1
|
Gao S, Zhang Y, Wang R, Li F, Zhang Y, Zhu S, Wei H, Zhao L, Fu Y, Ye F. Fabrication and characterization of betulin/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibers: A potential edible antibacterial and antioxidant packaging material. Food Chem 2025; 481:144059. [PMID: 40157098 DOI: 10.1016/j.foodchem.2025.144059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Active food packaging made from edible materials was considered as a promising alternative to traditional food packaging. Betulin (BE) is a natural active ingredient extracted from the bark of the birch tree, which has anti-inflammation, antibacterial and antioxidant properties. However, the low solubility of BE in water limits its application in active food packaging. In this research, in order to expand the application range of BE, an innovative potentially antimicrobial and antioxidant packaging material was developed. Betulin/hydroxypropyl-beta-cyclodextrin inclusion complex nanofibers (BE/HPβCD-IC-NF) with a stoichiometric ratio of 1:2 was prepared by electrospinning. Scanning electron microscopy results showed a smooth surface with no beads on the free-standing BE/HPβCD-IC-NF. The results of NMR hydrogen spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy proved that the BE was successfully encapsulated in the cavity of HPβCD. Meanwhile, the results of thermogravimetric analysis and phase solubility studies proved that the BE/HPβCD-IC-NF enhanced the aqueous solubility and thermal stabilization of BE. Fast dissolving experiment proved that the BE/HPβCD-IC-NF was disintegrated rapidly in water. Furthermore, the free radical scavenging activity and antimicrobial test demonstrated that BE/HPβCD-IC-NF has antioxidant properties and good antimicrobial properties, respectively. Meanwhile, in vivo antimicrobial tests on strawberries proved that BE/HPβCD-IC-NF has an effective effect on the preservation and stabilization of fruits. In conclusion, BE/HPβCD-IC-NF prepared in this study can effectively improve thermal stability, aqueous solubility, antibacterial and antioxidant activity of BE, which provides potential for its application in the field of active food packaging.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ruichi Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fengrui Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Zhu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Hailan Wei
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Li F, Xiu Y, Wang A, Zhang Y, Zhang X, Gao S, Ye F, Fu Y. Environmentally Friendly Sustained-Release Antifungal Cyclodextrin Inclusion Complex Nanofibers for Controlling Fungi. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6345-6352. [PMID: 40016198 DOI: 10.1021/acs.langmuir.5c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The development of hydrophobic pesticide formulations remains constrained by complicated manufacturing processes, excessive reliance on organic solvents, and indispensable surfactants. The practical application of dimethomorph (DIM) is hindered by its hydrophobic nature, posing risks to nontarget organisms. Inspired by the uptake of nanomaterials by plants, DIM was encapsulated in the cyclodextrin (CD) cavity to optimize its water-solubility and the sustained-release rate. The spatial confinement effect of CD could facilitate the thermostability of DIM. DIM/CD inclusion complex solutions were electrospun to fabricate nanofibers with bead-free and smooth morphology. As predicted, the release of DIM/CD inclusion complex nanofibers reached plateaus with accumulative release values of approximately 75%. The antifungal activity of DIM/CD inclusion complex nanofibers possesses much higher than DIM for controlling Rhizoctonia solani and Haematonectria hematococco, thereby enhancing its antifungal bioactivity and reducing pesticide spraying frequency. The inhibition rates of Rhizoctonia solani by DIM/HPβCD and DIM/HPγCD inclusion complex nanofibers are found to be 55.8% and 53.6% within 144 h, respectively. This work explores the feasibility of inclusion of complex nanofibers as a delivery platform for application in sustained agriculture production.
Collapse
Affiliation(s)
- Fengrui Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yue Xiu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Wang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xinyue Zhang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Shen C, Yang Z, Wu D, Chen K. The preparation, resources, applications, and future trends of nanofibers in active food packaging: a review. Crit Rev Food Sci Nutr 2024; 64:9656-9671. [PMID: 37216478 DOI: 10.1080/10408398.2023.2214819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Active packaging is a novel strategy for maintaining the shelf life of products and ensuring their safety, freshness, and integrity that has emerged with the consumer demand for safer, healthier, and higher quality food. Nanofibers have received a lot of attention for the application in active food packaging due to their high specific surface area, high porosity, and high loading capacity of active substances. Three common methods (electrospinning, solution blow spinning, and centrifugal spinning) for the preparation of nanofibers in active food packaging and their influencing parameters are presented, and advantages and disadvantages between these methods are compared. The main natural and synthetic polymeric substrate materials for the nanofiber preparation are discussed; and the application of nanofibers in active packaging is elaborated. The current limitations and future trends are also discussed. There have been many studies on the preparation of nanofibers using substrate materials from different sources for active food packaging. However, most of these studies are still in the laboratory research stage. Solving the issues of preparation efficiency and cost of nanofibers is the key to their application in commercial food packaging.
Collapse
Affiliation(s)
- Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Zhichao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P.R. China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
4
|
Feng W, Guo X, Yang G, Yao Y, Zhao L, Gao S, Ye F, Fu Y. Direct electrospinning for producing multiple activity nanofibers consisting of aggregated luteolin/hydroxypropyl-gamma-cyclodextrin inclusion complex. Int J Biol Macromol 2024; 270:132344. [PMID: 38754666 DOI: 10.1016/j.ijbiomac.2024.132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/04/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.
Collapse
Affiliation(s)
- Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Guo
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Guang Yang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Yao Yao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Acar T, Arayici PP, Ucar B, Coksu I, Tasdurmazli S, Ozbek T, Acar S. Host-Guest Interactions of Caffeic Acid Phenethyl Ester with β-Cyclodextrins: Preparation, Characterization, and In Vitro Antioxidant and Antibacterial Activity. ACS OMEGA 2024; 9:3625-3634. [PMID: 38284065 PMCID: PMC10809231 DOI: 10.1021/acsomega.3c07643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The aim of this study is to improve the solubility, chemical stability, and in vitro biological activity of caffeic acid phenethyl ester (CAPE) by forming inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (Hβ-CD) using the solvent evaporation method. The CAPE contents of the produced complexes were determined, and the complexes with the highest CAPE contents were selected for further characterization. Detailed characterization of inclusion complexes was performed by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrospray ionization-mass spectrometry (ESI-MS). pH and thermal stability studies showed that both selected inclusion complexes exhibited better stability compared to free CAPE. Moreover, their antimicrobial activities were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for the first time. According to the broth dilution assay, complexes with the highest CAPE content (10C/β-CD and 10C/Hβ-CD) exhibited considerable growth inhibition effects against both bacteria, 31.25 μg/mL and 62.5 μg/mL, respectively; contrarily, this value for free CAPE was 500 μg/mL. Furthermore, it was determined that the in vitro antioxidant activity of the complexes increased by about two times compared to free CAPE.
Collapse
Affiliation(s)
- Tayfun Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Pelin Pelit Arayici
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Burcu Ucar
- Department
of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul 34537, Turkey
| | - Irem Coksu
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Semra Tasdurmazli
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Tulin Ozbek
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Serap Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| |
Collapse
|
6
|
Kaba K, Purnell B, Liu Y, Royall PG, Alhnan MA. Computer numerical control (CNC) carving as an on-demand point-of-care manufacturing of solid dosage form: A digital alternative method for 3D printing. Int J Pharm 2023; 645:123390. [PMID: 37683980 DOI: 10.1016/j.ijpharm.2023.123390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Computer numerical control (CNC) carving is a widely used method of industrial subtractive manufacturing of wood, plastics, and metal products. However, there have been no previous reports of applying this approach to manufacture medicines. In this work, the novel method of tablet production using CNC carving is introduced for the first time. This report provides a proof-of-concept for applying subtractive manufacturing as an alternative to formative (powder compression) and additive (3D printing) manufacturing for the on-demand production of solid dosage forms. This exemplar manufacturing approach was employed to produce patient-specific hydrocortisone (HC) tablets for the treatment of children with congenital adrenal hyperplasia. A specially made drug-polymer cast based on polyethene glycol (PEG 6,000) and hydroxypropyl cellulose was produced using thermal casting. The cast was used as a workpiece and digitally carved using a small-scale 3-dimensional (3D) CNC carving. To establish the ability of this new approach to provide an accurate dose of HC, four different sizes of CNC carved tablet were manufactured to achieve HC doses of 2.5, 5, 7.5 and 10 mg with a relative standard deviation of the tablet weight in the range of 3.69-4.79%. In addition, batches of 2.5 and 5 mg HC tablets met the British Pharmacopeia standards for weight uniformity. Thermal analysis and X-ray powder diffraction indicated that the model drug was in amorphous form. In addition, HPLC analysis indicated a level of purity of 96.5 ± 1.1% of HC. In addition, the process yielded mechanically strong cylindrical tablets with tensile strength ranging from 0.49 to 1.6 MPa and friability values of <1%, whilst maintaining an aesthetic look. In vitro, HC release from the CNC-carved tablets was slower with larger tablet sizes and higher binder contents. This is the first report on applying CNC carving in the pharmaceutical context of producing solid dosage forms. The work showed the potential of this technology as an alternative method for the on-demand manufacturing of patient-specific dosage forms.
Collapse
Affiliation(s)
- Kazim Kaba
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Bryn Purnell
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Yujing Liu
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Paul G Royall
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom
| | - Mohamed A Alhnan
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
7
|
Deciphering the interactions of genistein with β-cyclodextrin derivatives through experimental and microsecond timescale umbrella sampling simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Fareed F, Saeed F, Afzaal M, Imran A, Ahmad A, Mahmood K, Shah YA, Hussain M, Ateeq H. Fabrication of electrospun gum Arabic-polyvinyl alcohol blend nanofibers for improved viability of the probiotic. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4812-4821. [PMID: 36276519 PMCID: PMC9579235 DOI: 10.1007/s13197-022-05567-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/01/2023]
Abstract
In the current study, the probiotic (Lactobacillus acidophilus) was encapsulated using Gum Arabic and polyvinyl alcohol blended nanofibers by electrospinning. Obtained nanofibers were characterized in terms of particle size, diameter, mechanical strength, and encapsulation efficiency. The molecular and internal structure characterization was carried out using Fourier transform infrared spectroscopy and X-ray diffraction respectively. Thermo Gravimetric (TGA) analysis was conducted to determine the thermal features of PVA/GA/probiotics nanofibers. Free and encapsulated probiotics were also subjected to in vitro assay under different detrimental conditions. Images obtained using SEM indicated that probiotics were successfully encapsulated in blends by a nano-spider. FTIR and XRD spectra showed bonding interactions between the wall and core materials. In-vitro assay indicated that probiotics with encapsulated showed significantly (P < 0.05) viability compared to free cells. Free cells lost their viability under simulated gastrointestinal conditions while encapsulated cells retained viability count above the therapeutic number (107 cfu).
Collapse
Affiliation(s)
- Faisal Fareed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Yasir Abbas Shah
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzammal Hussain
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Huda Ateeq
- Food Safety & Biotechnology Laboratory, Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
9
|
Ibrahim M, Munir S, Ahmed S, Chughtai AH, Ahmad W, Khan J, Murtey MD, Ijaz H, Ojha SC. Gliclazide in Binary and Ternary Systems Improves Physicochemical Properties, Bioactivity, and Antioxidant Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2100092. [PMID: 36466089 PMCID: PMC9718633 DOI: 10.1155/2022/2100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 09/27/2022] [Indexed: 10/03/2023]
Abstract
The poor solubility of the antidiabetic drug gliclazide (Glc) is due to its hydrophobic nature. This research is aimed at improving Glc's solubility and drug release profile, as well as at investigating additional benefits such as bioactivity and antioxidant activity, by forming binary complexes with HPβCD at different w/w ratios (1 : 1, 1 : 2.5, 1 : 4, and 1 : 9) and ternary complexes with HPβCD and Tryp at 1 : 1 : 1, 1 : 1 : 0.27, 1 : 2.5 : 0.27, 1 : 3.6 : 3.6, 1 : 4 : 1, and 1 : 9 : 1, respectively. Complexes were prepared by the physical mixing (PM) and solvent evaporation (SE) methods. The prepared inclusion complexes were meticulously characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra. To verify our findings, the inclusion complexes were evaluated by equilibrium solubility, in vitro drug release profile, kinetic models, and antidiabetic and antioxidant activities in animal models. Our results demonstrated that the solubility and drug release profile were found to be enhanced through binary as well as ternary complexes. Notably, ternary complexes with a ratio of 1 : 9 : 1 showed the highest solubility and drug release profile compared to all other preparations. Data on antioxidant activity indicated that the ternary complex had the higher total antioxidant status (TAS), superoxide dismutase (SOD), and catalase (CAT) activity than the binary complex and Glc alone, in contrast to the diabetic group. In vivo antidiabetic activity data revealed a high percentage reduction in the blood glucose level by ternary complexes (49-52%) compared to the binary complexes (45-46%; p ≤ 0.05). HPβCD and Tryp provide a new platform for overcoming the challenges associated with poorly soluble Glc by providing greater complexing and solubilizing capabilities and imparting ancillary benefits to improve the drug's antidiabetic and antioxidant activities.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shehla Munir
- Department of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sarfraz Ahmed
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Narowal Campus, Narowal 51600, Pakistan
| | | | - Waqas Ahmad
- Department of Clinical Sciences, University of Veterinary and Animal Sciences Lahore, Narowal Campus, Narowal 51600, Pakistan
| | - Jallat Khan
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mogana Das Murtey
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Hira Ijaz
- Department of Pharmacy, Pak–Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Southwest Medical University, Jiangyang District, Luzhou 646000 Sichuan, China
| |
Collapse
|
10
|
Mohammadi A, Sahabi M, Beigi-Boroujeni S, Abdolvand H, Makvandi P, Pournaghshband Isfahani A, Gharibi R, Ebrahimibagha M. Alginate hydrogel with enhanced curcumin release through HPβCD assisted host-guest interaction. BIOMATERIALS ADVANCES 2022; 141:213130. [PMID: 36179495 DOI: 10.1016/j.bioadv.2022.213130] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The underprivileged pharmacodynamic action of curcumin, which arose from its low water solubility and rapid metabolism, restricts its therapeutic performance. In this study, (2-Hydroxy isopropyl)-β-cyclodextrin (HPβCD) as a macrocycle host molecule was employed to enhance the availability and control release of curcumin by forming a host-guest inclusion complex within an in-situ forming alginate hydrogel. The formation of the inclusion complexes of curcumin with a single host molecule was characterized by FTIR, XRD, TGA, SEM, and DLS analyses. The inclusion complex of curcumin and HPβCD (HPβCD-Cur) showed a high encapsulation efficiency of 88.2 %. According to DLS results, aqueous dispersion of HPβCD-Cur exhibited a unimodal histogram after 2 and 7 days with average particles size of 207.5 and 230.6 nm, respectively. This observation could be because of the formation of an inclusion complex that effectively distributed in solution and prevented curcumin agglomeration. The prepared alginate hydrogel containing HPβCD-Cur demonstrated >87 % reduction in colonies of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa, which significantly is higher than that for Alg/Cur (<69 %). The Alg/HPβCD-Cur hydrogel exhibited a high water uptake of 470 % after 2 h, and a curcumin cumulative release of 80 % over 72 h, with proper cytocompatibility. Consequently, it was shown that the HPβCD carrier could act as an apt host molecule that can properly encapsulate curcumin and enhance its release from the Alg/HPβCD-Cur hydrogel.
Collapse
Affiliation(s)
- Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Mahyar Sahabi
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Saeed Beigi-Boroujeni
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 2501, N.L., Mexico
| | - Hossein Abdolvand
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Pontedera, 56025 Pisa, Italy
| | | | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Mehrnoosh Ebrahimibagha
- Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Freire LA, Lemos ACC, Miranda KWE, da Silva JP, de Oliveira JE. Statistical optimization for preparing nanofibrous mats of polybutylene adipate co‐terephthalate/poly(vinylpyrrolidone) blends by solution blow spinning. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Leonardo Almeida Freire
- Department of Engineering (DEG) Federal University of Lavras (UFLA) Lavras Minas Gerais Brazil
| | - Ana Carolina Cortez Lemos
- Postgraduate Program in Biomaterials Engineering Federal University of Lavras Lavras Minas Gerais Brazil
| | | | | | | |
Collapse
|
12
|
Gao S, Feng W, Sun H, Zong L, Li X, Zhao L, Ye F, Fu Y. Fabrication and Characterization of Antifungal Hydroxypropyl-β-Cyclodextrin/Pyrimethanil Inclusion Compound Nanofibers Based on Electrospinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7911-7920. [PMID: 35748509 DOI: 10.1021/acs.jafc.2c01866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pyrimethanil (PMT) is an anilinopyrimidine bactericide with poor water solubility, which limits its applications. To improve the physical and chemical properties of PMT, hydroxypropyl-β-cyclodextrin/pyrimethanil inclusion compound nanofibers (HPβCD/PMT-IC-NFs) were fabricated via electrospinning. A variety of analytical techniques were used to confirm the formation of the inclusion compound. Scanning electron microscopy image displayed that HPβCD/PMT-IC-NF was homogeneous without particles. Thermogravimetric analysis indicated that the formation of the inclusion compound improved the thermostability of PMT. In addition, the phase solubility test illustrated that the inclusion compound formed by PMT and HPβCD had a stronger water solubility. The antifungal effect test exhibited that HPβCD/PMT-IC-NF had better antifungal properties. The release experiment confirmed that HPβCD/PMT-IC-NF had a sustained-release effect, and the release curve conformed to the first-order kinetic model equation. In short, the fabrication HPβCD/PMT-IC-NF inhibited improved solubility and thermostability of PMT, thus promoting the development of pesticide dosage form to water-based and low-pollution direction.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Weiwei Feng
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Han Sun
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lei Zong
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Shen C, Wu M, Sun C, Li J, Wu D, Sun C, He Y, Chen K. Chitosan/PCL nanofibrous films developed by SBS to encapsulate thymol/HPβCD inclusion complexes for fruit packaging. Carbohydr Polym 2022; 286:119267. [DOI: 10.1016/j.carbpol.2022.119267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/17/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
|
14
|
Wu HT, Chuang YH, Lin HC, Hu TC, Tu YJ, Chien LJ. Immediate Release Formulation of Inhaled Beclomethasone Dipropionate-Hydroxypropyl-Beta-Cyclodextrin Composite Particles Produced Using Supercritical Assisted Atomization. Polymers (Basel) 2022; 14:2114. [PMID: 35631996 PMCID: PMC9144350 DOI: 10.3390/polym14102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the enhanced solubilization performance of a poorly soluble drug, beclomethasone dipropionate (BDP), was investigated using hydroxypropyl-β-cyclodextrin (HP-β-CD) and ethanol. The enhanced solubility of the drug was determined using the phase solubility method and correlated as a function of both HP-β-CD and ethanol concentrations. The effective progress of drug solubility originated from the formation of cyclodextrin and BDP inclusion complexes and increase in the lipophilicity of the medium, by aqueous ethanol, for hydrophobic BDP. BDP and HP-β-CD composite particles were produced using supercritical assisted atomization (SAA) with carbon dioxide as the spraying medium, 54.2% (w/w) aqueous ethanol as the solvent, and an optimal amount of the dispersion enhancer leucine. The effect of the mass ratio of HP-β-CD to BDP (Z) on the in vitro aerosolization and in vitro dissolution performance of BDP-HP-β-CD composite particles was evaluated. The aerosolization performance showed that the fine particles fraction (FPF) of the composite particles increased with increasing mass ratio. The water-soluble excipient (HP-β-CD) effectively enhance the dissolution rate of BDP from composite particles. This study suggests that BDP-HP-β-CD composite particles produced using SAA can be employed in immediate-release drug formulations for pulmonary delivery.
Collapse
Affiliation(s)
- Hsien-Tsung Wu
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan Dist., New Taipei City 24301, Taiwan; (Y.-H.C.); (H.-C.L.); (T.-C.H.); (Y.-J.T.); (L.-J.C.)
| | | | | | | | | | | |
Collapse
|
15
|
Alvi Z, Akhtar M, Rahman NU, Hosny KM, Sindi AM, Khan BA, Nazir I, Sadaquat H. Utilization of Gelling Polymer to Formulate Nanoparticles Loaded with Epalrestat-Cyclodextrin Inclusion Complex: Formulation, Characterization, In-Silico Modelling and In-Vivo Toxicity Evaluation. Polymers (Basel) 2021; 13:polym13244350. [PMID: 34960901 PMCID: PMC8708980 DOI: 10.3390/polym13244350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Epalrestat (EPL) is an aldose reductase inhibitor with poor aqueous solubility that affects its therapeutic efficacy. The research study was designed to prepare epalrestat-cyclodextrins (EPL-CDs) inclusion complexes to enhance the aqueous solubility by using beta-cyclodextrin (β-CD) and sulfobutyl ether₇ β-CD (SBE7 β-CD). Furthermore, polymeric nanoparticles (PNPs) of EPL-CDs were developed using chitosan (CS) and sodium tripolyphosphate (sTPP). The EPL-CDs complexed formulations were then loaded into chitosan nanoparticles (CS NPs) and further characterized for different physico-chemical properties, thermal stability, drug-excipient compatibility and acute oral toxicity studies. In-silico molecular docking of cross-linker with SBE7 β-CD was also carried out to determine the binding site of the CDs with the cross-linker. The sizes of the prepared NPs were laid in the range of 241.5–348.4 nm, with polydispersity index (PDI) ranging from 0.302–0.578. The surface morphology of the NPs was found to be non-porous, smooth, and spherical. The cumulative percentage of drug release from EPL-CDs loaded CS NPs was found to be higher (75–88%) than that of the pure drug (25%). Acute oral toxicity on animal models showed a biochemical, histological profile with no harmful impact at the cellular level. It is concluded that epalrestat-cyclodextrin chitosan nanoparticles (EPL-CDs-CS NPs) with improved solubility are safe for oral administration since no toxicity was reported on vital organs in rabbits.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
- Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
- Correspondence: ; Tel.: +92-300-6720628
| | - Nisar U. Rahman
- Department of Pharmacy, Royal Institute of Medical Sciences (RIMS), Multan 60000, Punjab, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amal M. Sindi
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Barkat A. Khan
- Drug Design and Cosmetics Lab (DDCL), Gomal Center of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtoonkhwa, Pakistan;
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur 63100, Punjab, Pakistan;
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (Z.A.); (H.S.)
| |
Collapse
|
16
|
Antibacterial nanofibers of pullulan/tetracycline-cyclodextrin inclusion complexes for Fast-Disintegrating oral drug delivery. J Colloid Interface Sci 2021; 610:321-333. [PMID: 34923270 DOI: 10.1016/j.jcis.2021.12.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Tetracycline is a widely used antibiotic suffering from poor water solubility and low bioavailability. Here, hydroxypropyl-beta-cyclodextrin (HPβCD) was used to form inclusion complexes (IC) of tetracycline with 2:1 M ratio (CD:drug). Then, tetracycline-HPβCD-IC was mixed with pullulan- a non-toxic, water-soluble biopolymer - to form nanofibrous webs via electrospinning. The electrospinning of pullulan/tetracycline-HPβCD-IC was yielded into defect-free nanofibers collected in the form of a self-standing and flexible material with the loading capacity of ∼ 7.7 % (w/w). Pullulan/tetracycline nanofibers was also generated as control sample having the same drug loading. Tetracycline was found in the amorphous state in case of pullulan/tetracycline-HPβCD nanofibers due to inclusion complexation. Through inclusion complexation with HPβCD, enhanced aqueous solubility and faster release profile were provided for pullulan/tetracycline-HPβCD-IC nanofibers compared to pullulan/tetracycline one. Additionally, pullulan/tetracycline-HPβCD-IC nanofibers readily disintegrated when wetted with artificial saliva while pullulan/tetracycline nanofibers were not completely absorbed by the same simulate environment. Electrospun nanofibers showed promising antibacterial activity against both gram-positive and gram-negative bacteria. Briefly, our findings indicated that pullulan/tetracycline-HPβCD-IC nanofibers could be an attractive material as orally fast disintegrating drug delivery system for the desired antibiotic treatment thanks to its promising physicochemical and antibacterial properties.
Collapse
|
17
|
Effect of hydrophilic polymer on solubility and taste masking of linezolid in multi-component cyclodextrin inclusion complex: Physicochemical characterization and molecular docking. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Mashaqbeh H, Obaidat R, Al-Shar’i N. Evaluation and Characterization of Curcumin-β-Cyclodextrin and Cyclodextrin-Based Nanosponge Inclusion Complexation. Polymers (Basel) 2021; 13:polym13234073. [PMID: 34883577 PMCID: PMC8658939 DOI: 10.3390/polym13234073] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 02/02/2023] Open
Abstract
Cyclodextrin polymers and cyclodextrin-based nanosponges have been widely investigated for increasing drug bioavailability. This study examined curcumin's complexation stability and solubilization with β-cyclodextrin and β-cyclodextrin-based nanosponge. Nanosponges were prepared through the cross-linking of β-cyclodextrin with different molar ratios of diphenyl carbonate. Phase solubility experiments were conducted to evaluate the formed complexes and evaluate the potential of using β-cyclodextrin and nanosponge in pharmaceutical formulations. Furthermore, physicochemical characterizations of the prepared complexes included PXRD, FTIR, NMR, and DSC. In addition, in vitro release studies were performed for the prepared formulations. The formation of β-cyclodextrin complexes enhanced curcumin solubility up to 2.34-fold compared to the inherent solubility, compared to a 2.95-fold increment in curcumin solubility when loaded in β-cyclodextrin-based nanosponges. Interestingly, the stability constant for curcumin nanosponges was (4972.90 M-1), which was ten times higher than that for the β-cyclodextrin complex, where the value was 487.34 M-1. The study results indicated a decrease in the complexation efficiency and solubilization effect with the increased cross-linker amount. This study's findings showed the potential of using cyclodextrin-based nanosponge and the importance of studying the effect of cross-linking density for the preparation of β-cyclodextrin-based nanosponges to be used for pharmaceutical formulations.
Collapse
Affiliation(s)
- Hadeia Mashaqbeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Rana Obaidat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (H.M.); (R.O.)
| | - Nizar Al-Shar’i
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan;
| |
Collapse
|
19
|
Guan T, Zhang G, Sun Y, Zhang J, Ren L. Preparation, characterization, and evaluation of HP-β-CD inclusion complex with alcohol extractives from star anise. Food Funct 2021; 12:10008-10022. [PMID: 34505612 DOI: 10.1039/d1fo02097h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The active compounds in star anise alcohol extractives (SAAE) have potent bioactivity. However, their poor solubility and stability limit their applications. In this study, SAAE/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes were prepared as a strategy to overcome the abovementioned disadvantages. The phase solubility results indicated that the solubility of the inclusion complex was enhanced. Complexation was confirmed by complementary methods, including Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy, and transmission electron microscopy, which proved to be extremely insightful for studying the inclusion formation phenomenon between SAAE and HP-β-CD. Despite there being no apparent improvements in the antioxidant capacity and antimicrobial activity, the results of the stability studies presented higher thermal, volatile, and photostability after encapsulation. Further, molecular modeling was used to investigate the factors influencing complex formation and provide the most stable molecular conformation. Thus, based on the obtained results, this study strongly demonstrates the potential of the SAAE/HP-β-CD inclusion complex in the food industry.
Collapse
Affiliation(s)
- Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China. .,School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Guangjie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
20
|
Suharyani I, Muchtaridi M, Mohammed AFA, Elamin KM, Wathoni N, Abdassah M. α-Mangostin/γ-Cyclodextrin Inclusion Complex: Formation and Thermodynamic Study. Polymers (Basel) 2021; 13:polym13172890. [PMID: 34502930 PMCID: PMC8434270 DOI: 10.3390/polym13172890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
α-Mangostin (α-M) has various biological activities, such as anti-cancer, antibacterial, anti-fungal, anti-tyrosin, anti-tuberculosis, anti-inflammatory, and antioxidant. However, it has very low solubility in water. The formulation of this compound requires high amounts of solubilizers, which limits its clinical application. In addition, its low solubility in water is a barrier to the distribution of this drug, thus affecting its potency. Cyclodextrin (CD) is widely used as a solubility enhancer of poorly soluble drugs. This study aimed to increase the solubility of α-M in water through complex formation with CD. The complex of α-Mangostin and γ-Cyclodextrin (α-M/γ-CD CX) was prepared by the solubilization method, resulting in a solubility improvement of α-M in water. Characterization of α-M/γ-CD CX by using FTIR-Spectrometry, XRD, H-, C-, and HMBC-NMR showed that α-M was able to form an inclusion complex with γ-CD. The complex yielded an entrapment efficiency of 84.25 and the thermodynamic study showed that the α-M/γ-CD CX was formed spontaneously, based on the negative values of Gibbs energy and ΔH. Interestingly, the solubility of α-M/γ-CD CX significantly increased by 31.74-fold compared with α-M. These results suggest that α-M/γ-CD CX has the potential in the formulation of water-based preparation for clinical applications.
Collapse
Affiliation(s)
- Ine Suharyani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- School of Pharmacy Muhammadiyah Cirebon, Cirebon 45153, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | | | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (N.W.); (M.A.); Tel.: +62-22-842-888-888 (N.W.)
| | - Marline Abdassah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
- Correspondence: (N.W.); (M.A.); Tel.: +62-22-842-888-888 (N.W.)
| |
Collapse
|
21
|
Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Gao S, Jiang J, Li X, Ye F, Fu Y, Zhao L. Electrospun Polymer-Free Nanofibers Incorporating Hydroxypropyl-β-cyclodextrin/Difenoconazole via Supramolecular Assembly for Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5871-5881. [PMID: 34013730 DOI: 10.1021/acs.jafc.1c01351] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, flexible and self-standing hydroxypropyl-β-cyclodextrin/difenoconazole inclusion complex (HPβCD/DZ-IC) nanofibers were prepared by polymer-free electrospinning, which exhibited potential to be a new fast-dissolving pesticide formulation. Scanning electron microscopy and optical microscopy were applied to evaluate the morphology of nanofibers, which showed that the resulting HPβCD/DZ-IC nanofibers were bead-free and uniform. In addition, the proton nuclear magnetic resonance (1H NMR) spectrum suggested a stoichiometric ratio of 1:0.9 (HPβCD/DZ). Other characterization methods, such as UV-vis absorption, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), were applied in this study. On the one hand, UV-vis absorption, fluorescence spectroscopy, FT-IR, XRD, and TGA provided useful information for the successful formation of an inclusion complex; on the other hand, the results of TGA indicated the thermal stability of DZ was enhanced after the formation of inclusion complexes. Besides, the phase solubility test could explain the increased water solubility of the nanofibers of inclusion complexes formed by DZ and HPβCD. The results of molecular docking studies demonstrated the most favorable binding interactions when HPβCD combined with DZ. The dissolution test and the antifungal performance test exhibited the characteristics of fast dissolution and the excellent antifungal performance of HPβCD/DZ-IC nanofibers, respectively.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Jiang
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoming Li
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| | - Lixia Zhao
- Department of Chemistry, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|