1
|
Kuang F, Hui T, Chen Y, Qiu M, Gao X. Post-Graphene 2D Materials: Structures, Properties, and Cancer Therapy Applications. Adv Healthc Mater 2024; 13:e2302604. [PMID: 37955406 DOI: 10.1002/adhm.202302604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Cancer is one of the most serious diseases challenging human health and life span. Cancer has claimed millions of lives worldwide. Early diagnosis and effective treatment of cancer are very important for the survival of patients. In recent years, 2D nanomaterials have shown great potential in the development of anticancer treatment by combining their inherent physicochemical properties after surface modification. 2D nanomaterials have attracted great interest due to their unique nanosheet structure, large surface area, and extraordinary physicochemical properties. This article reviews the advantages and application status of emerging 2D nanomaterials for targeted tumor synergistic therapy compared with traditional therapeutic strategies. In order to investigate novel potential anticancer strategies, this paper focuses on the surface modification, cargo delivery capability, and unique optical properties of emerging 2D nanomaterials. Finally, the current problems and challenges in cancer treatment are summarized and prospected.
Collapse
Affiliation(s)
- Fei Kuang
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Tiankun Hui
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Yingjie Chen
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, No.308 Ningxia Road, Qingdao, Shandong, 266071, China
| |
Collapse
|
2
|
Swaminathan U, Marimuthu K, Kasinathan K, Choi HK, Sivakumar P, Krishnasamy R, Palanisamy R. Synthesis of novel liquid phase exfoliation of chitosan/Bi 2Se 3 hybrid nanocomposites for in-vitro wound healing. Int J Biol Macromol 2024; 255:128257. [PMID: 37984575 DOI: 10.1016/j.ijbiomac.2023.128257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Numerous studies have recently established the potential of chitosan (Chi) to enhance wound healing. Chi is a carbohydrate biopolymer that is biocompatible, low-cost, toxic-free, and has excellent antibacterial properties. In this study, we synthesized Chi/Bi2Se3 hybrid nanocomposites (NCs) using a liquid exfoliation approach. The physicochemical characterization of the hybrid NCs was investigated using X-ray diffraction, Fourier transforms infrared, Thermogravimetric, Scanning electron microscope, and Transmission electron microscope. The antibacterial ability has been investigated versus two pathogens, S. aureus and E. coli. In comparison to bare materials, the hybrid NCs demonstrated better antibacterial activity against both bacterial strains. As a result, the electrostatic attraction of positively charged Chi can easily attract the negatively charged surface of the bacteria cell membrane and NCs generate reactive oxygen species (ROS). This ROS can attack bacteria's intracellular components and eventually kill bacteria. The biocompatibility of the Chi/Bi2Se3 NCs was evaluated against L929 mice fibroblast cells, and there was no evident cytotoxicity. Furthermore, an in-vitro wound scratch test was carried out on L929 mouse fibroblast cells and the Chi/Bi2Se3 hybrid NCs promote wound healing and cell proliferation. These findings suggest that the Chi/Bi2Se3 hybrid NCs as a promising future material for bacteria-infected in-vivo wound healing.
Collapse
Affiliation(s)
- Usha Swaminathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College (Affiliated to Alagappa University, Karaikudi), Karaikudi 630 003, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College (Affiliated to Alagappa University, Karaikudi), Karaikudi 630 003, India.
| | - Kasirajan Kasinathan
- Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, South Korea
| | - Hong Kyoon Choi
- Division of Advanced Materials Engineering, Kongju National University, Budaedong 275, Seobuk-gu, Cheonan-si, Chungnam 31080, South Korea.
| | - Prabakaran Sivakumar
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College (Affiliated to Alagappa University, Karaikudi), Karaikudi 630 003, India
| | - Ravichandran Krishnasamy
- PG and Research Department of Physics, AVVM Sri Pushpam College (Affiliated to Bharathidasn University, Thiruchirappalli), Poondi, Thanjavur, Tamilnadu 613 503, India
| | - Rajkumar Palanisamy
- Department of Mechanical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk-do 38541, South Korea
| |
Collapse
|
3
|
Venkatesan J, Hur W, Gupta PK, Son SE, Lee HB, Lee SJ, Ha CH, Hwa CS, Kim DH, Seong GH. Gum Arabic-mediated liquid exfoliation of transition metal dichalcogenides as photothermic anti-breast cancer candidates. Int J Biol Macromol 2023:124982. [PMID: 37244326 DOI: 10.1016/j.ijbiomac.2023.124982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Transition metal dichalcogenides (TMDs) have gained considerable attention for a broad range of applications, including cancer therapy. Production of TMD nanosheets using liquid exfoliation provides an inexpensive and facile route to achieve high yields. In this study, we developed TMD nanosheets using gum arabic as an exfoliating and stabilizing agent. Different types of TMDs, including MoS2, WS2, MoSe2, and WSe2 nanosheets, were produced using gum arabic and were characterized physicochemically. The developed gum arabic TMD nanosheets exhibited a remarkable photothermal absorption capacity in the near-infrared (NIR) region (808 nm and 1 W⋅cm-2). The drug doxorubicin was loaded on the gum arabic-MoSe2 nanosheets (Dox-G-MoSe2), and the anticancer activity was evaluated using MDA-MB-231 cells and a water-soluble tetrazolium salt (WST-1) assay, live and dead cell assays, and flow cytometry. Dox-G-MoSe2 significantly inhibited MDA-MB-231 cancer cell proliferation under the illumination ofan NIR laser at 808 nm. These results indicate that Dox-G-MoSe2 is a potentially valuable biomaterial for breast cancer therapy.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea; Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangaluru 575018, India
| | - Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Pramod K Gupta
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Su Jeong Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Cheon Se Hwa
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Do Hyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
4
|
Hassani F, Heydarinasab A, Ahmad Panahi H, Moniri E. Surface modification of tungsten disulfide nanosheets with pH/Thermosensitive polymer and polyethylenimine dendrimer for near-infrared triggered drug delivery of letrozole. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Kashyap DK, Sharma C, Pappu A, Srivastava AK, Gupta MK. Extremely Reduced Dielectric Constant and Band Gap Enhancement in Few-Layered Tungsten Disulfide Nanosheets. J Phys Chem Lett 2022; 13:10267-10274. [PMID: 36302075 DOI: 10.1021/acs.jpclett.2c02558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Highly crystalline few-layered tungsten disulfide (WS2) nanosheets were synthesized via a cost-effective, low-temperature hydrothermal route. X-ray diffraction and HR-TEM analysis confirmed the formation of hexagonal nanosheets with thickness of ∼6-8 nm. Raman analysis and AFM results confirmed the few-layered 2H phase of WS2 nanosheets. The UV-vis study shows absorption peaks at 219 and 271 nm with large band gap value of ∼3.12 eV for WS2 nanosheets. Surprisingly, WS2 nanosheets show a dielectric constant of approximately ε' ≈ 5245, whereas bulk WS2 material exhibits a dielectric constant of 7482373. An almost 1426-fold decrease in the value of dielectric constant for the WS2 nanosheet is observed. Such an extreme reduction in dielectric constant and observance of large band gap in WS2 nanosheet were observed for the first time. The present study reveals the excellent and unusual optical and dielectric properties for their potential application in optoelectronic, dielectric, solar, phosphor, and various nanoelectronic devices.
Collapse
Affiliation(s)
- Deepak Kumar Kashyap
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh462026, India
| | - Charu Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh462026, India
| | - Asokan Pappu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh462026, India
| | - Avanish Kumar Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh462026, India
| | - Manoj Kumar Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh462026, India
| |
Collapse
|
6
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
7
|
PEGylated palladium doped ceria oxide nanoparticles (Pd-dop-CeO2-PEG NPs) for inhibition of bacterial pathogens and human lung cancer cell proliferation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Yao L, Cao W, Cui Y, Qian G. An Adenosine Triphosphate-Responsive Metal-Organic Framework Decorated with Palladium Nanosheets for Synergistic Tri-Modal Therapy. CrystEngComm 2022. [DOI: 10.1039/d2ce00015f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multifunctional nanoplatform is urgently desired for the development of the highly efficient anticancer therapeutic agents. Here, a class of palladium nanosheets (Pd NSs)-laden MIL-101-NH2 (MIL@Pd) nanostructure encapsulated with doxorubicin...
Collapse
|
9
|
Kasinathan K, Marimuthu K, Murugesan B, Sathaiah M, Subramanian P, Sivakumar P, Swaminathan U, Subbiah R. Fabrication of eco-friendly chitosan functionalized few-layered WS 2 nanocomposite implanted with ruthenium nanoparticles for in vitro antibacterial and anticancer activity: Synthesis, characterization, and pharmaceutical applications. Int J Biol Macromol 2021; 190:520-532. [PMID: 34480908 DOI: 10.1016/j.ijbiomac.2021.08.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The abundance of two-dimensional (2D) components has provided them with a broad material platform for building nano and atomic-level applications. So, 2D nanomaterials are unique because of their physicochemical properties. Over many years, graphene is a conventional 2D layered element that has significant attention in the scientific community. In recent years numerous new 2D nanomaterials other than graphene have been reported. The study of 2D nanomaterials is also in its infant stages, with the majority of research focusing on the explanation of special material properties, but very few articles are focusing on the biological applications of 2D nanomaterials. As a result, we focused on the transition metal dichalcogenides (TMDCs) such as MoS2 and WS2, which were emerging and exciting groups of elements with display great opportunities in several fields, such as cancer nanomedicine. Herein, we synthesized biologically active CS/WS2/Ru composite by liquid exfoliation approach. The CS/WS2/Ru composites exhibit significant antibacterial action towards (S. aureus, and E. coli) bacteria. Also, the composite suggests synergetic anticancer action against MCF-7 cancer cells. These reports are possible to explore the innovative aspects of biological outcomes in carcinological applications.
Collapse
Affiliation(s)
- Kasirajan Kasinathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Karunakaran Marimuthu
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India.
| | - Balaji Murugesan
- Advanced Green Chemistry Lab, Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | - Maheswari Sathaiah
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Palanisamy Subramanian
- East Coast Research Institute of Life Science, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Prabakaran Sivakumar
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Usha Swaminathan
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| | - Rajalakshmi Subbiah
- Thin Film and Nanoscience Research Lab, PG and Research Department of Physics, Alagappa Government Arts College, Karaikudi 630 003, India
| |
Collapse
|