1
|
Su X, Wan Z, Lu Y, Rojas O. Control of the Colloidal and Adsorption Behaviors of Chitin Nanocrystals and an Oppositely Charged Surfactant at Solid, Liquid, and Gas Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4881-4892. [PMID: 38386001 DOI: 10.1021/acs.langmuir.3c03787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chitin has a unique hierarchical structure, spanning the macro- and nanoscales, and presents chemical characteristics that make it a suitable component of multiphase systems. Herein, we elucidate the colloidal interactions between partially deacetylated chitin nanocrystals (cationic ChNC) and an anionic surfactant, sodium dodecyl sulfate (SDS). We investigate charge neutralization and association (electrophoretic mobility, surface tensiometry, and quartz crystal microgravimetry) and their role in the stabilization of Pickering emulsions. We find SDS adsorption and association with ChNC under distinctive regimes: At low SDS concentration, submonolayer assemblies form on ChNC, driven by the hydrophobic effect and electrostatic interactions. With the increased SDS concentration, bilayers or patchy bilayers form, followed by adsorbed hemimicelles and micelles. We further suggested the role of hydrophobic effects in the observed colloidal transitions and complex conformations. At the highest SDS concentration tested, charge neutralization and SDS/ChNC flocculation take place. Remarkably, at given concentrations, adsorbed SDS endows the chitin nanoparticles with an effective hydrophobicity that opens the opportunity to achieve tailorable Pickering stabilization. Hence, a facile route is proposed by in situ modification by SDS physisorption, which extends the potential of renewable nanoparticles in the formulation of complex fluids, for instance, those relevant to household and healthcare products.
Collapse
Affiliation(s)
- Xiaoya Su
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zhangmin Wan
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Orlando Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Wood Science, University of British Columbia, Vancouver, 2424 Main Mall 2900, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
2
|
Bernal-Chávez SA, Alcalá-Alcalá S, Almarhoon ZM, Turgumbayeva A, Gürer ES, De Los Dolores Campos-Echeverria M, Cortés H, Romero-Montero A, Del Prado-Audelo ML, Sharifi-Rad J, Leyva-Gómez G. Novel ultra-stretchable and self-healing crosslinked poly (ethylene oxide)-cationic guar gum hydrogel. J Biol Eng 2023; 17:64. [PMID: 37845737 PMCID: PMC10577977 DOI: 10.1186/s13036-023-00376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023] Open
Abstract
Hydrogels are three-dimensional structures with specific features that render them useful for biomedical applications, such as tissue engineering scaffolds, drug delivery systems, and wound dressings. In recent years, there has been a significant increase in the search for improved mechanical properties of hydrogels derived from natural products to extend their applications in various fields, and there are different methods to obtain strengthened hydrogels. Cationic guar gum has physicochemical properties that allow it to interact with other polymers and generate hydrogels. This study aimed to develop an ultra-stretchable and self-healing hydrogel, evaluating the influence of adding PolyOX [poly(ethylene oxide)] on the mechanical properties and the interaction with cationic guar gum for potential tissue engineering applications. We found that variations in PolyOX concentrations and pH changes influenced the mechanical properties of cationic guar gum hydrogels. After optimization experiments, we obtained a novel hydrogel, which was semi-crystalline, highly stretchable, and with an extensibility area of approximately 400 cm2, representing a 33-fold increase compared to the hydrogel before being extended. Moreover, the hydrogel presented a recovery of 96.8% after the self-healing process and a viscosity of 153,347 ± 4,662 cP. Therefore, this novel hydrogel exhibited optimal mechanical and chemical properties and could be suitable for a broad range of applications in different fields, such as tissue engineering, drug delivery, or food storage.
Collapse
Affiliation(s)
- Sergio Alberto Bernal-Chávez
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, Ex-Hda. de Sta. Catarina Mártir, 72820, Puebla, Cholula, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- School of Pharmacy, JSC "S.D. Asfendiyarov Kazakh National Medical University", Almaty, Kazakhstan
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, 14389, Ciudad de México, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico
| | | | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| |
Collapse
|
3
|
Fernández-Peña L, Guzmán E, Oñate-Martínez T, Fernández-Pérez C, Ortega F, Rubio RG, Luengo GS. Dilution-Induced Deposition of Concentrated Binary Mixtures of Cationic Polysaccharides and Surfactants. Polymers (Basel) 2023; 15:3011. [PMID: 37514401 PMCID: PMC10385572 DOI: 10.3390/polym15143011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This work investigates the effect of dilution on the phase separation process of binary charged polysaccharide-surfactant mixtures formed by two cationic polysaccharides and up to four surfactants of different nature (anionic, zwitterionic, and neutral), as well as the potential impact of dilution-induced phase separation on the formation of conditioning deposits on charged surfaces, mimicking the negative charge and wettability of damaged hair fibers. The results obtained showed that the dilution behavior of model washing formulations (concentrated polysaccharide-surfactant mixtures) cannot be described in terms of a classical complex precipitation framework, as phase separation phenomena occur even when the aggregates are far from the equilibrium phase separation composition. Therefore, dilution-enhanced deposition cannot be predicted in terms of the worsening of colloidal stability due to the charge neutralization phenomena, as common phase separation and, hence, enhanced deposition occurs even for highly charged complexes.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Teresa Oñate-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Coral Fernández-Pérez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Gustavo S Luengo
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France
| |
Collapse
|
4
|
Chen Y, Sun Y, Wang R, Waterhouse GIN, Xu Z. One-pot synthesis of a novel conductive molecularly imprinted gel as the recognition element and signal amplifier for the selective electrochemical detection of amaranth in foods. Biosens Bioelectron 2023; 228:115185. [PMID: 36878068 DOI: 10.1016/j.bios.2023.115185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Herein, we prepared a self-crosslinked conductive molecularly imprinted gel (CMIG) using cationic guar gum (CGG), chitosan (CS), β-cyclodextrin (β-CD), amaranth (AM) and multi-walled carbon nanotubes (MWCNTs) by a simple one-pot low temperature magnetic stirring method. The imine bonds, hydrogen-bonding interactions and electrostatic attractions between CGG, CS and AM facilitated CMIG gelation, while β-CD and MWCNTs enhanced the adsorption capacity and conductivity of CMIG, respectively. Next, the CMIG was deposited onto the surface of a glassy carbon electrode (GCE). After selective removal of AM, a highly sensitive and selective CMIG-based electrochemical sensor was obtained for AM determination in foods. The CMIG allowed specific recognition of AM and could also be used for signal amplification, thus improving the sensitivity and selectivity of the sensor. Due to the high viscosity and self-healing properties of the CMIG, the developed sensor was very durable retaining a 92.1% of original current after 60 consecutive measurements. Under optimal conditions, the CMIG/GCE sensor showed a good linear response for AM detection (0.02-150 μM) with a limit of detection of 0.003 μM. AM recovery tests were performed in milk powder and white vinegar samples, yielding satisfactory recoveries (89.00%-111.00%). Furthermore, the levels of AM in two kinds of carbonated drinks were analyzed with the constructed sensor and an ultraviolet spectrophotometry method, with no significant difference found of the two methods. This work demonstrates that CMIG based electrochemical sensing platforms allow the cost-effective detection of AM, with the CMIG technology likely being widely applicable to the detection of other analytes.
Collapse
Affiliation(s)
- Yongfeng Chen
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yufeng Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ruiqiang Wang
- Shandong Cayon Testing Co., LTD, Jining, 272000, People's Republic of China
| | | | - Zhixiang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
5
|
Le TA, Huynh TP. Current advances in the Chemical functionalization and Potential applications of Guar gum and its derivatives. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Tyagi R, Kumar V, Sharma P. Efficient Synthesis of Quaternised Guar Gum using Tri‐alkylamine and Epichlorohydrin Condensate by Taguchi L9 Orthogonal Array. ChemistrySelect 2022. [DOI: 10.1002/slct.202202268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Rakhi Tyagi
- Chemistry and Bioprospecting Division Forest Research Institute Dehardun India 248006
| | - Vineet Kumar
- Chemistry and Bioprospecting Division Forest Research Institute Dehardun India 248006
| | - Pradeep Sharma
- Chemistry and Bioprospecting Division Forest Research Institute Dehardun India 248006
| |
Collapse
|
7
|
Fernández-Peña L, Guzmán E, Fernández-Pérez C, Barba-Nieto I, Ortega F, Leonforte F, Rubio RG, Luengo GS. Study of the Dilution-Induced Deposition of Concentrated Mixtures of Polyelectrolytes and Surfactants. Polymers (Basel) 2022; 14:polym14071335. [PMID: 35406209 PMCID: PMC9003019 DOI: 10.3390/polym14071335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Mixtures of polyelectrolytes and surfactants are commonly used in many technological applications where the challenge is to provide well-defined modifications of the surface properties, as is the case of washing formulations in cosmetics. However, if contemporary experimental and theoretical methods can provide insights on their behavior in concentrated formulations, less is known on their behavior under practical use conditions, e.g., under dilution and vectorization of deposits. This makes it difficult to make predictions for specific performance, as, for example, good hair manageability after a shampoo or a comfortable sensorial appreciation after a skin cleanser. This is especially important when considering the formulation of new, more eco-friendly formulations. In this work, a detailed study of the phase separation process induced by dilution is described, as well as the impact on the deposition of conditioning material on negatively charged surfaces. In order to gain a more detailed physical insight, several polyelectrolyte–surfactant pairs, formed by two different polymers and five surfactants that, although non-natural or eco-friendly, can be considered as models of classical formulations, have been studied. The results evidenced that upon dilution the behavior, and hence its deposition onto the surface, cannot be predicted in terms of the behavior of simpler pseudo-binary (mixtures of a polymer and a surfactant) or pseudo-ternary mixtures (two polymers and a surfactant). In many cases, phase separation was observed for concentrations similar to those corresponding to the components in some technological formulations, whereas the latter appeared as monophasic systems. Therefore, it may be assumed that the behavior in multicomponent formulations is the result of a complex interplay of synergistic interactions between the different components that will require revisiting when new, more eco-sustainable ingredients are considered.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| | - Coral Fernández-Pérez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
| | - Irene Barba-Nieto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Fabien Leonforte
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France;
| | - Ramón G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| | - Gustavo S. Luengo
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France;
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| |
Collapse
|