1
|
Ling H, Zhang J, Wang Y, Zeng X. One-step achieving high performance all-solid-state and all-in-one flexible electrochromic supercapacitor by polymer dispersed electrochromic device strategy. J Colloid Interface Sci 2024; 665:969-976. [PMID: 38569313 DOI: 10.1016/j.jcis.2024.03.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Electrochromic devices (ECD) are widely used to regulate the transmittance of sunlight by applying a small voltage, but the drawbacks like complex layer-by-layer preparation procedures and inconvenient assembling process still exist. To address these problems, gel or solution-type all-in-one ECDs were recently developed for the simple structure, however, the leakage risk and absence of flexible large-area production have limited real applications. Herein, a novel all-solid-state and all-in-one flexible ECD was reported by originally developed polymer dispersed electrochromic device (PDECD) strategy. This all-solid-state flexible ECD could be efficiently prepared only by one step of phase separation without any extra treatment, and demonstrated outstanding stability (92.1 % of original ΔT remained after 10,000 cycles), high coloration efficiency (197 cm2/C), low power consumption (86.4 μW/cm2) and satisfied response time (≤12 s). Meanwhile, the stored power in ECD during coloring process could drive a LED with excellent cyclic stability (93 % of original capacity remained after 3000 cycles), implying that ECD could also serve as an idea electrochromic supercapacitor. What'more, a reported largest viologen-based all-solid-state flexible ECD (17.8 × 13.2 cm2) with robust bending resistance (up to 1000 bending cycles) was successfully fabricated with industrial roller coating technique, which indicated the huge potential in real world.
Collapse
Affiliation(s)
- Huan Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China; Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China
| | - Junsen Zhang
- Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China
| | - Yu Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Xiping Zeng
- Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China.
| |
Collapse
|
2
|
Lin H, Zhao Y, Jiao X, Gao H, Guo Z, Wang D, Luan Y, Wang L. Preparation and Application of Polymer-Dispersed Liquid Crystal Film with Step-Driven Display Capability. Molecules 2024; 29:1109. [PMID: 38474621 DOI: 10.3390/molecules29051109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The realization of multifunctional advanced displays with better electro-optical properties is especially crucial at present. However, conventional integral full drive-based transparent display is increasingly failing to meet the demands of the day. Herein, partitioned polymerization as a novel preparation method was introduced innovatively into polymer-dispersed liquid crystals (PDLC) for realizing a step-driven display in agreement with fluorescent dye to solve the above drawback. At first, the utilization of fluorescent dye to endow the PDLC film with fluorescent properties resulted in a reduction in the saturation voltage of the PDLC from 39.7 V to 25.5 V and an increase in the contrast ratio from 58.4 to 96.6. Meanwhile, the experimental observations and theoretical considerations have elucidated that variation in microscopic pore size can significantly influence the electro-optical behavior of PDLC. Then, the step-driven PDLC film was fabricated through the exposure of different regions of the LC cell to different UV-light intensities, resulting in stepwise voltage-transmittance (V-T) responses of the PDLC film for the corresponding regions. Consequently, under appropriate driving voltages, the PDLC can realize three different states of total scattering, semi-transparent and total transparent, respectively. In addition, the PDLC film also embodied an outstanding anti-aging property and UV-shielding performance, which makes it fascinating for multifunctional advanced display applications.
Collapse
Affiliation(s)
- Hui Lin
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Xiangke Jiao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Hong Gao
- Division of Material Engineering, China Academy of Space Technology, Beijing 100094, China
| | - Zhun Guo
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Dong Wang
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yi Luan
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Lu H, Huang P, Wu T, Chen C, Shi J, Xu M, Qiu L, Ding Y, Zhu J. PDLC with controllable microstructure using wavelength-selective two-stage polymerization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|