1
|
Chen Y, Ma Z, Song L, Hu Y, Hou Y, Chu F, Hu W. Pyridine-N-Anchored Ag Strategy Facilitated Br - Adsorption via Ultrahigh Exposure and Coordination Unsaturation of Ag. NANO LETTERS 2025; 25:5697-5704. [PMID: 40138526 DOI: 10.1021/acs.nanolett.4c06683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Traditional adsorbents using silver nanoparticles demonstrated exceptional adsorption capacities for Br-. However, the majority of the adsorption sites in silver nanoparticles are situated on their surfaces, limiting the interaction of internal atoms with Br-. Therefore, we synthesized Ag/UiO-bpy MOF by utilizing the two pyridine nitrogen atoms in the ligand to anchor silver. So each silver atom was effectively exposed. Besides, owing to the coordinatively unsaturated state of the silver atoms, they exhibited a stronger adsorption affinity for Br-. As a result, Ag/UiO-bpy demonstrated an exceptional Br- adsorption capacity of 362.6 mg/g. Notably, the adsorption capacity with respect to silver was 2083.9 mg/gAg, which surpasses all previously reported values in the literature. Furthermore, Ag/UiO-bpy exhibited rapid kinetics and exceptional selectivity in Br- adsorption experiments. This work not only fabricated a Br- adsorbent with a high adsorption capacity but also proposed a new and innovative strategy for the subsequent preparation of Br- adsorbents.
Collapse
Affiliation(s)
- Yini Chen
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Zirui Ma
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Yanbei Hou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Fukai Chu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Weizhao Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
2
|
Shahzad K, Hasan A, Hussain Naqvi SK, Parveen S, Hussain A, Ko KC, Park SH. Recent advances and factors affecting the adsorption of nano/microplastics by magnetic biochar. CHEMOSPHERE 2025; 370:143936. [PMID: 39667528 DOI: 10.1016/j.chemosphere.2024.143936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The increase in nano/microplastics (NPs/MPs) from various everyday products entering aquatic environments highlights the urgent need to develop mitigation strategies. Biochar (BC), known for its excellent adsorption capabilities, can effectively target various harmful organic and inorganic pollutants. However, traditional methods involving powdered BC necessitate centrifugation and filtration, which can lead to the desorption of pollutants and subsequent secondary pollution. Magnetic biochar (MBC) offers a solution that facilitates straightforward and rapid separation from water through magnetic techniques. This review provides the latest insights into the progress made in MBC applications for the adsorption of NPs/MPs. This review further discusses how external factors such as pH, ionic strength, temperature, competing ions, dissolved organic matter, aging time, and particle size impact the MBC adsorption efficiency of MPs. The use of machine learning (ML) for optimizing the design and properties of BC materials is also briefly addressed. Finally, this review addresses existing challenges and future research directions aimed at improving the large-scale application of MBC for NPs/MPs removal.
Collapse
Affiliation(s)
- Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Areej Hasan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Syed Kumail Hussain Naqvi
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Saima Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34113, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Mahdavi Z, Peighambardoust SJ, Foroughi M, Foroutan R, Ahmadi M, Ramavandi B. Enhancing fluoride ion removal from aqueous solutions and glass manufacturing wastewater using modified orange peel biochar magnetic composite with MIL-53. ENVIRONMENTAL RESEARCH 2024; 262:119825. [PMID: 39179142 DOI: 10.1016/j.envres.2024.119825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
In this study, we developed new adsorbents derived from orange peel biochar (BCOP) and enhanced them with CoFe2O4 magnetic nanoparticles (BCOP/CoFe2O4) and MIL-53(Al) (BCOP/CoFe2O4/MIL-53(Al)). These adsorbents were utilized to remove fluoride (FL) ions from aqueous solutions. We analyzed the properties of these adsorbents using a range of techniques, including FTIR, XRD, SEM, EDX-Map, VSM, Raman spectroscopy, and BET. Our findings indicate that the components interact effectively with one another. Specifically, the BCOP/CoFe2O4/MIL-53(Al) sample exhibited a specific surface area of 196.430 m2/g and a magnetic saturation value of 9.704 emu/g. The maximum FL ion adsorption capacities for BCOP, BCOP/CoFe2O4, and BCOP/CoFe2O4/MIL-53(Al) were 7.618, 16.330, and 37.320 mg/g, respectively, indicating that the modifications significantly enhanced the adsorption capacity. The optimum fluoride ion removal rates using BCOP, BCOP/CoFe2O4, and BCOP/CoFe2O4/MIL-53(Al) were 97.88%, 98.23%, and 99.06%, respectively, at adsorbent doses of 2.5, 1.5, and 0.8 g/L, contact times of 90, 70, and 50 min, pH 4, temperature 50 °C, and a FL concentration of 10 mg/L. Thermodynamic studies revealed that the adsorption process was spontaneous and endothermic, with increased randomness between the adsorbent and fluoride ions. Kinetic analyses showed that fluoride ion adsorption by BCOP/CoFe2O4/MIL-53(Al) followed a pseudo-second-order (PSO) model, while BCOP and BCOP/CoFe2O4 followed a pseudo-first-order (PFO) model. Additionally, the equilibrium data for fluoride ion adsorption on BCOP/CoFe2O4/MIL-53(Al) adhered to the Freundlich model, whereas the other samples conformed to the Langmuir model. The study evaluates the effectiveness of BCOP, BCOP/CoFe2O4, and BCOP/CoFe2O4/MIL-53(Al) in removing FL ions from glass manufacturing wastewater, highlighting the superior performance of the magnetic composite due to its enhanced surface area and functional groups. Notably, the adsorbents demonstrated good regenerative capabilities, maintaining high performance over multiple adsorption cycles.
Collapse
Affiliation(s)
- Zahra Mahdavi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | | | - Mahsa Foroughi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
| | - Mehrshad Ahmadi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
4
|
Jia C, Wang J, Wang H, Zhu S, Zhang X, Wang Y. Performance and mechanism of La-Fe metal-organic framework as a highly efficient adsorbent for fluoride removal from mine water. J Environ Sci (China) 2024; 139:245-257. [PMID: 38105052 DOI: 10.1016/j.jes.2023.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 12/19/2023]
Abstract
Water fluoride pollution has caused non-negligible harm to the environment and humans, and thus it is crucial to find a suitable treatment technology. In this study, La-Fe@PTA adsorbent was synthesized for the defluoridation of mine water. The results showed that the optimum conditions for defluoridation by La-Fe@PTA were pH close to 7.0, the initial F- concentration of 10 mg/L, the dosage of 0.5 g/L and the adsorption time of 240 min. Compared with SO42‒, Cl‒, NO3‒, Ca2+ and Mg2+, CO32‒ and HCO3‒ presented severer inhibition on fluoride uptake by La-Fe@PTA. The adsorption process fits well with the pseudo-second-order kinetic model and Freundlich model, and the maximum adsorption capacity of Langmuir model was 95 mg/g. Fixed-bed adsorption results indicated that fluoride in practical fluorinated mine water could be effectively removed from 3.6 mg/L to less than 1.5 mg/L within 130 bed volume (BV) by using 1.5 g La-Fe@PTA. Furthermore, the adsorbent still had good adsorption capacity after regeneration, which confirms the great application potential of La-Fe@PTA as a fluoride ion adsorbent. The mechanism analysis showed that La-Fe@PTA adsorption of fluorine ions is a physicochemical reaction driven by electrostatic attraction and ion exchange.
Collapse
Affiliation(s)
- Chaomin Jia
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jianbing Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China.
| | - Huijiao Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Sichao Zhu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | | | - Yuxiang Wang
- Chinese Society for Urban Studies, Beijing 100835, China
| |
Collapse
|
5
|
Wang X, Yang D, Li M, Liang X, Li J, Shou Q, Li C. In Situ Growth of MOF from Wood Aerogel toward Bromide Ion Adsorption in Simulated Saline Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4966-4977. [PMID: 38393830 DOI: 10.1021/acs.langmuir.3c03971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Utilizing metal-organic framework (MOF) materials for the extraction of bromide ions (Br-) from aqueous solutions, as an alternative to chlorine gas oxidation technology, holds promising potential for future applications. However, the limitations of powdered MOFs, such as low utilization efficiency, ease of aggregation in water, and challenging recovery processes, have hindered their practical application. Shaping MOF materials into application-oriented forms represents an effective but challenging approach to address these drawbacks. In this work, a novel Ag-UiO-66-(OH)2@delignified wood cellulose aerogel (CA) adsorbent is synthesized using an oil bath impregnation method, involving the deposition of UiO-66-(OH)2 nanoparticles onto CA and the uniform dispersion of Ag0 nanoparticles across its surface. CA, characterized by the intertwined cellulose nanofiber structure and a highly hydrophilic surface, serves as an ideal substrate for the uniform growth of UiO-66-(OH)2 nanoparticles, which, in turn, spontaneously reduce Ag+ to form distributed Ag0 nanoparticles due to the abundant hydroxyl groups provided. Leveraging the well-defined biological structure of CA, which offers excellent mass transfer channels, and the highly dispersed Ag adsorption sites, Ag-UiO-(OH)2/CA exhibits remarkable adsorption capacity (642 mg/gAg) under optimized conditions. Furthermore, an integrated device is constructed by interconnecting Ag-UiO-(OH)2/CA adsorbents in series, affirming its potential application in the continuous recovery of Br-. This study not only presents an efficient Ag-UiO-(OH)2/CA adsorbent for Br- recovery but also sheds light on the extraction of other valuable elements from various liquid ores.
Collapse
Affiliation(s)
- Xiaoxin Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dehong Yang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingjie Li
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xiangfeng Liang
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jiangcheng Li
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Qinghui Shou
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Chaoxu Li
- Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
6
|
Razavi SAA, Habibzadeh E, Morsali A. High Capacity Arsenate Removal from Real Samples Using Dihydrotetrazine Decorated Zirconium-Based Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38417102 DOI: 10.1021/acsami.3c18717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Zirconium metal-organic frameworks (Zr-MOFs) are potential candidates for decontamination of water resources from harmful pollutants due to their modulable porosity and chemical stability in aqueous solutions. Linker functionalization is an approach for tuning the host-guest chemistry of Zr-MOFs and extends their applications in environmental monitoring. In this work, the structure of UiO-66(Zr) (formulated Zr6(OH)4O4(BDC)6, BDC2- = benzene-1,4-dicarboxylate) was functionalized with dihydrotetrazine group via postsynthesis linker exchange (PSLE) method. The functionalized framework, UiO-66(Zr)-DHTZ, was applied for the removal of arsenate ions from aqueous solutions. The results show that UiO-66(Zr)-DHTZ can adsorb 583 mg g-1 of As(V) at pH = 7 after 2 h, which is significantly higher than that of the UiO-66(Zr). According to X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR), the removal mechanism is based on possible hydrogen bindings between free -C-NH and -C═N- sites of dihydrotetrazine function with -O- and -OH sites of As(V) species. Removal tests in real samples show that UiO-66(Zr)-DHTZ still has a high capacity (220 mg g-1) to As(V) ions in complex matrixes and also can decrease the concentration of As(V) below the detection limit (0.05 ppm) of the inductively coupled plasma optical emission spectroscopy (ICP-OES) method. Since the dihydrotetrazine-decorated UiO-66(Zr)-DHTZ reaches one the highest adsorption capacities to As(V) species, it can be considered a potential candidate for water treatment in real-life applications.
Collapse
Affiliation(s)
- Sayed Ali Akbar Razavi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116,Tehran 1411613117,Islamic Republic of Iran
| | - Elham Habibzadeh
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116,Tehran 1411613117,Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116,Tehran 1411613117,Islamic Republic of Iran
| |
Collapse
|
7
|
Wang J, Li Z, Zhu Q, Wang C, Tang X. Review on arsenic environment behaviors in aqueous solution and soil. CHEMOSPHERE 2023; 333:138869. [PMID: 37156290 DOI: 10.1016/j.chemosphere.2023.138869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Arsenic pollution in environment has always been an important environmental problem that has attracted wide attention in recent years. Adsorption is one of the main methods of treatment for arsenic in the aqueous solution and soil because of the advantages of high efficiency, low cost and wide application. Firstly, this report summarizes the commonly and widely used adsorbent materials such as metal-organic frameworks, layered bimetallic hydroxides, chitosan, biochar and their derivatives. The adsorption effects and mechanisms of these materials are further discussed, and the application prospects of these adsorbents are considered. Meanwhile, the gaps and deficiencies in the study of adsorption mechanism was pointed out. Then, this study comprehensively evaluated the effects of various factors on arsenic transport, including (i) the effects of pH and redox potential on the existing form of As; (ii) complexation mechanism of dissolved organic matter and As; (iii) factors affecting the plant enrichment of As. Finally, the latest scientific researches on microbial remediation of arsenic and the mechanisms were summarized. The review finally enlightens the subsequent development of more efficient and practical adsorption material.
Collapse
Affiliation(s)
- Jingang Wang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Zihao Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Qing Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Xuejiao Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300071, PR China; College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
8
|
Pervez MN, Chen C, Li Z, Naddeo V, Zhao Y. Tuning the structure of cerium-based metal-organic frameworks for efficient removal of arsenic species: The role of organic ligands. CHEMOSPHERE 2022; 303:134934. [PMID: 35561775 DOI: 10.1016/j.chemosphere.2022.134934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The ability of organic ligands to change the structure of metal-organic frameworks (MOFs) in nature and influence their adsorption efficiency for arsenic species is enormous. The current work was designed to investigate the adsorption performance of cerium-based MOFs with tunable structures through the use of organic ligands (Ce-MOF-66 and Ce-MOF-808) towards arsenic species from water. The structural features of Ce-MOF-66 and Ce-MOF-808 with varying crystallinity, morphology, particle size, and surface area are considerably altered by organic ligands tuning, resulting in clearly distinct arsenate (As (V)) and arsenite (As (III)) adsorption capabilities. The experimental results showed that the Langmuir adsorption capacities of As (V) by Ce-MOF-66 and Ce-MOF-808 reached 355.67 and 217.80 mg/g, respectively, while for As (III) were 5.52 and 402.10 mg/g for Ce-MOF-66 and Ce-MOF-808, respectively. Except for the impact of PO43- on As (V), co-existing ions had no significant influence on adsorption, illustrating the high selectivity. Furthermore, to understand the structure and adsorption mechanism, two adsorbents were characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, specific surface area, Fourier transform infrared and X-ray photoelectron spectroscopy, in which identified that unsaturated sites and ligand exchange were the main adsorption mechanisms of As (V) and As (III). Overall, this research presents a novel approach for developing high-performance Ce-derived MOFs adsorbents to capture arsenic species.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Changxun Chen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China.
| |
Collapse
|
9
|
Merodio-Morales E, Mendoza-Castillo D, Bonilla-Petriciolet A, Reynel-Avila H, Milella A, di Bitonto L, Pastore C. A novel CO2 activation at room temperature to prepare an engineered lanthanum-based adsorbent for a sustainable arsenic removal from water. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Facile fabrication of amino-functionalized MIL-68(Al) metal-organic framework for effective adsorption of arsenate (As(V)). Sci Rep 2022; 12:11865. [PMID: 35831402 PMCID: PMC9279506 DOI: 10.1038/s41598-022-16038-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/04/2022] [Indexed: 12/07/2022] Open
Abstract
An amino-functionalized MIL-68(Al) metal–organic framework (amino-MIL-68(Al) MOF) was synthesized by solvothermal method and then characterized by FESEM, XRD, FTIR, EDX-mapping, and BET-BJH techniques. In order to predict arsenate (As(V)) removal, a robust quadratic model (R2 > 0.99, F-value = 2389.17 and p value < 0.0001) was developed by the central composite design (CCD) method and then the genetic algorithm (GA) was utilized to optimize the system response and four independent variables. The results showed that As(V) adsorption on MOF was affected by solution pH, adsorbent dose, As(V) concentration and reaction time, respectively. Predicted and experimental As(V) removal efficiencies under optimal conditions were 99.45 and 99.87%, respectively. The fitting of experimental data showed that As(V) adsorption on MOF is well described by the nonlinear form of the Langmuir isotherm and pseudo-second-order kinetic. At optimum pH 3, the maximum As(V) adsorption capacity was 74.29 mg/g. Thermodynamic studies in the temperature range of 25 to 50 °C showed that As(V) adsorption is a spontaneous endothermic process. The reusability of MOF in ten adsorption/regeneration cycles was studied and the results showed high reusability of this adsorbent. The highest interventional effect in inhibiting As(V) adsorption was related to phosphate anion. The results of this study showed that amino-MIL-68(Al) can be used as an effective MOF with a high surface area (> 1000 m2/g) and high reusability for As(V)-contaminated water.
Collapse
|