1
|
Cao R, Guan B, Hu S, Jia X, Liu H, Xu B. Adsorption Characteristics of Organic Pollutants on Montmorillonites Modified by Quaternary Ammonium Surfactants with Organic Counterions. ACS OMEGA 2025; 10:10926-10937. [PMID: 40160782 PMCID: PMC11947785 DOI: 10.1021/acsomega.4c08924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Na-montmorillonite (Na-Mt) modified by quaternary ammonium surfactants containing different organic counterions [OMt-QAS·Y-, Y = CH3CO3 -, CH3 (CH2)3COO-, CH3CH(OH)COO-, and HCOO-] was prepared for enhancing the adsorption capacity of 2, 4-dichlorophenol/cibacron brilliant yellow 3G-P. Compared with Na-Mt, whose adsorption efficiency for 2,4-dichlorophenol/cibacron brilliant yellow 3G-P was only 58/1.85 mg/g, the adsorption efficiency of OMt-QAS·Y- was greatly improved, with OMt-QAS·CH3CO3 - having the highest adsorption capacity of 152.85/116.17 mg/g. The kinetic and isotherm studies indicate that all adsorption processes fit well to the pseudo-second-order model and Freundlich model, respectively. The hydrophobicity of counterions and their affinity with the aliphatic chains had an effect on the interlayer spacing and point of zero charge of OMt-QAS·Y-, which in turn affected their adsorption properties.
Collapse
Affiliation(s)
- Runyu Cao
- China
Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Bowen Guan
- China
Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Siqi Hu
- Institute
of Traditional Chinese Medicine Health Industry, China Academy of
Chinese Medical Sciences, Nanchang 330038, China
| | - Xinru Jia
- China
Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Hongqin Liu
- China
Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Baocai Xu
- China
Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
2
|
Du X, Kang Z, Zhang X. Ionic liquid functionalized binary montmorillonite nanomaterials as water-based lubricant additives for steel/steel contact. NANOSCALE 2025; 17:1039-1052. [PMID: 39589778 DOI: 10.1039/d4nr03890h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Two-dimensional (2D) nanomaterials have attracted much attention for the lubrication enhancement of water. Stably dispersing nanosheets in water for an extended period is a challenging task. 2D montmorillonite (MMT) nanosheets are modified with protonic ionic liquids (PILs) with the assistance of simple and efficient mechanochemical synthesis, which can stably disperse in water. With the help of TEM, FTIR, and XPS characterization, it is further demonstrated that the one-step mechanochemical stirring synthesis method can introduce the anions and cations of PILs into the MMT interlayer simultaneously, which gives the binary-modified MMT nanosheets some of the advantages of PILs, such as designability and functionalization. The successful intercalation and grafting of ionic liquids between the MMT nanosheets made it possible to obtain ultra-thin thickness and micro-nano size of the binary MMT nanosheets, and the synergistic effect of the 2D MMT nanosheets and the PIL laid a good foundation for the realization of the excellent lubricity, the easy-sliding interlayer structure, and the adsorption of the film more easily. Using the modified MMT nanosheets, the coefficient of friction and wear volume can be reduced by 76% and 94% at a high frequency and high load, respectively. The successful intercalation of PILs endows the MMT nanomaterial with better thermal stability and extreme pressure properties, with the maximum bite-free load (PB) being nearly 17 times higher than water. The friction mechanism shows that the enhancement of the lubrication and anti-wear performance is attributed to the boundary adsorbed tribofilm of MMT nanosheets achieving a repairing effect of the friction interfaces, which provides effective lubrication for steel/steel contact, thus preventing further wear of the friction pair surface. This work provides green, economical guidance for developing natural water-based lubricant additives and has great potential in sustainable lubrication.
Collapse
Affiliation(s)
- Xiaoxiao Du
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China.
| | - Zekun Kang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xia Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Qingdao Key Laboratory of Lubrication Technology for Advanced Equipment, Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, China
| |
Collapse
|
3
|
Achenef HA, Emire SA, Kassahun SK, Kim H. Enset starch-based biocomposite film reinforced with Ethiopian bentonite clay: Improved mechanical and barrier properties. Int J Biol Macromol 2025; 287:138499. [PMID: 39647721 DOI: 10.1016/j.ijbiomac.2024.138499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/13/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Improper disposal of traditional plastics leads to the generation of microplastics, resulting in severe pollution of land and oceans and posing a threat to human health and marine ecosystems. Hence, adopting eco-friendly bioplastics, particularly in food packaging, is essential. In this study, Enset starch-based biocomposite films, reinforced with Ethiopian bentonite clay at various ratios (0, 2.5, 5, 7.5 and 10 % w/w) were prepared using solvent casting method. The effect of bentonite clay on biocomposite films on structural, physicochemical, and morphological properties were analyzed. Characterization tests confirmed the even distribution of bentonite, strengthening of bonds, and enhancement of the biocomposite film properties. The biocomposite film with 5 wt% bentonite clay incorporation into enset starch exhibits optimal performance; maximum strength (increased by 132 %), less water solubility (reduction in 33 %), reduction in water vapor permeability (decreased by 42 %), and better compatibility in the morphologies attributed by the intercalated silicate layer. This study highlights the effectiveness of bentonite clay in enhancing enset starch biocomposite properties, offering a promising eco-friendly solution for biodegradable food packaging and promoting sustainable resource utilization.
Collapse
Affiliation(s)
- Habtamu Asmare Achenef
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea; School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa 1000, Ethiopia
| | - Shimelis Admassu Emire
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa 1000, Ethiopia
| | - Shimelis Kebede Kassahun
- School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, King George VI Street, Addis Ababa 1000, Ethiopia
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do 17058, Republic of Korea.
| |
Collapse
|
4
|
Zheng L, Wang S, Zhang S, Zu Y, Huang X, Qian X. Stable loading of MOF-derived carbon skeleton encapsulated Ni and BiOBr on carbonized cellulose fibers for fabricating high-performance and recyclable photocatalytic paper. J Colloid Interface Sci 2024; 676:532-542. [PMID: 39053401 DOI: 10.1016/j.jcis.2024.07.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The highly dispersed small-size metal co-catalysts can effectively improve the photocatalytic efficiency of semiconductor photocatalysts by separating photogenerated electrons and enriching active sites. However, this system tends to aggregate in the absence of carrier, resulting in the decrease of active sites. Here, MOF-derived carbon skeleton (MDCS) encapsulated Ni nanoparticles (Ni@MDCS) and BiOBr was loaded onto carbonized cellulose fibers (CCF) with the help of polydopamine (PDA) to construct high-performance and recyclable photocatalytic paper for photocatalytic degradation of organic dyes in water. The characterization results showed that MDCS promoted good dispersion of Ni nanoparticles and provided sufficient active sites. And Ni@MDCS as a co-catalyst accelerated the separation of photogenerated carriers in BiOBr. The PDA improved the loading state of Ni@MDCS on CCF and converted into N-doped C in the carbonization process for further increasing the transfer efficiency of photogenerated electrons. In the composite paper, the stable loading of Ni@MDCS/BiOBr hybrid on CCF improved the dispersion and reusability of photocatalyst. The degradation rate of rhodamine B on CCF/PDA-C/Ni@MDCS/BiOBr paper was as high as 94.6 % after 60 min visible light irradiation, which was about 2.5 times higher than that of CCF/BiOBr paper. During 10 cycles, CCF/PDA-C/Ni@MDCS/BiOBr paper maintained high photocatalytic efficiency and good structural stability. This study provides a new way for developing high-performance and recyclable photocatalytic paper.
Collapse
Affiliation(s)
- Libo Zheng
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Siyu Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Shuting Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Yuanzhao Zu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Xiujie Huang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China.
| | - Xueren Qian
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| |
Collapse
|
5
|
Salahshoori I, Wang Q, Nobre MAL, Mohammadi AH, Dawi EA, Khonakdar HA. Molecular simulation-based insights into dye pollutant adsorption: A perspective review. Adv Colloid Interface Sci 2024; 333:103281. [PMID: 39214024 DOI: 10.1016/j.cis.2024.103281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Growing concerns about environmental pollution have highlighted the need for efficient and sustainable methods to remove dye contamination from various ecosystems. In this context, computational methods such as molecular dynamics (MD), Monte Carlo (MC) simulations, quantum mechanics (QM) calculations, and machine learning (ML) methods are powerful tools used to study and predict the adsorption processes of dyes on various adsorbents. These methods provide detailed insights into the molecular interactions and mechanisms involved, which can be crucial for designing efficient adsorption systems. MD simulations, detailing molecular arrangements, predict dyes' adsorption behaviour and interaction energies with adsorbents. They simulate the entire adsorption process, including surface diffusion, solvent layer penetration, and physisorption. QM calculations, especially density functional theory (DFT), determine molecular structures and reactivity descriptors, aiding in understanding adsorption mechanisms. They identify stable adsorption configurations and interactions like hydrogen bonding and electrostatic forces. MC simulations predict equilibrium properties and adsorption energies by sampling molecular configurations. ML methods have proven highly effective in predicting and optimizing dye adsorption processes. These models offer significant advantages over traditional methods, including higher accuracy and the ability to handle complex datasets. These methods optimize adsorption conditions, clarify adsorbent functionalization roles, and predict dye removal efficiency under various conditions. This research explores MD, MC, QM, and ML approaches to connect molecular interactions with macroscopic adsorption phenomena. Probing these techniques provides insights into the dynamics and energetics of dye pollutants on adsorption surfaces. The findings will aid in developing and optimizing new materials for dye removal. This review has significant implications for environmental remediation, offering a comprehensive understanding of adsorption at various scales. Merging microscopic data with macroscopic observations enhances knowledge of dye pollutant adsorption, laying the groundwork for efficient, sustainable removal technologies. Addressing the growing challenges of ecosystem protection, this study contributes to a cleaner, more sustainable future.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Qilin Wang
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, 2007, Australia
| | - Marcos A L Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Amir H Mohammadi
- Discipline of Chemical Engineering, School of Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| | - Elmuez A Dawi
- College of Humanities and Sciences, Department of Mathematics, and Science, Ajman University, P.O. Box 346, Ajman, United Arab Emirates
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran
| |
Collapse
|
6
|
El-Habacha M, Lagdali S, Dabagh A, Mahmoudy G, Assouani A, Benjelloun M, Miyah Y, Iaich S, Chiban M, Zerbet M. High efficiency of treated-phengite clay by sodium hydroxide for the Congo red dye adsorption: Optimization, cost estimation, and mechanism study. ENVIRONMENTAL RESEARCH 2024; 259:119542. [PMID: 38969319 DOI: 10.1016/j.envres.2024.119542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Wastewater textile dye treatment is a challenge that requires the development of eco-friendly technology to avoid the alarming problems associated with water scarcity and health-environment. This study investigated the potential of phengite clay as naturally low-cost abundant clay from Tamgroute, Morocco (TMG) that was activated with a 0.1 M NaOH base (TMGB) after calcination at 850 °C for 3 h (TMGC) before its application in the Congo red (CR) anionic dye from the aqueous solution. The effect of various key operational parameters: adsorbent dose, contact time, dye concentration, pH, temperature, and the effect of salts, was studied by a series of adsorption experiments in a batch system, which affected the adsorption performance of TMG, TMGC, and TMGB for CR dye removal. In addition, the properties of adsorption kinetics, isotherms, and thermodynamics were also studied. Experimental results showed that optimal adsorption occurred at an acidic pH. At a CR concentration of 100 mg L-1, equilibrium elimination rates were 68%, 38%, and 92% for TMG, TMGC, and TMGB, respectively. The adsorption process is rapid, follows pseudo-second-order kinetics, and is best described by a Temkin and Langmuir isotherm. The thermodynamic parameters indicated that the adsorption of CR onto TMGB is endothermic and spontaneous. The experimental values of CR adsorption on TMGB are consistent with the predictions of the response surface methodology. These led to a maximum removal rate of 99.97% under the following conditions: pH = 2, TMGB dose of 7 g L-1, and CR concentration of 50 mg L-1. The adsorbent TMGB's relatively low preparation cost of around $2.629 g-1 and its ability to regenerate in more than 6 thermal calcination cycles with a CR removal rate of around 56.98%, stimulate its use for textile effluent treatment on a pilot industrial scale.
Collapse
Affiliation(s)
- Mohamed El-Habacha
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco.
| | - Salek Lagdali
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Abdelkader Dabagh
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Guellaa Mahmoudy
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Abdallah Assouani
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah Fez, Morocco
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Soulaiman Iaich
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco; Research Team of Energy and Sustainable Development, Higher School of Technology Guelmim, Ibnou Zohr University, Agadir, Morocco
| | - Mohamed Chiban
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| | - Mohamed Zerbet
- Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Science Agadir, Ibnou Zohr University, Agadir, Morocco
| |
Collapse
|
7
|
Mchich Z, Aziz K, Kjidaa B, Saffaj N, Saffaj T, Mamouni R. Eco-friendly engineering of micro composite-based hydroxyapatite bio crystal and polyaniline for high removal of OG dye from wastewater: Adsorption mechanism and RSM@BBD optimization. ENVIRONMENTAL RESEARCH 2024; 257:119289. [PMID: 38823608 DOI: 10.1016/j.envres.2024.119289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The presence of harmful substances such as dyes in water systems poses a direct threat to the quality of people's lives and other organisms living in the ecosystem. Orange G (OG) is considered a hazardous dye. The existing paper attempts to evaluate a low-cost adsorbent for the effective removal of OG dye. The developed adsorbent Polyaniline@Hydroxyapatite extracted from Cilus Gilberti fish Scale (PANI@FHAP) was elaborated through the application of the in situ chemical polymerization method to incorporate PANI on the surface of naturally extracted hydroxyapatite FHAP. The good synthesis of PANI@FHAP was evaluated through multiple techniques including X-ray diffraction (XRD), Scanning electron microscopy coupled with energy dispersive X-ray spectrometry (SEM/EDS), Fourier Transforms Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) coupled with thermal differential analysis (DTA) analysis. The results reveal a highly ordered disposition of PANI chains on FHAP, resulting in a well-coated FHAP in the PANI matrix. Furthermore, the presence of functional groups on the surface of PANI such as amine (-NH2) and imine (=NH) groups would facilitate the removal of OG dye from contaminated water. The adsorption of OG onto PANI@FHAP was conducted in batch mode and optimized through response surface methodology coupled with box-Behnken design (RSM/BBD) to investigate the effect of time, adsorbent dose, and initial concentration. The outcomes proved that OG adsorption follows a quadratic model (R2 = 0.989). The kinetic study revealed that the adsorption of OG fits the pseudo-second-order model. On the other hand, the isotherm study declared that the Freundlich model is best suited to the description of OG adsorption. For thermodynamic study, the adsorption of OG is spontaneous in nature and exothermic. Furthermore, the regeneration-reusability study indicates that PANI@FHAP could be regenerated and reused up to five successive cycles. Based on the FTIR spectrum of PANI@FHAP after OG adsorption, the mechanism governing OG adsorption is predominantly driven by π-π interaction, electrostatic interaction, and hydrogen bonding interactions. The obtained results suppose that PANI@FHAP adsorbent can be a competitive material in large-scale applications.
Collapse
Affiliation(s)
- Zaineb Mchich
- Team of Biotechnology Materials, and Environment, Faculty of Sciences, Ibn Zohr University, BP, 8106, Agadir, Morocco.
| | - Khalid Aziz
- Team of Biotechnology Materials, and Environment, Faculty of Sciences, Ibn Zohr University, BP, 8106, Agadir, Morocco; Materials Science, Energy and Nano-Engineering Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Bouthyna Kjidaa
- Team of Biotechnology Materials, and Environment, Faculty of Sciences, Ibn Zohr University, BP, 8106, Agadir, Morocco
| | - Nabil Saffaj
- Team of Biotechnology Materials, and Environment, Faculty of Sciences, Ibn Zohr University, BP, 8106, Agadir, Morocco
| | - Taoufik Saffaj
- Laboratory of Applied Organic Chemistry, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Rachid Mamouni
- Team of Biotechnology Materials, and Environment, Faculty of Sciences, Ibn Zohr University, BP, 8106, Agadir, Morocco.
| |
Collapse
|
8
|
Kyomuhimbo HD, McHunu W, Arnold M, Feleni U, Haneklaus NH, Brink HG. Synthesis and Dye Adsorption Dynamics of Chitosan-Polyvinylpolypyrrolidone (PVPP) Composite. Polymers (Basel) 2024; 16:2555. [PMID: 39339020 PMCID: PMC11434811 DOI: 10.3390/polym16182555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan-Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown (BB), orange G (OG), brilliant blue G (BBG), and indigo carmine (IC)) from dye solution. The CS-PVPP beads demonstrated high removal efficiency of BB (87%), OG (58%), BBG (42%), and IC (49%). The beads demonstrated a reasonable surface area of 2.203 m2/g and were negatively charged in the applicable operating pH ranges. TGA analysis showed that the polymer composite can withstand decomposition up to 400 °C, proving high stability in harsh conditions. FTIR analysis highlighted the presence of N-H amine, O-H alcohol, and S=O sulfo groups responsible for electrostatic interaction and hydrogen bonding with the dye molecules. A shift in the FTIR bands was observed on N-H and C-N stretching for the beads after dye adsorption, implying that adsorption was facilitated by hydrogen bonding and Van der Waals forces of attraction between the hydroxyl, amine, and carbonyl groups on the surface of the beads and the dye molecules. An increase in pH increased the adsorption capacity of the beads for BB while decreasing OG, BBG, and IC due to their cationic and anionic nature, respectively. While an increase in temperature did not affect the adsorption capacity of OG and BBG, it significantly improved the removal of BB and IC from the dye solution and the adsorption was thermodynamically favoured, as demonstrated by the negative Gibbs free energy at all temperatures. Adsorption of dye mixtures followed the characteristic adsorption nature of the individual dyes. The beads show great potential for applications in the treatment of dye wastewater.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa; (H.D.K.); (W.M.); (M.A.)
| | - Wandile McHunu
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa; (H.D.K.); (W.M.); (M.A.)
| | - Marco Arnold
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa; (H.D.K.); (W.M.); (M.A.)
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa;
| | - Nils H. Haneklaus
- Td Lab Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems an der Donau, Austria
| | - Hendrik Gideon Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa; (H.D.K.); (W.M.); (M.A.)
| |
Collapse
|
9
|
Wang C, Feng X, Tian Y, Huang X, Shang S, Liu H, Song Z, Zhang H. Facile synthesis of lignin-based Fe-MOF for fast adsorption of methyl orange. ENVIRONMENTAL RESEARCH 2024; 251:118651. [PMID: 38479718 DOI: 10.1016/j.envres.2024.118651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 06/03/2024]
Abstract
To rapidly remove dyes from wastewater, iron-based metal-organic frameworks modified with phenolated lignin (NH2-MIL@L) were prepared by a one-step hydrothermal method. Analyses of the chemical structure and adsorption mechanism of the NH2-MIL@L proved the successful introduction of lignin and the enhancement of its adsorption sites. Compared with NH2-MIL-101-Fe without phenolated lignin, the modification with lignin increased the methyl orange (MO) adsorption rate of NH2-MIL@L. For the best adsorbent, NH2-MIL@L4, the MO adsorption efficiency in MO solution reached 95.09% within 5 min. NH2-MIL@L4 reached adsorption equilibrium within 90 min, exhibiting an MO adsorption capacity of 195.31 mg/g. The process followed pseudo-second-order kinetics and the Dubinin-Radushkevich model. MO adsorption efficiency of NH2-MIL@L4 was maintained at 89.87% after six adsorption-desorption cycles. In mixed solutions of MO and methylene blue (MB), NH2-MIL@L4 achieved an MO adsorption of 94.02% at 5 min and reached MO adsorption equilibrium within 15 min with an MO adsorption capacity of 438.6 mg/g, while the MB adsorption equilibrium was established at 90 min with an MB adsorption rate and capacity of 95.60% and 481.34 mg/g, respectively. NH2-MIL@L4 sustained its excellent adsorption efficiency after six adsorption-desorption cycles (91.2% for MO and 93.4% for MB). The process of MO adsorption by NH2-MIL@L4 followed the Temkin model and pseudo-second-order kinetics, while MB adsorption followed the Dubinin-Radushkevich model and pseudo-second-order kinetics. Electrostatic interactions, π-π interactions, hydrogen bonding, and synergistic interactions affected the MO adsorption process of NH2-MIL@L4.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuezhen Feng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Yabing Tian
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Jiangsu Province, Yancheng, 210042, China
| | - Shibin Shang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - He Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China
| | - Haibo Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Key Lab. of Biomass Energy and Material, Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, 210042, China.
| |
Collapse
|
10
|
Mo Y, Cao R, Hu S, Guan B, Fu D, Liu H, Xu B, Xiao Y. Gemini Quaternary Ammonium Surfactants with Different Counterions-modified Montmorillonite for Efficient Removal of Methyl Orange. J Oleo Sci 2024; 73:341-350. [PMID: 38432998 DOI: 10.5650/jos.ess23174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Organic Na-montmorillonite (OMt-12-2-12·2Y - , Y=CH 3 CO 3 - , C 6 H 5 COO - and Br - ) modified by a series of Gemini quaternary ammonium surfactants with different counterions was prepared for enhancing the adsorption capacity of methyl orange. Compared with the initial adsorption capacity of 5.251 mg/g of Na-Mt, the adsorption effect of OMts under the optimal conditions increased by about 31~34 times. The adsorption isotherms and kinetics of all adsorption processes were respectively described by Langmuir and pseudo-second-order models. The structure, hydrophobicity and hydration of the counterions, as well as the affinity of the counterions with the long aliphatic chains, had a certain influence on the adsorption performance of OMts for methyl orange.
Collapse
Affiliation(s)
- Yuanhua Mo
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University
| | - Runyu Cao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University
| | - Siqi Hu
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences
| | - Bowen Guan
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University
| | - Duojiao Fu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University
| | - Hongqin Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University
| | - Baocai Xu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University
| | - Yang Xiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University
| |
Collapse
|
11
|
Liu C, Liu H, Zheng Y, Luo J, Lu C, He Y, Pang X, Layek R. Schiff base crosslinked graphene/oxidized nanofibrillated cellulose/chitosan foam: An efficient strategy for selective removal of anionic dyes. Int J Biol Macromol 2023; 252:126448. [PMID: 37625741 DOI: 10.1016/j.ijbiomac.2023.126448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
A versatile foam based on Schiff base crosslinking of oxidized nanofibrillated cellulose (ONFC) with amino modified graphene oxide (NGO) and chitosan (CS) was prepared for the efficacious selective removal of anionic dyes. (3-aminopropyl) triethoxysilane (APTES) was employed as a surface modifier to yield an amino modified graphene oxide (NGO). Meanwhile, ONFC was obtained via a periodate oxidation process to produce dialdehyde groups. Thus, the Schiff base crosslinking of ONFC with NGO and CS enabled to be readily accomplished, producing a versatile NGO/ONFC/CS foam. Systematical characterizations confirmed the successful covalent crosslinking and formation of NGO/ONFC/CS foams. Selective adsorption of Allura Red (AR) and orange G (OG) over cationic dye methylene blue (MB) by NGO/ONFC/CS was confirmed. It was found the maximum adsorption capacities of AR and OG at 303 K were 416.7 and 300.5 mg g-1, while it was 14.60 mg g-1 for MB. Thus, the new Schiff base crosslinked NGO/ONFC/CS paves the way for developing versatile graphene based foams in the applications of water treatment.
Collapse
Affiliation(s)
- Cuiyun Liu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Hongyu Liu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yingli Zheng
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jie Luo
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yuxin He
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Rama Layek
- School of Engineering Science, Department of Separation Science, LUT University, Mukkulankatu 19, Lahti 15210, Finland.
| |
Collapse
|
12
|
Chen S, Zhang M, Chen H, Fang Y. Removal of Methylene Blue from Aqueous Solutions by Surface Modified Talc. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093597. [PMID: 37176479 PMCID: PMC10179945 DOI: 10.3390/ma16093597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
In this study, raw talc powder surface modification was conducted, and the powder was modified in two different methods using acid washing and ball milling. Modified talc was characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). In order to investigate the adsorption capacity of modified talc on dyes, adsorption experiments were carried out with methylene blue (MB) in aqueous solutions as the target contaminant. The findings of the characterization revealed that both modifications increased the adsorption capacity of talc, which was attributed to changes in specific surface area and active groups. The influence of process parameters such as contact time, pH, dye concentration, and adsorbent dosage on the adsorption performance was systematically investigated. Modified talc was able to adsorb MB rapidly, reaching equilibrium within 60 min. Additionally, the adsorption performance was improved as the pH of the dye solution increased. The isotherms for MB adsorption by modified talc fitted well with the Langmuir model. The pseudo-second-order model in the adsorption kinetic model properly described the adsorption behavior. The results show that the modified talc can be used as an inexpensive and abundant candidate material for the adsorption of dyes in industrial wastewater.
Collapse
Affiliation(s)
- Shuyang Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mei Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hanjie Chen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Fang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
13
|
Organo-Montmorillonite Modified by Gemini Quaternary Ammonium Surfactants with Different Counterions for Adsorption toward Phenol. Molecules 2023; 28:molecules28052021. [PMID: 36903268 PMCID: PMC10004245 DOI: 10.3390/molecules28052021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
The discharge of industrial phenol pollutants causes great harm to the natural environment and human health. In this study, phenol removal from water was studied via the adsorption of Na-montmorillonite (Na-Mt) modified by a series of Gemini quaternary ammonium surfactants with different counterions [(C11H23CONH(CH2)2N+ (CH3)2(CH2)2 N+(CH3)2 (CH2)2NHCOC11H23·2Y-, Y = CH3CO3-, C6H5COO- and Br-, 12-2-12·2Y-]. The results of the phenol adsorption indicated that MMt-12-2-12·2Br-, MMt-12-2-12·2CH3CO3- and MMt-12-2-12·2C6H5COO- reached the optimum adsorption capacity, which was 115.110 mg/g, 100.834 mg/g and 99.985 mg/g, respectively, under the conditions of the saturated intercalation concentration at 2.0 times that of the cation exchange capacity (CEC) of the original Na-Mt, 0.04 g of adsorbent and a pH = 10. The adsorption kinetics of all adsorption processes were in good agreement with the pseudo-second-order kinetics model, and the adsorption isotherm was better modeled by Freundlich isotherm. Thermodynamic parameters revealed that the adsorption of phenol was a physical, spontaneous and exothermic process. The results also showed that the counterions of the surfactant had a certain influence on the adsorption performance of MMt for phenol, especially the rigid structure, hydrophobicity, and hydration of the counterions.
Collapse
|
14
|
Liu Q, Deng WY, Zhang LY, Liu CX, Jie WW, Su RX, Zhou B, Lu LM, Liu SW, Huang XG. Modified Bamboo Charcoal as a Bifunctional Material for Methylene Blue Removal. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1528. [PMID: 36837157 PMCID: PMC9964798 DOI: 10.3390/ma16041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Biomass-derived raw bamboo charcoal (BC), NaOH-impregnated bamboo charcoal (BC-I), and magnetic bamboo charcoal (BC-IM) were fabricated and used as bio-adsorbents and Fenton-like catalysts for methylene blue removal. Compared to the raw biochar, a simple NaOH impregnation process significantly optimized the crystal structure, pore size distribution, and surface functional groups and increase the specific surface area from 1.4 to 63.0 m2/g. Further magnetization of the BC-I sample not only enhanced the surface area to 84.7 m2/g, but also improved the recycling convenience due to the superparamagnetism. The maximum adsorption capacity of BC, BC-I, and BC-IM for methylene blue at 328 K was 135.13, 220.26 and 497.51 mg/g, respectively. The pseudo-first-order rate constants k at 308 K for BC, BC-I, and BC-IM catalytic degradation in the presence of H2O2 were 0.198, 0.351, and 1.542 h-1, respectively. A synergistic mechanism between adsorption and radical processes was proposed.
Collapse
Affiliation(s)
- Qian Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Yong Deng
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lie-Yuan Zhang
- Technical Center of Nanchang Customs, Nanchang 330038, China
| | - Chang-Xiang Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei-Wei Jie
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Rui-Xuan Su
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Zhou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li-Min Lu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shu-Wu Liu
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xi-Gen Huang
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
15
|
Ouachtak H, El Guerdaoui A, El Haouti R, Haounati R, Ighnih H, Toubi Y, Alakhras F, Rehman R, Hafid N, Addi AA, Taha ML. Combined molecular dynamics simulations and experimental studies of the removal of cationic dyes on the eco-friendly adsorbent of activated carbon decorated montmorillonite Mt@AC. RSC Adv 2023; 13:5027-5044. [PMID: 36762089 PMCID: PMC9907573 DOI: 10.1039/d2ra08059a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
In recent years, the combination of experimental and theoretical study to explain adsorbate/adsorbent interactions has attracted the attention of researchers. In this context, this work aims to study the adsorption of two cationic dyes, namely methylene blue (MB) and crystal violet (CV), on a green adsorbent Montmorillonite@activated carbon (Mt@AC) composite and to explain the adsorption behavior of each dye by the molecular dynamics (MD) simulation method. The eco-friendly nanocomposite Mt@AC is synthesized and characterized by the analysis methods: XRD, FTIR, BET, TGA/DTA, SEM-EDS, EDS-mapping and zeta potential. The experimental results of adsorption equilibrium show that the adsorption of the two dyes is well suited to the Langmuir adsorption model. The maximum adsorption capacity of the two dyes reaches 801.7 mg g-1 for methylene blue and 1110.8 mg g-1 for crystal violet. The experimental kinetics data fit well with a pseudo-first order kinetic model for the two dyes with coefficient of determination R 2 close to unity, non-linear chi-square χ 2 close to zero and lower Root Mean Square Error RMSE (R 2 → 1 and χ 2 → 0, RMSE lower). Molecular dynamic simulations are run to gain insights on the adsorption process. According to the RDF analysis and interaction energy calculations, the obtained results reveal a better affinity of the CV molecule with both the AC sheet and montmorillonite framework as compared with MB. This finding suggests that CV is adsorbed to a larger extent onto the nanocomposite material which is in good agreement with the adsorption isothermal experiment observations.
Collapse
Affiliation(s)
- Hassan Ouachtak
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco .,Faculty of Applied Science, Ait Melloul, Ibn Zohr University Agadir Morocco
| | - Anouar El Guerdaoui
- Department of Chemistry, Faculty of Science, Ibn Zohr UniversityAgadirMorocco
| | - Rachid El Haouti
- Department of Chemistry, Faculty of Science, Ibn Zohr UniversityAgadirMorocco
| | - Redouane Haounati
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco
| | - Hamza Ighnih
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco
| | - Yahya Toubi
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco .,Faculty of Applied Science, Ait Melloul, Ibn Zohr University Agadir Morocco
| | - Fadi Alakhras
- College of Pharmacy, Middle East UniversityAmman11831Jordan
| | - Rabia Rehman
- Institute of Chemistry, University of the PunjabLahore54590Pakistan
| | - Naima Hafid
- Regional Center of Education and Training Souss MassaMorocco
| | - Abdelaziz Ait Addi
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco
| | - Mohamed Labd Taha
- Laboratory of Organic and Physical Chemistry, Faculty of Science, Ibn Zohr University Agadir Morocco
| |
Collapse
|
16
|
Zhong ZR, Jiang HL, Shi N, Lv HW, Liu ZJ, He FA. A novel tetrafluoroterephthalonitrile-crosslinked quercetin/chitosan adsorbent and its adsorption properties for dyes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Ivanova OS, Edelman IS, Lin CR, Svetlitsky ES, Sokolov AE, Lukyanenko KA, Sukhachev AL, Shestakov NP, Chen YZ, Spivakov AA. Core-Shell Fe 3O 4@C Nanoparticles for the Organic Dye Adsorption and Targeted Magneto-Mechanical Destruction of Ehrlich Ascites Carcinoma Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010023. [PMID: 36614361 PMCID: PMC9821792 DOI: 10.3390/ma16010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 05/27/2023]
Abstract
The morphology, structure, and magnetic properties of Fe3O4 and Fe3O4@C nanoparticles, as well their effectiveness for organic dye adsorption and targeted destruction of carcinoma cells, were studied. The nanoparticles exhibited a high magnetic saturation value (79.4 and 63.8 emu/g, correspondingly) to facilitate magnetic separation. It has been shown that surface properties play a key role in the adsorption process. Both types of organic dyes-cationic (Rhodomine C) and anionic (Congo Red and Eosine)-were well adsorbed by the Fe3O4 nanoparticles' surface, and the adsorption process was described by the polymolecular adsorption model with a maximum adsorption capacity of 58, 22, and 14 mg/g for Congo Red, Eosine, and Rhodomine C, correspondingly. In this case, the kinetic data were described well by the pseudo-first-order model. Carbon-coated particles selectively adsorbed only cationic dyes, and the adsorption process for Methylene Blue was described by the Freundlich model, with a maximum adsorption capacity of 14 mg/g. For the case of Rhodomine C, the adsorption isotherm has a polymolecular character with a maximum adsorption capacity of 34 mg/g. To realize the targeted destruction of the carcinoma cells, the Fe3O4@C nanoparticles were functionalized with aptamers, and an experiment on the Ehrlich ascetic carcinoma cells' destruction was carried out successively using a low-frequency alternating magnetic field. The number of cells destroyed as a result of their interaction with Fe3O4@C nanoparticles in an alternating magnetic field was 27%, compared with the number of naturally dead control cells of 6%.
Collapse
Affiliation(s)
- Oxana S. Ivanova
- Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Irina S. Edelman
- Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Chun-Rong Lin
- Department of Applied Physics, National Pingtung University, Pingtung City 90003, Taiwan
| | - Evgeniy S. Svetlitsky
- Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Alexey E. Sokolov
- Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Kirill A. Lukyanenko
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
- Laboratory of Biomolecular and Medical Technologies, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Alexander L. Sukhachev
- Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Nikolay P. Shestakov
- Kirensky Institute of Physics, Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russia
| | - Ying-Zhen Chen
- Department of Applied Physics, National Pingtung University, Pingtung City 90003, Taiwan
| | - Aleksandr A. Spivakov
- Department of Applied Physics, National Pingtung University, Pingtung City 90003, Taiwan
| |
Collapse
|
18
|
Green Synthesis of Fe3O4 Nanoparticles and Its Applications in Wastewater Treatment. INORGANICS 2022. [DOI: 10.3390/inorganics10120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In this paper, the extract of Citrus aurantium (CA) was used as a green approach for the preparation of Fe3O4 nanoparticles. The green Fe3O4 (Fe3O4/CA) was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis (EDX), Fourier-transform infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) surface area measurement, and vibrating sample magnetometry (VSM). The synthesized Fe3O4/CA was used to remove methylene blue (MB) dye from an aqueous solution. A four-factor central composite design (CCD), combined with response surface modeling (RSM), was used to maximize the MB dye removal. The four independent variables, which were initial dye concentration (10–50 mg/L), solution pH (3–9), adsorbent dose (ranging from 200–1000 mg/L), and contact time (30–90 min), were used as inputs to the model of the perecentage dye removal. The results yielded by an analysis of variance (ANOVA) confirmed the high significance of the regression model. The predicted values of the MB dye removal were in agreement with the corresponding experimental values. Optimized conditions for the maximum MB dye removal (93.14%) by Fe3O4/CA were the initial dye concentration (10.02 mg/L), pH (8.98), adsorbent mass (997.99 mg/L), and contact time (43.71 min). The validity of the quadratic model was examined, and good agreement was found between the experimental and predicted values. Our findings demonstrated that green Fe3O4NPs is a good adsorbent for MB removal.
Collapse
|
19
|
Duan YT, Yao Y, Kumar Ameta R. Removal and recovering of anionic and cationic dyes using Neem Leaf ash prepared at 250, 500 and 750°C: Analyzed by adsorption isotherm and physicochemical parameters. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Liu H, Guo C, Cui Y, Yin J, Li S. Experimental and modeling investigation of organic modified montmorillonite with octyl quaternary ammonium salt. Sci Rep 2022; 12:14305. [PMID: 35995917 PMCID: PMC9395535 DOI: 10.1038/s41598-022-18253-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
The sodium montmorillonite was organic modified with three kinds of quaternary ammonium salts containing 1 to 3 octyl chains, and then the organic montmorillonite was studied by FT-IR, XRD, and TG characterization as well as Monte Carlo simulations, to explore the influence of the number of octyl chains and the loading of intercalated cations on the basal spacing (d001) of the modified montmorillonite complexes. According to the distribution of intercalated quaternary ammonium cations and the energy change of the montmorillonite complexes, a reasonable explanation was given for the enlargement of the interlayer space. The results of experimental characterization and Monte Carlo simulations show that all the three intercalation agents can enlarge the interlayer space of montmorillonite complexes. The more the number of octyl chains in the salt, the more significant expanding effect on the interlayer space. The three intercalation cations exhibited a distribution arranged from mono-layered to multi-layered structure as the loading of intercalated cations increases.
Collapse
Affiliation(s)
- Hongyan Liu
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Chengxin Guo
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Yingna Cui
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China.,Liaoning Key Laboratory of Bioorganic Chemistry, Dalian University, Dalian, 116622, China
| | - Jingmei Yin
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China. .,Liaoning Key Laboratory of Bioorganic Chemistry, Dalian University, Dalian, 116622, China.
| | - Shenmin Li
- College of Environment and Chemical Engineering, Dalian University, Dalian, 116622, China. .,Liaoning Key Laboratory of Bioorganic Chemistry, Dalian University, Dalian, 116622, China.
| |
Collapse
|
21
|
Labied R, Ouraghi M, Hazam S, Touahra F, Lerari D. Effect of Porogen Agent on Bio-Based Membranes Filtration Performances: Experimental and Theoritical Study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Yang Y, Zhao Y, Zong Y, Wu R, Zhang M, Feng J, Wei T, Ren Y, Ma J. Activation of peroxymonosulfate by α-MnO 2 for Orange Ⅰ removal in water. ENVIRONMENTAL RESEARCH 2022; 210:112919. [PMID: 35157919 DOI: 10.1016/j.envres.2022.112919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Developing high-efficiency catalysts for peroxymonosulfate (PMS)-based advanced oxidation processes is important for eliminating pollutants in water. Herein, α-MnO2 with major exposed {110} and {100} facets prepared via a hydrothermal method were used as catalysts to activate PMS for the degradation of Orange Ⅰ (OⅠ). α-MnO2-100, with more abundant surface hydroxyl groups and greater reductive ability, performed remarkably better than α-MnO2-110 for degrading OⅠ. OⅠ removal of 86.20% was obtained in the α-MnO2-100/PMS system. The apparent rate constant of OⅠ removal over α-MnO2-100 was 2.11 times higher than that of α-MnO2-110. The effects of PMS concentration, catalyst dosage, OⅠ concentration, initial pH, anions and humic acid (HA) on OⅠ degradation in the α-MnO2-100/PMS system were systematically investigated. Quenching experiments and electron paramagnetic resonance (EPR) demonstrated that SO4•-, •OH, O2•- and 1O2 were the reactive oxygen species (ROS) in the α-MnO2-100/PMS system. Moreover, the possible degradation pathway of OⅠ in the α-MnO2-100/PMS system was proposed. This work provides an ideal metal oxide catalyst for sewage remediation.
Collapse
Affiliation(s)
- Yusong Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ying Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yuan Zong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ruiqi Wu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Jing Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Tong Wei
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yueming Ren
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
23
|
Synthesized of Zeolite@Ag2O Nanocomposite as Superb Stability Photocatalysis Toward Hazardous Rhodamine B Dye from Water. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
24
|
Ji Y, Zhang X, Chen Z, Xiao Y, Li S, Gu J, Hu H, Cheng G. Silk Sericin Enrichment through Electrodeposition and Carbonous Materials for the Removal of Methylene Blue from Aqueous Solution. Int J Mol Sci 2022; 23:1668. [PMID: 35163591 PMCID: PMC8836085 DOI: 10.3390/ijms23031668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/31/2022] Open
Abstract
The recycling and reuse of biomass waste for the preparation of carbon-based adsorbents is a sustainable development strategy that has a positive environmental impact. It is well known that a large amount of silk sericin (SS) is dissolved in the wastewater from the silk industry. Utilizing the SS instead of discharging it into the environment without further treatment would reduce environmental and ecological problems. However, effective enrichment of the SS from the aqueous solution is a challenge. Here, with the help of carboxymethyl chitosan (CMCS), which can form a gel structure under low voltage, an SS/CMCS hydrogel with SS as the major component was prepared via electrodeposition at a 3 V direct-current (DC) voltage for five minutes. Following a carbonization process, an SS-based adsorbent with good performance for the removal of methylene blue (MB) from an aqueous solution was prepared. Our results reveal that the SS/CMCS hydrogel maintains a porous architecture before and after carbonization. Such structure provides abundant adsorption sites facilitating the adsorption of MB molecules, with a maximum adsorptive capacity of 231.79 mg/g. In addition, it suggests that the adsorption is an exothermic process, has a good fit with the Langmuir model, and follows the intra-particle diffusion model. The presented work provides an economical and feasible path for the treatment of wastewater from dyeing and printing.
Collapse
Affiliation(s)
- Yansong Ji
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Xiaoning Zhang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Zhenyu Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Yuting Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Shiwei Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| | - Jie Gu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (J.G.); (H.H.)
| | - Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (J.G.); (H.H.)
| | - Guotao Cheng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Y.J.); (Z.C.); (Y.X.); (S.L.); (G.C.)
| |
Collapse
|
25
|
Ibrahim AA, Ali SL, Adly MS, El-Hakam SA, Samra SE, Ahmed AI. Green construction of eco-friendly phosphotungstic acid Sr-MOF catalysts for crystal violet removal and synthesis of coumarin and xanthene compounds. RSC Adv 2021; 11:37276-37289. [PMID: 35496434 PMCID: PMC9043797 DOI: 10.1039/d1ra07160b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
There is an urgent need to improve engineering and synthetic chemistry, either through the use of eco-friendly starting materials or the proper design of novel synthesis routes. This reduces the contamination of toxic chemicals and helps the disposal of organic dyes. In the current work, a metal–organic framework-based Sr(ii) was fabricated to achieve the desired goal for dye removal and catalysis. Sr-MOF-based phosphotungstic acid (PWA/Sr-MOF) was hydrothermally synthesized to study its adsorption and catalytic activities. Remarkably, about 99.9% of crystal violet (CV) dye was removed using PWA/Sr-MOF within 90 min at room temperature. Various factors have been studied to investigate the optimum conditions such as pH of solution, initial dye concentration, contact time, and temperature. The maximum adsorption capacity of CV dye was reached after 90 min and well fitted the pseudo-second kinetic order and Langmuir adsorption isotherm. Coumarin and xanthene reactions were chosen to test the catalytic activity of the prepared PWA/Sr-MOF at 373 K. Furthermore, structural and chemical characterization of the fabricated samples was obtained using FT-IR, XRD, TGA, DTA, TEM, EDX, and XPS. PWA/Sr-MOF can be considered as a promising and green framework in the material design used to study catalytic and adsorption performances. There is an urgent need to improve engineering and synthetic chemistry, either through the use of eco-friendly starting materials or the proper design of novel synthesis routes.![]()
Collapse
Affiliation(s)
- Amr A Ibrahim
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - Shaimaa L Ali
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - Mina Shawky Adly
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - S A El-Hakam
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - S E Samra
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - Awad I Ahmed
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| |
Collapse
|
26
|
Hisarlı G, Atun G, Ortaboy S, Tüzün E. A systematic study for the removal of anionic dyes by sepiolites modified with a homologous series of trimethylammonium-surfactants from single and binary component solutions. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1977825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Gül Hisarlı
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpaşa, Avcılar, Turkey
| | - Gülten Atun
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpaşa, Avcılar, Turkey
| | - Sinem Ortaboy
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpaşa, Avcılar, Turkey
| | - Elif Tüzün
- Department of Chemistry, Faculty of Engineering, Istanbul University - Cerrahpaşa, Avcılar, Turkey
| |
Collapse
|