1
|
Wang F, Zheng Y, Wei X, Lan D, Zhu J, Chen Y, Wo Z, Wu T. Controlled synthesis of Fe 3O 4/MnO 2 (3 1 0)/ZIF-67 composite with enhanced synergetic effects for the highly selective and efficient adsorption of Cu (II) from simulated copperplating effluents. ENVIRONMENTAL RESEARCH 2023; 237:116940. [PMID: 37619624 DOI: 10.1016/j.envres.2023.116940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/03/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023]
Abstract
This study designed a composite material with internal synergistic effects among multiple components to achieve highly selective adsorption of Cu (II). Through controlled synthesis, the Fe3O4/MnO2(3 1 0)/ZIF-67 composite was successfully fabricated, leading to significant improvement in adsorption selectivity, capacity, and adsorption rate. The experimental results showed that the composite is of outstanding selectivity in the adsorption of Cu (II), with a partition coefficient K of Cu (II) that was 2.2-5.3 times higher than that of other coexisting ions. Moreover, the composite exhibited a remarkable adsorption capacity of 1261.0 mg g-1 and a fast adsorption rate of 840.7 mg g-1 h-1 at 298 K. Additionally, its magnetic property facilitated easy separation from wastewater, thereby enhancing its potential for commercial applications. The synergetic effect mechanism was analyzed through characterizations and DFT calculations. Furthermore, the recyclability of the composite was investigated, which showed that after seven cycles, the adsorption efficiency remained at 85% of its initial efficiency. It can be concluded that Fe3O4/MnO2(3 1 0)/ZIF-67 has potential to address challenges posed by heavy metal pollution in copperplating effluents.
Collapse
Affiliation(s)
- Fan Wang
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yueying Zheng
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Xinggang Wei
- SAILARK Digital Technology Co. Ltd, Shanghai, 200000, China
| | - Dawei Lan
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Jintao Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Yingjie Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Ziquan Wo
- Department of Material Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou City, 515000, China
| | - Tao Wu
- New Materials Institute, University of Nottingham, Ningbo, 315100, China; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, Ningbo, 315100, China; Zhejiang - Canada Joint Laboratory on Green Chemicals and Energy, China.
| |
Collapse
|
2
|
Garg S, Goel N. Encapsulation of heavy metal ions via adsorption using cellulose/ZnO composite: First principles approach. J Mol Graph Model 2023; 124:108566. [PMID: 37487371 DOI: 10.1016/j.jmgm.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
The primary goal of the current research is to describe an effective and eco-friendly adsorbent for the removal of aquatic micropollutants. The design of the cellulose-modified zinc oxide (ZnO) nanocomposite was successfully carried out by density functional calculations. The proposed structures of the constituent and composite materials were confirmed using formation energy (Ef), frontier orbitals, band gaps (Egap), density of state (DOS) plots, natural bond orbitals (NBO), and UV-Vis spectral analysis. The cellulose/(ZnO)12 composite was further used for the adsorption of different heavy metal ions such as Hg(II), Pb(II), Cd(II), Ni(II), and As(III) through calculation of electronic and optical properties. The values of the adsorption energy (Eads) show that the As(III) interacted better with the composite in both phases, i.e., gas (-806.98 kcal/mol) and aqueous (-491.66 kcal/mol). The analysis of frontier molecular orbital data exhibited a decrease in the Egap of composite@metal ion complexes. The high negative value of the solvation energies (ΔEsol) indicates the suitability of composite@metal ions in an aqueous environment. The nature of interactions between metal ions and the composite unit is analyzed by noncovalent interactions (NCI) and the quantum theory of atoms in molecules (QTAIM). The theoretical results of the present study show the feasibility of the cellulose/(ZnO)12 composite for the removal of heavy metal ions and provide useful information to experimentalists to treat contaminated water.
Collapse
Affiliation(s)
- Shivangi Garg
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Neetu Goel
- Computational and Theoretical Chemistry Group, Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
He F, Ma B, Wang C, Chen Y, Hu X. Adsorption of Pb(II) and Cd(II) hydrates via inexpensive limonitic laterite: Adsorption characteristics and mechanisms. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Peng J, Sun W, Han H, Ou L, Chen J, Luo Y. Adsorption of a new reagent scheme on chalcopyrite and molybdenite surfaces causing an efficiency flotation separation: Insights from first-principles calculations. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Kaviani S, Tayurskii DA, Nedopekin OV, Piyanzina I. DFT insight into Cd2+, Hg2+, Pb2+, Sn2+, As3+, Sb3+, and Cr3+ heavy metal ions adsorption onto surface of bowl-like B30 nanosheet. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Luo Y, Ou L, Zhang G, Chen J, Luo Y, Zhou H, Yang H, Yin C. Unveiling the role of Ca ion in the sulfidation of smithsonite: A density functional theory study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|