1
|
Rusanov MS, Zverev VS, Elfimova EA. Third harmonic of the dynamic magnetic susceptibility of a concentrated ferrofluid: Numerical calculation and simple approximation formula. Phys Rev E 2024; 110:034605. [PMID: 39425359 DOI: 10.1103/physreve.110.034605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 10/21/2024]
Abstract
Information about the nonlinear magnetic response of dispersions of magnetic particles is the basis for biomedical applications. In this paper, using analytical and numerical methods, the third harmonic of the dynamic susceptibility of an ensemble of moving magnetic particles in an ac magnetic field with an arbitrary amplitude is studied, taking into account interparticle interactions. A simple approximation formula is proposed to predict the third harmonic as a function of two parameters: the Langevin susceptibility χ_{L}, which is used to estimate the particle dipole-dipole interactions, and the Langevin parameter ξ, which represents the ratio of the energy of the magnetic moment interacting with the magnetic field to the thermal energy. The derived approximation formula corresponds with the known single-particle theories in the limit case of a small particle's concentration and is valid for concentrated dispersions of magnetic particles (with the Langevin susceptibility up to χ_{L}≤3) in high-amplitude ac fields (with the Langevin parameter up to ξ≤10).
Collapse
|
2
|
Mi Y, Zhang MN, Ma C, Zheng W, Teng F. Feature Matching of Microsecond-Pulsed Magnetic Fields Combined with Fe 3O 4 Particles for Killing A375 Melanoma Cells. Biomolecules 2024; 14:521. [PMID: 38785928 PMCID: PMC11117552 DOI: 10.3390/biom14050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.
Collapse
Affiliation(s)
- Yan Mi
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Meng-Nan Zhang
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Chi Ma
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Wei Zheng
- State Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China; (M.-N.Z.); (C.M.); (W.Z.)
| | - Fei Teng
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China;
| |
Collapse
|
3
|
Vajtai L, Nemes NM, Morales MDP, Molnár K, Pinke BG, Simon F. Incidence of the Brownian Relaxation Process on the Magnetic Properties of Ferrofluids. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:634. [PMID: 38607168 PMCID: PMC11013599 DOI: 10.3390/nano14070634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Ferrofluids containing magnetic nanoparticles represent a special class of magnetic materials due to the added freedom of particle tumbling in the fluids. We studied this process, known as Brownian relaxation, and its effect on the magnetic properties of ferrofluids with controlled magnetite nanoparticle sizes. For small nanoparticles (below 10 nm diameter), the Néel process is expected to dominate the magnetic response, whereas for larger particles, Brownian relaxation becomes important. Temperature- and magnetic-field-dependent magnetization studies, differential scanning calorimetry, and AC susceptibility measurements were carried out for 6 and 13.5 nm diameter magnetite nanoparticles suspended in water. We identify clear fingerprints of Brownian relaxation for the sample of large-diameter nanoparticles as both magnetic and thermal hysteresis develop at the water freezing temperature, whereas the samples of small-diameter nanoparticles remain hysteresis-free down to the magnetic blocking temperature. This is supported by the temperature-dependent AC susceptibility measurements: above 273 K, the data show a low-frequency Debye peak, which is characteristic of Brownian relaxation. This peak vanishes below 273 K.
Collapse
Affiliation(s)
- Lili Vajtai
- Department of Physics, Institute of Physics, HUN-REN-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; (L.V.); (F.S.)
| | - Norbert Marcel Nemes
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Maria del Puerto Morales
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain;
| | - Kolos Molnár
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; (K.M.); (B.G.P.)
- HUN–REN–BME Research Group for Composite Science and Technology, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME Lendület Sustainable Polymers Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Balázs Gábor Pinke
- Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; (K.M.); (B.G.P.)
| | - Ferenc Simon
- Department of Physics, Institute of Physics, HUN-REN-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; (L.V.); (F.S.)
- Institute for Solid State Physics and Optics, HUN-REN Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
4
|
Rusanov MS, Kuznetsov MA, Zverev VS, Elfimova EA. Influence of a bias dc field and an ac field amplitude on the dynamic susceptibility of a moderately concentrated ferrofluid. Phys Rev E 2023; 108:024607. [PMID: 37723702 DOI: 10.1103/physreve.108.024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/22/2023] [Indexed: 09/20/2023]
Abstract
In this paper, we study the effect of a bias dc field on the dynamic response of a moderately concentrated ferrofluid to an ac magnetic field of arbitrary amplitude. The ferrofluid is modeled by an ensemble of interacting moving magnetic particles; the reaction of particle magnetic moments to ac and dc magnetic fields occurs according to the Brownian mechanism; and the ac and dc magnetic fields are parallel. Based on a numerical solution of the Fokker-Planck equation for the probability density of the orientation of the magnetic moment of a random magnetic particle, dynamic magnetization and susceptibility are determined and analyzed for various values of the ac field amplitude, the dc field strength, and the intensity of dipole-dipole interactions. It is shown that the system's magnetic response is formed under the influence of competing interactions, such as dipole-dipole, dipole-ac field, and dipole-dc field interactions. When the energies of these interactions are comparable, unexpected effects are observed: the system's susceptibility can either increase or decrease with increasing ac field amplitude. This behavior is associated with the formation of nose-to-tail dipolar structures under the action of the dc field, which can hinder or promote the system's dynamic response to the ac field. The obtained results provide a theoretical basis for predicting the dynamic properties of ferrofluids to improve their use in biomedical applications, such as, in magnetic induction hyperthermia.
Collapse
Affiliation(s)
- Michael S Rusanov
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Michael A Kuznetsov
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Vladimir S Zverev
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| | - Ekaterina A Elfimova
- Department of Theoretical and Mathematical Physics, Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenin Avenue, Ekaterinburg 620000, Russia
| |
Collapse
|
5
|
Le TA, Hadadian Y, Yoon J. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 235:107546. [PMID: 37068450 DOI: 10.1016/j.cmpb.2023.107546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Brain tumor is a global health concern at the moment. Thus far, the only treatments available are radiotherapy and chemotherapy, which have several drawbacks such as low survival rates and low treatment efficacy due to obstruction of the blood-brain barrier. Magnetic hyperthermia (MH) using magnetic nanoparticles (MNPs) is a promising non-invasive approach that has the potential for tumor treatment in deep tissues. Due to the limitations of the current drug-targeting systems, only a small proportion of the injected MNPs can be delivered to the desired area and the rest are distributed throughout the body. Thus, the application of conventional MH can lead to damage to healthy tissues. METHODS Magnetic particle imaging (MPI)-guided treatment platform for MH is an emerging approach that can be used for spatial localization of MH to arbitrarily selected regions by using the MPI magnetic field gradient. Although the feasibility of this method has been demonstrated experimentally, a multidimensional prediction model, which is of crucial importance for treatment planning, has not yet been developed. Hence, in this study, the time dependent magnetization equation derived by Martsenyuk, Raikher, and Shliomis (which is a macroscopic equation of motion derived from the Fokker-Planck equation for particles with Brownian relaxation mechanism) and the bio-heat equations have been used to develop and investigate a three-dimensional model that predicts specific loss power (SLP), its spatio-thermal resolution (temperature distribution), and the fraction of damage in brain tumors. RESULTS Based on the simulation results, the spatio-thermal resolution in focused heating depends, in a complex manner, on several parameters ranging from MNPs properties to magnetic fields characteristics, and coils configuration. However, to achieve a high performance in focused heating, the direction and the relative amplitude of the AC magnetic heating field with respect to the magnetic field gradient are among the most important parameters that need to be optimized. The temperature distribution and fraction of the damage in a simple brain model bearing a tumor were also obtained. CONCLUSIONS The complexity in the relationship between the MNPs properties and fields parameter imposes a trade-off between the heating efficiency of MNPs and the accuracy (resolution) of the focused heating. Therefore, the system configuration and field parameters should be chosen carefully for each specific treatment scenario. In future, the results of the model are expected to lead to the development of an MPI-guided MH treatment platform for brain tumor therapy. However, for more accurate quantitative results in such a platform, a magnetization dynamics model that takes into account coupled Néel-Brownian relaxation mechanism in the MNPs should be developed.
Collapse
Affiliation(s)
- Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea; Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yaser Hadadian
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea.
| |
Collapse
|
6
|
Horváth B, Decsi P, Szalai I. Nonlinear contributions to the dynamic magnetic susceptibility of magnetic fluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Vinod S, Philip J. Thermal and rheological properties of magnetic nanofluids: Recent advances and future directions. Adv Colloid Interface Sci 2022; 307:102729. [PMID: 35834910 DOI: 10.1016/j.cis.2022.102729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 01/14/2023]
Abstract
Technological advancement and miniaturization of electronic gadgets fueled intense research on nanofluids as potential candidates for cooling applications as a substitute to conventional heat transfer fluids. Among nanofluids, magnetic nanofluids, traditionally known as ferrofluids have attracted a lot of attention owing to their magnetic field tunable thermal conductivity and rheological properties due to the aggregation of the magnetic nanoparticles into chains or columns in the presence of the magnetic field. The field-induced aggregates act as low resistance pathways thereby improving thermal transport substantially. Recent studies show that ferrofluids with smaller size and narrow size distribution display significant enhancement in thermal conductivity in the presence of a magnetic field with negligible viscosity enhancement, which is ideal for effective thermal management of electronic devices, especially in miniature electronic devices. On the contrary, highly polydisperse ferrofluids containing large aggregates, show modest enhancement in thermal conductivity in the presence of a magnetic field and a huge enhancement in viscosity. The most recent studies show that magnetic field ramp rate has a profound effect on aggregation kinetics and thermal and rheological properties. The viscosity enhancement under an external stimulus impedes their practical use in electronics cooling, which warrants the need to attain a high thermal conductivity to viscosity ratio, under a modest magnetic field. Though there are several reviews on heat transfer in nanofluids and hybrid nanofluids, a comprehensive review on fundamental understanding of field-induced thermal and rheological properties in magnetic fluids is missing in the literature. This review provides a pedagogical description of the fundamental understanding of field-induced thermal and rheological properties in magnetic fluids, with the necessary background, key concepts, definitions, mechanisms, theoretical models, experimental protocols, and design of experiments. Many important case studies are presented along with the experimental design aspects. The review also provides a summary of important experimental studies with key findings, along with the key challenges and future research directions. The review is an ideal material for experimentalists and theoreticians practicing in the field of magnetic fluids, and also serves as an excellent reference for freshers who indent to begin research on this topic.
Collapse
Affiliation(s)
- Sithara Vinod
- Smart Materials Section, Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India; Homi Bhabha National Institute, Mumbai, India
| | - John Philip
- Smart Materials Section, Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|