with Enhanced Drug Solubility: Biological Evaluation and Interfacial Properties. Mol Pharm 2024; 21:535-549. [PMID: 38271213 DOI: 10.1021/acs.molpharmaceut.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We report an efficient sustainable two-step anion exchange synthetic procedure for the preparation of choline API ionic liquids (Cho-API-ILs) that contain active pharmaceutical ingredients (APIs) as anions combined with choline-based cations. We have evaluated the in vitro cytotoxicity for the synthesized compounds using three different cells lines, namely, HEK293 (normal kidney cell line), SW480, and HCT 116 (colon carcinoma cells). The solubility of APIs and Cho-API-ILs was evaluated in water/buffer solutions and was found higher for Cho-API-ILs. Further, we have investigated the antimicrobial potential of the pure APIs, ILs, and Cho-API-ILs against clinically relevant microorganisms, and the results demonstrated the promise of Cho-API-ILs as potent antimicrobial agents to treat bacterial infections. Moreover, the aggregation and adsorption properties of the Cho-API-ILs were observed by using a surface tension technique. The aggregation behavior of these Cho-API-ILs was further supported by conductivity and pyrene probe fluorescence. The thermodynamics of aggregation for Cho-API-ILs has been assessed from the temperature dependence of surface tension. The micellar size and their stability have been studied by dynamic light scattering, transmission electron microscopy, and zeta potential. Therefore, the duality in the nature of Cho-API-ILs has been explored with the upgradation of their physical, chemical, and biopharmaceutical properties, which enhance the opportunities for advances in pharmaceutical sciences.
Collapse
Affiliation(s)
- Ab Raouf Bhat
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India 110025
| | - Rayees Ahmed Padder
- Cancer Biology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India 110025
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854-8021, United States
| | - Mohammad Husain
- Cancer Biology Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi, India 110025
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India 110025
| |
Collapse
|
5
|
Avirdi E, Paumo HK, Kamdem BP, Singh MB, Kumari K, Katata-Seru L, Bahadur I. Imidazolium-Based Ionic Liquid-Assisted Silver Nanoparticles and Their Antibacterial Activity: Experimental and Density Functional Theory Studies. ACS OMEGA 2023; 8:42976-42986. [PMID: 38024669 PMCID: PMC10652719 DOI: 10.1021/acsomega.3c06171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023]
Abstract
The exclusive properties of ionic liquids (ILs) offer various opportunities to develop advanced materials with appreciable therapeutic applications. Imidazolium-based ILs have been frequently used as reaction media and stabilizers for the development and surface functionalization of noble metal nanoparticles (NPs). This study reports the citrate-mediated reduction of silver ions in three different ILs, that is, 1-ethyl-3-methylimidazolium methyl sulfate ([EMIM][MS]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM][OTf]), and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][TFSI]). The resulting Ag-ILs NPs were characterized using many analytical techniques, including UV-visible spectroscopy, dynamic light scattering (DLS), scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction (XRD). DLS and XRD characterization revealed the negatively charged Ag-[EMIM][MS] NPs, Ag-[BMIM][OTf] NPs, and Ag-[BMIM][TFSI] NPs with mean hydrodynamic sizes of 278, 316, and 279 nm, respectively, and a face-centered cubic structure. These hybrid nanomaterials were subjected to in vitro antibacterial screening against three bacterial strains. The Ag-[BMIM][OTf] NPs exhibited significant activities against Escherichia coli, Staphylococcus aureus, and Enterobacter cloacae. The lowest inhibition concentration of 62.5 μg/mL was recorded against E. coli using Ag-[EMIM][MS] and Ag-[BMIM][OTf] NPs. Further, the density functional theory calculations carried out on the computed Ag-ILs in the gas phase and water showed relatively stable systems. Ag-[BMIM][TFSI] exhibited the lowest Gibbs free energy change of -34.41 kcal/mol. The value of the global electrophilicity index (ω = 0.1865 eV) for the Ag-[BMIM][OTf] correlated with its good antibacterial activity.
Collapse
Affiliation(s)
- Elham Avirdi
- Department
of Chemistry, Material Science Innovation & Modelling (MaSIM)
Research Focus Area, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Hugues Kamdem Paumo
- Department
of Chemistry, Material Science Innovation & Modelling (MaSIM)
Research Focus Area, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Boniface Pone Kamdem
- Laboratory
for Phytobiochemistry and Medicinal Plants Study, Department of Biochemistry,
Faculty of Science, University of Yaoundé
1, P.O. Box 812, Yaoundé 05508-000, Cameroon
| | - Madhur Babu Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College,
University of Delhi, New Delhi 110021, India
| | - Kamlesh Kumari
- Department
of Zoology, University of Delhi, Delhi 110007, India
| | - Lebogang Katata-Seru
- Department
of Chemistry, Material Science Innovation & Modelling (MaSIM)
Research Focus Area, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Indra Bahadur
- Department
of Chemistry, Material Science Innovation & Modelling (MaSIM)
Research Focus Area, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
6
|
Wang X, Tan J, Ni S, Zhou D, Liu B, Fu Q. Antimicrobial efficacy of composite irrigation solution against dominant pathogens in seawater immersion wound and in vivo wound healing assessment. Front Microbiol 2023; 14:1188373. [PMID: 37303778 PMCID: PMC10248133 DOI: 10.3389/fmicb.2023.1188373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Seawater immersion wound is inevitably accompanied by bacterial infection. Effective irrigation is critical for bacterial infection prevention and wound healing. In this study, the antimicrobial efficacy of a designed composite irrigation solution against several dominant pathogens in seawater immersion wounds was evaluated, and in vivo wound healing assessment was conducted in a rat model. According to the time-kill result, the composite irrigation solution exhibits excellent and rapid bactericidal effect against Vibrio alginolyticus and Vibrio parahaemolyticus within 30 s of treatment while eliminating Candida albicans, Pseudomonas aeruginosa, Escherichia coli, and the mixed microbes after 1 h, 2 h, 6 h, and 12 h of treatment, respectively. Significant bacterial count reduction of Staphylococcus aureus was observed after 5 h treatment. In addition to its skin non-irritating attribute, the in vivo wound healing results further demonstrated that the irrigation solution showed high repair efficiency in the skin defect model inoculated with the mixed microbes. The wound healing rate was significantly higher than that of the control and normal saline groups. It could also effectively reduce the number of viable bacteria on the wound surface. The histological staining indicated that the irrigation solution could reduce inflammatory cells and promote collagen fibers and angiogenesis, thereby promoting wound healing. We believed that the designed composite irrigation solution has great potential for application in the treatment of seawater immersion wounds.
Collapse
Affiliation(s)
- Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
- Shanghai Co-Innovation Center for Energy Therapy of Tumors, Shanghai, China
| | - Jie Tan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shenpeng Ni
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dengyun Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
- Shanghai Co-Innovation Center for Energy Therapy of Tumors, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Saraswat J, Kumar S, Alzahrani KA, Malik MA, Patel R. Experimental and Computational Characterisation of the Molecular Interactions between 1‐Butyl‐1‐methyl‐pyrrolidin‐1‐ium bis(trifluoromethanesulphonyl)imide and Human Serum Albumin. ChemistrySelect 2023. [DOI: 10.1002/slct.202204159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Juhi Saraswat
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi 110025 India
| | - Shiv Kumar
- Department of Chemistry Kalindi College University of Delhi New Delhi 110008 India
| | - Khalid Ahmed Alzahrani
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Maqsood Ahmad Malik
- Chemistry Department Faculty of Science King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Rajan Patel
- Biophysical Chemistry Laboratory Centre for Interdisciplinary Research in Basic Sciences Jamia Millia Islamia New Delhi 110025 India
| |
Collapse
|
8
|
M. S. Costa F, Lúcia M. F. S. Saraiva M, L. C. Passos M. Ionic Liquids and Organic Salts with Antimicrobial Activity as a Strategy Against Resistant Microorganisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Synthesis, Characterization, Biological Evaluation, and In Silico Studies of Imidazolium-, Pyridinium-, and Ammonium-Based Ionic Liquids Containing n-Butyl Side Chains. Molecules 2022; 27:molecules27196650. [PMID: 36235187 PMCID: PMC9572234 DOI: 10.3390/molecules27196650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br−), methanesulfonate (CH3SO3−), bis(trifluoromethanesulfonyl)imide (NTf2−), dichloroacetate (CHCl2CO2−), tetrafluoroborate (BF4−), and hydrogen sulfate (HSO4−) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2− and HSO4− anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2−) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.
Collapse
|
10
|
Solvation properties of 1-butyl 2, 3-dimethyl imidazolium chloride ionic liquid in aqueous and aqueous glycine solutions at different temperatures using volumetric and compressibility parameters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zhao J, Gao H. Synthesis and fungicidal activity of imidazole dicyanamide ionic liquids. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Aggregation, wettability and radical scavenging activity of choline based ionic liquids in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|