Biswas P, Wang Y, Hagen E, Zachariah MR. Electrochemical Modulation of the Flammability of Ionic Liquid Fuels.
J Am Chem Soc 2023. [PMID:
37486079 DOI:
10.1021/jacs.3c04820]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Flammability and combustion of high energy density liquid propellants are controlled by their volatility. We demonstrate a new concept through which the volatility of a high energy density ionic liquid propellant can be dynamically manipulated enabling one to (a) store a thermally insensitive oxidation resistant nonflammable fuel, (b) generate flammable vapor phase species electrochemically by applying a direct-current voltage bias, and (c) extinguish its flame by removing the voltage bias, which stops its volatilization. We show that a thermally stable imidazolium-based energy dense ionic liquid can be made flammable or nonflammable simply by application or withdrawal of a direct-current bias. This cycle can be repeated as often as desired. The estimated energy penalty of the electrochemical activation process is only ∼4% of the total energy release. This approach presents a paradigm shift, offering the potential to make a "safe fuel" or alternatively a simple electrochemically driven fuel metering scheme.
Collapse