1
|
Woziński M, Greber KE, Pastewska M, Kolasiński P, Hewelt-Belka W, Żołnowska B, Sławiński J, Szulczyk D, Sawicki W, Ciura K. Modification of gradient HPLC method for determination of small molecules' affinity to human serum albumin under column safety conditions: Robustness and chemometrics study. J Pharm Biomed Anal 2024; 239:115916. [PMID: 38134704 DOI: 10.1016/j.jpba.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/19/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
In the early stages of drug discovery, beyond the biological activity screening, determining the physicochemical properties that affect the distribution of molecules in the human body is an essential step. Plasma protein binding (PPB) is one of the most important investigated endpoints. Nevertheless, the methodology for measuring %PPB is significantly less popular and standardized than other physicochemical properties, like lipophilicity. Here, we proposed how to modify protocols presented by Valko into column safety conditions and evaluated their robustness using fractional factorial design. For robustness testing, four factors were selected: column temperature, mobile phase flow rate, maximum isopropanol concentration in the mobile phase, and buffer pH. Elaborate methods have been applied for the analysis of HSA affinity for three groups of antibiotic-oriented substances that vary in chemical structure: fluoroquinolones, sulfonamides, and tetrazole derivatives. Furthermore, based on the reversed-phase chromatography the workflow of pilot studies was proposed to select molecules that have high affinity to HSA and can not be eluted from the HSA column using the concentration of organic modifier recommended by the column manufacturer.
Collapse
Affiliation(s)
- Mateusz Woziński
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Katarzyna Ewa Greber
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Monika Pastewska
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Piotr Kolasiński
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wiesław Sawicki
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland
| | - Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland; QSAR Lab Ltd., Trzy Lipy 3 St. Gdańsk, 80-172, Poland.
| |
Collapse
|
2
|
Abubakar M, Mohamad SB, Abd Halim AA, Tayyab S. Unveiling the molecular interaction of hepatitis B virus inhibitor, entecavir with human serum albumin through computational, microscopic and spectroscopic approaches. J Biomol Struct Dyn 2024:1-14. [PMID: 38315445 DOI: 10.1080/07391102.2024.2311331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Molecular docking, molecular dynamics (MD) simulation, atomic force microscopy (AFM) and multi-spectroscopic techniques were selected to unveil the molecular association between the hepatitis B virus (HBV) inhibitor, entecavir (ETR), and the major blood plasma transporter, human serum albumin (HSA). The entire docking and simulation analyses recognized ETR binding to subdomain IIA (Site I) of HSA through hydrogen bonds, hydrophobic and van der Waals forces while maintaining the complex's stability throughout the 100 ns. A gradual lessening in the Stern-Volmer quenching constant (K sv ) with rising temperatures registered ETR-induced quenching of HBV fluorescence as static quenching, thus advising complexation between ETR and HSA. The further advocation of this conclusion was seen from a larger value of the biomolecular quenching rate constant ((kq ) > 1010 M-1s-1), changes in the spectra (UV-Vis absorption) of HSA following ETR inclusion and ETR-induced swelling of HSA in the AFM results. The ETR appeared to bind to HSA with moderate affinity (K a = 1.87 - 1.19 × 10 4 M-1) at 290, 300 and 310 K. Significant alterations in the protein's secondary and tertiary structures, including changes in the protein's Tyr/Trp microenvironment, were also detected by circular dichroism and three-dimensional fluorescence spectra when the protein was bound to ETR. The findings of the drug displacement study backed the docking results of Site I as ETR's preferred binding site in HSA.
Collapse
Affiliation(s)
- Mujaheed Abubakar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamad
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saad Tayyab
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Peng M, Xu Y, Wu Y, Cai X, Zhang W, Zheng L, Du E, Fu J. Binding Affinity and Mechanism of Six PFAS with Human Serum Albumin: Insights from Multi-Spectroscopy, DFT and Molecular Dynamics Approaches. TOXICS 2024; 12:43. [PMID: 38250999 PMCID: PMC10819430 DOI: 10.3390/toxics12010043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Per- and Polyfluoroalkyl Substances (PFAS) bioaccumulate in the human body, presenting potential health risks and cellular toxicity. Their transport mechanisms and interactions with tissues and the circulatory system require further investigation. This study investigates the interaction mechanisms of six PFAS with Human Serum Albumin (HSA) using multi-spectroscopy, DFT and a molecular dynamics approach. Multi-spectral analysis shows that perfluorononanoic acid (PFNA) has the best binding capabilities with HSA. The order of binding constants (298 K) is as follows: "Perfluorononanoic Acid (PFNA, 7.81 × 106 L·mol-1) > Perfluoro-2,5-dimethyl-3,6-dioxanonanoic Acid (HFPO-TA, 3.70 × 106 L·mol-1) > Perfluorooctanoic Acid (PFOA, 2.27 × 105 L·mol-1) > Perfluoro-3,6,9-trioxadecanoic Acid (PFO3DA, 1.59 × 105 L·mol-1) > Perfluoroheptanoic Acid (PFHpA, 4.53 × 103 L·mol-1) > Dodecafluorosuberic Acid (DFSA, 1.52 × 103 L·mol-1)". Thermodynamic analysis suggests that PFNA and PFO3DA's interactions with HSA are exothermic, driven primarily by hydrogen bonds or van der Waals interactions. PFHpA, DFSA, PFOA, and HFPO-TA's interactions with HSA, on the other hand, are endothermic processes primarily driven by hydrophobic interactions. Competitive probe results show that the main HSA-PFAS binding site is in the HSA structure's subdomain IIA. These findings are also consistent with the findings of molecular docking. Molecular dynamics simulation (MD) analysis further shows that the lowest binding energy (-38.83 kcal/mol) is fund in the HSA-PFNA complex, indicating that PFNA binds more readily with HSA. Energy decomposition analysis also indicates that van der Waals and electrostatic interactions are the main forces for the HSA-PFAS complexes. Correlation analysis reveals that DFT quantum chemical descriptors related to electrostatic distribution and characteristics like ESP and ALIE are more representative in characterizing HSA-PFAS binding. This study sheds light on the interactions between HSA and PFAS. It guides health risk assessments and control strategies against PFAS, serving as a critical starting point for further public health research.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Yang Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Weihua Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Lu Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Erdeng Du
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (Y.W.); (X.C.); (W.Z.); (L.Z.)
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
| |
Collapse
|
4
|
Abubakar M, Mohamed SB, Abd Halim AA, Tayyab S. Use of computational and wet lab techniques to examine the molecular association between a potent hepatitis C virus inhibitor, PSI-6206 and human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122543. [PMID: 36868020 DOI: 10.1016/j.saa.2023.122543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
This study explores the plausible molecular interaction between a potent hepatitis C virus inhibitor, PSI-6206 (PSI), and human serum albumin (HSA), a primary transporter in blood plasma. Results obtained from both computational viz. molecular docking and molecular dynamics (MD) simulation and wet lab techniques such as UV absorption, fluorescence, circular dichroism (CD), and atomic force microscopy (AFM) complemented each other. While docking results identified PSI binding to subdomain IIA (Site I) of HSA by forming six hydrogen bonds, MD simulations signified the complex stability throughout the 50,000 ps. A consistent cutback in the Stern-Volmer quenching constant (Ksv) along with rising temperatures supported the static mode of fluorescence quenching in response to PSI addition and implied the development of the PSI-HSA complex. This discovery was backed by the alteration of the HSA UV absorption spectrum, a larger value (>1010 M-1.s-1) of the bimolecular quenching rate constant (kq) and the AFM-guided swelling of the HSA molecule, in the presence of PSI. Moreover, the fluorescence titration results revealed a modest binding affinity (4.27-6.25×103 M-1) in the PSI-HSA system, involving hydrogen bonds, van der Waals and hydrophobic interactions, as inferred from ΔS = + 22.77 J mol-1 K-1 and ΔH = - 11.02 KJ mol-1values. CD and 3D fluorescence spectra reminded significant adjustment in the 2° and 3° structures and modification in the Tyr/Trp microenvironment of the protein in the PSI-bound state. The results obtained from drug competing experiments also advocated the binding location of PSI in HSA as Site I.
Collapse
Affiliation(s)
- Mujaheed Abubakar
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saharuddin B Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Saad Tayyab
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Spherical PEG/SiO 2 promising agents for Lamivudine antiviral drug delivery, a molecular dynamics simulation study. Sci Rep 2023; 13:3323. [PMID: 36849795 PMCID: PMC9969043 DOI: 10.1038/s41598-023-30493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Spherical nanocarriers can lead to a bright future to lessen problems of virus infected people. Spherical polyethylene glycol (PEG) and spherical silica (SiO2) are novel attractive nanocarriers as drug delivery agents, especially they are recently noticed to be reliable for antiviral drugs like anti-HIV, anti-covid-19, etc. Lamivudine (3TC) is used as a first line drug for antiviral therapy and the atomic view of 3TC-PEG/SiO2 complexes enable scientist to help improve treatment of patients with viral diseases. This study investigates the interactions of 3TC with Spherical PEG/SiO2, using molecular dynamics simulations. The mechanism of adsorption, the stability of systems and the drug concentration effect are evaluated by analyzing the root mean square deviation, the solvent accessible surface area, the radius of gyration, the number of hydrogen bonds, the radial distribution function, and Van der Waals energy. Analyzed data show that the compression of 3TC is less on PEG and so the stability is higher than SiO2; the position and intensity of the RDF peaks approve this stronger binding of 3TC to PEG as well. Our studies show that PEG and also SiO2 are suitable for loading high drug concentrations and maintaining their stability; therefore, spherical PEG/SiO2 can reduce drug dosage efficiently.
Collapse
|
6
|
Ali MS, Al-Lohedan HA. Experimental and Computational Investigation on the Interaction of Anticancer Drug Gemcitabine with Human Plasma Protein: Effect of Copresence of Ibuprofen on the Binding. Molecules 2022; 27:1635. [PMID: 35268736 PMCID: PMC8912049 DOI: 10.3390/molecules27051635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022] Open
Abstract
The interaction of common anticancer drug gemcitabine with human serum albumin (HSA) has been studied in detail. The effect of an omnipresent nonsteroidal anti-inflammatory drug ibuprofen was also seen on the binding of HSA and gemcitabine. A slight hyperchromic shift in the difference UV-visible absorption spectra of HSA on the addition of gemcitabine gave a primary idea of the possible complex formation between them. The inner filter effect, which happens due to the significant absorbance of the ligand at the excitation and/or emission wavelengths, played an important role in the observed fluorescence quenching of HSA by gemcitabine that can be understood by comparing the observed and corrected fluorescence intensities obtained at λex = 280 nm and 295 nm. Gemcitabine showed weak interaction with HSA, which took place via a dynamic quenching mechanism with 1:1 cooperative binding between them. Secondary structural analysis, based on circular dichroism (CD) spectroscopy, showed that low concentrations of gemcitabine did not affect the native structure of protein; however, higher concentrations affected it slightly with partial unfolding. For understanding the binding site of gemcitabine within HSA, both experimental (using site markers, warfarin and ibuprofen) as well as computational methods were employed, which revealed that the gemcitabine binding site is located between the interface of subdomain IIA and IIB within the close proximity of the warfarin site (drug site 1). The effect of ibuprofen on the binding was further elaborated because of the possibility of its coexistence with gemcitabine in the prescription given to the cancer patients, and it was noticed that, ibuprofen, even present in high amounts, did not affect the binding efficacy of gemcitabine with HSA. DFT analyses of various conformers of gemcitabine obtained from its docking with various structures of HSA (free and bounded with site markers), show that the stability of the gemcitabine molecule increased slightly after binding with ibuprofen-complexed HSA. Both experimental as well as computational results were in good agreement with each other.
Collapse
Affiliation(s)
- Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | | |
Collapse
|
7
|
Hatami E, Nagesh PKB, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. In Situ Nanoparticle Self-Assembly for Combination Delivery of Therapeutics to Non-Small Cell Lung Cancer. ACS APPLIED BIO MATERIALS 2022; 5:1104-1119. [PMID: 35179871 DOI: 10.1021/acsabm.1c01158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy often experiences several challenges including severe systemic toxicity and adverse effects. The combination chemotherapy arose as an effective clinical practice aimed at reducing doses of drugs to achieve synergistic actions with low toxicity. Our recent efforts demonstrated a synergistic therapeutic benefit of gambogic acid (GA) and gemcitabine (Gem) against lung cancer. However, simultaneous delivery of these two drugs at the tumor site is highly challenging. Therefore, the development of an injectable formulation that can effectively deliver both hydrophobic (GA) and hydrophilic (Gem) drugs in one formulation is a clinically unmet need. Herein, this study reports an in situ human serum albumin (HSA)- and tannic acid (TA)-mediated complexed GA and Gem nanoparticles (G-G@HTA NPs). G-G@HTA NP formation was confirmed by the particle size, Fourier transform infrared spectroscopy, and 1H NMR spectroscopy. The superior therapeutic activity of G-G@HTA NPs was demonstrated by multiple in vitro functional assays. Additionally, G-G@HTA NPs revealed an obvious and precise targeting of tumors in vivo. The promoted and more synergistic anti-tumor efficacy of G-G@HTA NPs was attained than that of combined treatments and single drug treatments. These events have resulted in no apparent systemic and organ toxicities. Together, this study suggests that in situ HSA-TA-based combinatorial treatment strategy is a suitable approach for application in lung cancer treatment.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Prashanth K B Nagesh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States.,Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|