1
|
Sharma B, Bhattacherjee D, Zyryanov GV, Purohit R. An insight from computational approach to explore novel, high-affinity phosphodiesterase 10A inhibitors for neurological disorders. J Biomol Struct Dyn 2023; 41:9424-9436. [PMID: 36336960 DOI: 10.1080/07391102.2022.2141895] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
The enzyme Phosphodiesterase 10A (PDE10A) plays a regulatory role in the cAMP/protein kinase A (PKA) signaling pathway by means of hydrolyzing cAMP and cGMP. PDE10A emerges as a relevant pharmacological drug target for neurological conditions such as psychosis, schizophrenia, Parkinson's, Huntington's disease, and other memory-related disorders. In the current study, we subjected a set of 1,2,3-triazoles to be explored as PDE10A inhibitors using diverse computational approaches, including molecular docking, classical molecular dynamics (MD) simulations, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations, steered MD, and umbrella sampling simulations. Molecular docking of cocrystallized ligands papaverine and PFJ, along with a set of in-house synthesized molecules, suggested that molecule 3i haded the highest binding affinity, followed by 3h and 3j. Furthermore, the structural stability studies using MD and MM-PBSA indicated that the 3h and 3j formed stable complexes with PDE10A. The binding free energy of -240.642 kJ/mol and -201.406 kJ/mol was observed for 3h and 3j, respectively. However, the cocrystallized ligands papaverine and PFJ exhibited comparitively higher binding free energy values of -202.030 kJ/mol and -138.764 kJ/mol, respectively. Additionally, steered MD and umbrella sampling simulations provided conclusive evidence that the molecules 3h and 3j could be exploited as promising candidates to target PDE10A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhanu Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
- Biotechnology Division, CSIR-IHBT, Palampur, HP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Dhananjay Bhattacherjee
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federation
| | - Grigory V Zyryanov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russian Federation
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, India
- Biotechnology Division, CSIR-IHBT, Palampur, HP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Pragyandipta P, Naik MR, Bastia B, Naik PK. Development of 9-( N-arylmethylamino) congeners of noscapine: the microtubule targeting drugs for the management of breast cancer. 3 Biotech 2023; 13:38. [PMID: 36636578 PMCID: PMC9829942 DOI: 10.1007/s13205-022-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/17/2022] [Indexed: 01/10/2023] Open
Abstract
Noscapine is a natural lead molecule with anticancer activity at a higher concentrations. So, there is an urge for the development of more potent derivatives of noscapine. In this study, we have approached for development of 9-N-arylmethylamino derivatives of noscapine that kills cancer cells without affecting the normal cells. They were designed by substituting N-aryl methyl pharmacophore at the C-9 position and screened out top-ranked three derivatives 13a-c using molecular docking. Further, their theoretical free energy of binding with tubulin was calculated followed by chemical synthesis and experimental validation. In vitro antiproliferative activity of noscapine and its 9-N-arylmethylamino derivatives (13a-c) was carried out using MCF-7 (a triple receptors positive) and MDA-MB-231 (a triple receptor negative) breast cancer cell lines. Further, cytotoxicity to normal cells was examined using human embryonic kidney cells (HEK cells). Inhibition to cell cycle progression and induction of apoptosis was monitored using FACS. The binding of noscapine and 13a-c with tubulin was examined using fluorescence quenching assay. The 9-N-arylmethylamino derivatives of noscapine (13a-c) were found to inhibit the proliferation of cancer cells at a much lower concentration (IC50 values range between 9.1 to 47.3 µM) compared to noscapine (IC50 value is 45.8-59.3 µM). Surprisingly, the proliferation of HEK cells was not inhibited even at a concentration of 100 µM (cytotoxicity is < 5%). These derivatives induced apoptosis by arresting cells at G2/M-phase and also bind to tubulin. The 9-(N-arylmethylamino) noscapinoids have the potential to be a novel therapeutic agent for the treatment of breast cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03445-3.
Collapse
Affiliation(s)
- Pratyush Pragyandipta
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| | - Manas Ranjan Naik
- Department of Pharmacology, SLN Medical College Koraput, Koraput, Odisha 464020 India
| | - Banajit Bastia
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| | - Pradeep Kumar Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768019 India
| |
Collapse
|
3
|
Khan NS, Pradhan D, Choudhary S, Swargam S, Jain AK, Poddar NK. The interaction analysis between human serum albumin with chlorpyrifos and its derivatives through sub-atomic docking and molecular dynamics simulation techniques. 3 Biotech 2022; 12:272. [PMID: 36105863 PMCID: PMC9464670 DOI: 10.1007/s13205-022-03344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Chlorpyrifos (CPF) is an extensively used organophosphate pesticide for crop protection. However, there are concerns about it contaminating the environment and human health, with estimated three lakh deaths annually. The molecular modeling protocol was assisted in redesigning thirteen well-known CPF linkers and inserting them at five selectable CPF (R1-R5) positions of CPF to get 258 CPF derivatives. CPF and its derivatives were optimized using LigPrep and docked to a grid centralized on Trp214 using extra precision glide docking. The Binding free energy of complexes was calculated using molecular mechanics/generalized born surface area (MM-GBSA). CPF and CPFD-225 have glide scores of - 3.08 and - 6.152 kcal/mol, respectively, with human serum albumin and ΔG bind for CPF (- 33.041817 kcal/mol) (- 52.825 kcal/mol) for CPF-D225. The top ten CPF derivatives showed at least ninefold better binding free energy than the CPF proposed for polyclonal antibody production. Subsequently, molecular docking studies revealed that CPF and its derivatives could bind to human serum albumin (HSA). Furthermore, using the Desmond package, a 100-ns molecular dynamics (MD) simulation was performed on the potential binding site. The final systems of CPF-HSA and CPF-222D complexes consist of 76,014 and 76,026 atoms, respectively. The physical stability of both the systems (CPF-HSA and CPF-222D) was analyzed by considering the overall potential energy, RMSF, RMSD, Hydrophobic interactions, and water-mediated patterns, which showed total energy of - 141,610 kcal/mol and - 140,150 kcal/mol, respectively. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03344-7.
Collapse
Affiliation(s)
- Noor Saba Khan
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh 243123 India
| | | | - Saumya Choudhary
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Department of Molecular and Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, 211007 India
| | - Sandeep Swargam
- Genomics and Epidemiology Division, INSACOG Unit, National Centre for Disease Control, New Delhi, 110054 India
| | - Arun Kumar Jain
- Biomedical Informatics Centre, ICMR-National Institute of Pathology, New Delhi, 110029 India
- Environmental Toxicology Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Nitesh Kumar Poddar
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh 243123 India
- Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007 India
| |
Collapse
|
4
|
Kumar S, Bhardwaj VK, Guleria S, Purohit R, Kumar S. Improving the catalytic efficiency and dimeric stability of Cu,Zn superoxide dismutase by combining structure-guided consensus approach with site-directed mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148505. [PMID: 34626596 DOI: 10.1016/j.bbabio.2021.148505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 01/05/2023]
Abstract
Superoxide dismutase (SOD) leads the front line of defense against injuries mediated by the reactive oxygen species (ROS). The SOD from a high-altitude plant Potentilla atrosanguinea is a unique thermostable enzyme. In this study, we applied a structure-guided consensus approach on Cu,Zn SOD from Potentilla atrosanguinea plant, to improve its enzymatic properties. The polar uncharged amino acid (threonine) at position 97 of wild-type (WT) SOD was selected as a target residue for substitution by aspartate (T97D) through site-directed mutagenesis. The WT and T97D were examined by a combinative approach consisting of robust computational and experimental tools. The in-silico analysis indicated improved dimeric stability in T97D as compared to the WT. The strong interactions between the monomers were related to improved dimerization and enhanced catalytic efficiency of T97D. These results were validated by in-vitro assays showing improved dimer stability and catalytic efficiency in T97D than WT. Moreover, the mutation also improved the thermostability of the enzyme. The combined structural and functional data described the basis for improved specific activity and thermostability. This study could expand the scope of interface residue to be explored as targets for designing of SODs with improved kinetics.
Collapse
Affiliation(s)
- Sachin Kumar
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Shweta Guleria
- Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India.
| |
Collapse
|
5
|
Identification of dual inhibitor of phosphodiesterase 1B/10A using structure-based drug design approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Kumar S, Bhardwaj VK, Kaachra A, Guleria S, Kumar A, Purohit R, Kumar S. Site-directed mutagenesis (P61G) of copper, zinc superoxide dismutase enhances its kinetic properties and tolerance to inactivation by H 2O 2. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:221-229. [PMID: 34649025 DOI: 10.1016/j.plaphy.2021.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Superoxide dismutases (SODs) protect the cells by catalyzing the dismutation of harmful superoxide radicals (O2•-) into molecular oxygen (O2) and hydrogen peroxide (H2O2). Here, a Cu, Zn SOD (WT) from a high altitude plant (Potentilla atrosanguinea) was engineered by substituting a conserved residue proline to glycine at position 61 (P61G). The computational analysis showed higher structural flexibility and clusters in P61G than WT. The P61G exhibited moderately higher catalytic efficiency (Km = 0.029 μM, Vmax = 1488) than WT protein (Km = 0.038 μM, Vmax = 1290.11). P61G showed higher thermostability as revealed from residual activity (72.25% for P61G than 59.31% for WT after heating at 80 °C for 60 min), differential calorimetry scanning and CD-spectroscopic analysis. Interestingly, the P61G mutation also resulted in enhanced tolerance to H2O2 inactivation than WT protein. The finding on enhancing the biophysico-chemical properties by mutating conserved residue could stand as an example to engineer other enzymes. Also, the reported mutant can be exploited in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sachin Kumar
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anish Kaachra
- Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Shweta Guleria
- Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Arun Kumar
- Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India.
| |
Collapse
|