1
|
Huwaimel B, Alqarni S. Design of C 24 fullerene-based sensors for gamma-butyrolactone detection as advanced tools for biomedical and pharmaceutical applications. Sci Rep 2025; 15:13799. [PMID: 40258959 PMCID: PMC12012167 DOI: 10.1038/s41598-025-97514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/04/2025] [Indexed: 04/23/2025] Open
Abstract
The detection of gamma-butyrolactone (GBL) is crucial in medicinal chemistry due to its role as a precursor to gamma-hydroxybutyrate (GHB) and its potential for misuse. This study presents a sensor for GBL detection based on fullerene C24 and its beryllium-, calcium-, and magnesium-doped derivatives. Using density functional theory (DFT) and time-dependent DFT (TD-DFT), we optimized the structures and analyzed their electronic, optical, and quantum properties. Key parameters such as energy gaps, chemical reactivity, dipole moments, and adsorption energies were evaluated. Among the studied systems, magnesium-doped C24 (MgC23) exhibited the highest reactivity, a pronounced red shift in UV absorption upon GBL complexation, and an optimal balance of adsorption energy and recovery time. These results highlight MgC23 as a promising candidate for sensitive and efficient GBL detection in pharmaceutical and forensic applications.
Collapse
Affiliation(s)
- Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, 55473, Hail, Saudi Arabia.
- Medical and Diagnostic Research Center, University of Ha'il, 55473, Hail, Saudi Arabia.
| | - Saad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, 55473, Hail, Saudi Arabia
- Medical and Diagnostic Research Center, University of Ha'il, 55473, Hail, Saudi Arabia
| |
Collapse
|
2
|
Liu Q, Madadi M, Al Azad S, Sun C, Zhang E, Yan J, Samimi A, Sun F. In-depth recognition of mixed surfactants maintaining the enzymatic activity of cellulases through stabilization of their spatial structures. BIORESOURCE TECHNOLOGY 2025; 416:131756. [PMID: 39510354 DOI: 10.1016/j.biortech.2024.131756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
Mixed surfactants improve the enzymatic hydrolysis of lignocellulosic substrates by enhancing cellulase stability against heat, pH, shear, and air-liquid interface stress. Under conditions of multiple factorial stresses (50 °C, pH 4.8, 180 rpm, and 15.5 cm2 air-liquid interface), cellulase with ternary surfactants (Tween 60/Triton X-114/CTAB, the molar ratio 14:5.5:1) retained 84 % of its activity after 48 h of incubation, representing 1.15 and 1.29 folds that of the cellulase activity with the single Tween 60 and with no surfactants, respectively. This is attributed to the fact that ternary surfactants possess better rheology modulation and air-liquid interface competitiveness. In addition, the computational approach demonstrated that the ternary surfactants were capable of forming stronger hydrophobic and hydrogen-bond interactions with cellulase enzymes, thus maintaining its secondary structure and preventing the detrimental α-helix to β-sheet transformation known to compromise cellulase activity. This synergy offers valuable insights into surfactant-cellulase interactions and supports efficient enzymatic hydrolysis in biorefineries.
Collapse
Affiliation(s)
- Qiangqiang Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meysam Madadi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Salauddin Al Azad
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chihe Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Junshu Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Abdolreza Samimi
- Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Fubao Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Farooq MU, Muneer M, Shahid A, Rehman MA, Ullah K, Murtaza G, Iqbal R, Iqbal J, Rahimi M. Synthesis and characterization of fluorenone derivatives with electrical properties explored using density functional theory (DFT). Sci Rep 2024; 14:29015. [PMID: 39578658 PMCID: PMC11584800 DOI: 10.1038/s41598-024-80477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
This study provides thorough computational and experimental assessments of four types of novel synthesized thiosemicarbazones. The compounds were effectively synthesized using a condensation reaction between thiosemicarbazide and fluorenone, producing a remarkable range of 70-88%. Additional chemical structures were examined utilizing spectroscopic methods, including Fourier-transform infrared spectroscopy (FTIR), NMR spectroscopy, and ultraviolet-visible spectroscopy. The computational analyses utilized DFT using the M06/6-311G (d, p) technique. The electrical characteristics, including the stability of orbitals via energy exchange between a donor and acceptor, can be evaluated by natural bond orbital (NBO) analysis. The nonlinear optical (NLO) properties were analyzed to detect any prohibited energy gaps. FTIR and UV-visible data were computed using the identical M06/6-311G (d, p) level of theory. The NBO test has confirmed the occurrence of charge separation due to the efficient transfer of electrons from the donor to the acceptor unit over the π bridge. The molecular chemical softness and hardness are dependable indications of a molecule's chemical stability. A significant magnitude of the absolute value of polarizability and hyper-polarizability indicates considerable dispersion of electric charge. The outcomes derived from Density Functional Theory (DFT) generally align well with experimental findings.
Collapse
Affiliation(s)
- Muhammad Umar Farooq
- Physical Chemistry of Metallurgical and Energy Engineering Department, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Malaika Muneer
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Ali Shahid
- Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Muhammad Abdul Rehman
- Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Khalil Ullah
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ghulam Murtaza
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, People's Republic of China.
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Crop Diseases and Pests, Yunnan University, Kunming, 650500, Yunnan, People's Republic of China.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Khyber Pakhtunkhwa, 24420, Charsadda, Pakistan
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
4
|
Kushwaha PK, Srivastava SK. Tuning optoelectronic properties of indandione-based D-A materials by malononitrile group acceptors: A DFT and TD-DFT approach. J Mol Model 2024; 30:356. [PMID: 39347831 DOI: 10.1007/s00894-024-06159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT Indandione-based materials are promising candidates for organic electronics, offering high electron mobility and tunable optoelectronic properties. In this study, we explore the optoelectronic and photovoltaic properties of indandione-based donor-acceptor (D-A) materials, specifically (R1) and (R2), by introducing malononitrile group acceptors into their molecular structure. These strong electron-withdrawing acceptors are designed to enhance charge transfer and overall material performance. The designed molecules (DM1-DM4) exhibit a low optical band gap of approximately 1.77 eV, significantly lower than the reference materials (R1 and R2) at around 2.24 eV in a solvent environment. Among the designed molecules, DM4 stands out with superior photovoltaic parameters, including a narrow optical band gap (1.77 eV), higher electron affinity (3.49 eV), an extended excited state lifetime (10.0 ns) owing to its low electron and hole reorganization energies (λe ~ 0.13 eV and λh ~ 0.24 eV), and improved short-circuit current density (Jsc) of ~ 15.73 mA/cm2. Notably, DM4 achieves a power conversion efficiency (PCE) of ~ 18.5%, making it an excellent candidate for device applications. METHOD A comprehensive computational investigation was carried out on indandione-based D-A materials with malononitrile group acceptors (DM1-DM4) using density functional theory (DFT) and time-dependent DFT (TD-DFT) methods, as implemented in Gaussian 16 software. We examined the electronic and optical properties of the proposed molecules through frontier molecular orbital (FMO) analysis, UV-Vis absorption spectra, density of states (DOS), exciton binding energy (Eb), and transition density matrix (TDM) analysis, utilizing GaussView 6.0 and Multiwfn 3.8 software. The photovoltaic parameters and power conversion efficiency (PCE) were evaluated using the Scharber and Alharbi models.
Collapse
Affiliation(s)
- Pankaj Kumar Kushwaha
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India
| | - Sunil Kumar Srivastava
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India.
| |
Collapse
|
5
|
Ijaz R, Waqas M, Mahal A, Essid M, Zghab I, Khera RA, Alotaibi HF, Al-Haideri M, Alshomrany AS, Zahid S, Alatawi NS, Aloui Z. Tuning the optoelectronic properties of selenophene-diketopyrrolopyrrole-based non-fullerene acceptor to obtain efficient organic solar cells through end-capped modification. J Mol Graph Model 2024; 129:108745. [PMID: 38442441 DOI: 10.1016/j.jmgm.2024.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
With the goal of developing a high-performance organic solar cell, nine molecules of A2-D-A1-D-A2 type are originated in the current investigation. The optoelectronic properties of all the proposed compounds are examined by employing the DFT approach and the B3LYP functional with a 6-31G (d, p) basis set. By substituting the terminal moieties of reference molecule with newly proposed acceptor groups, several optoelectronic and photovoltaic characteristics of OSCs have been studied, which are improved to a significant level when compared with reference molecule, i.e., absorption properties, excitation energy, exciton binding energy, band gap, oscillator strength, electrostatic potential, light-harvesting efficiency, transition density matrix, open-circuit voltage, fill factor, density of states and interaction coefficient. All the newly developed molecules (P1-P9) have improved λmax, small band gap, high oscillator strengths, and low excitation energies compared to the reference molecule. Among all the studied compounds, P9 possesses the least binding energy (0.24 eV), P8 has high interaction coefficient (0.70842), P3 has improved electron mobility due to the least electron reorganization energy (λe = 0.009182 eV), and P5 illustrates high light-harvesting efficiency (0.7180). P8 and P9 displayed better Voc results (1.32 eV and 1.33 eV, respectively) and FF (0.9049 and 0.9055, respectively). Likewise, the phenomenon of charge transfer in the PTB7-Th/P1 blend seems to be a marvelous attempt to introduce them in organic photovoltaics. Consequently, the outcomes of these parameters demonstrate that adding new acceptors to reference molecule is substantial for the breakthrough development of organic solar cells (OSCs).
Collapse
Affiliation(s)
- Rimsha Ijaz
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Maysoon Al-Haideri
- Pharmacy Department, School of Medicine, University of Kurdistan Hewlêr, Kurdistan Region, Iraq
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca 24381, Saudi Arabia
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha 61413, P.O. Box 9004, Saudi Arabia.
| |
Collapse
|
6
|
Noor T, Waqas M, Shaban M, Hameed S, Ateeq-ur-Rehman, Ahmed SB, Alrafai HA, Al-Saeedi SI, Ibrahim MAA, Hadia NMA, Khera RA, Hassan AA. Designing Thieno[3,4- c]pyrrole-4,6-dione Core-Based, A 2-D-A 1-D-A 2-Type Acceptor Molecules for Promising Photovoltaic Parameters in Organic Photovoltaic Cells. ACS OMEGA 2024; 9:6403-6422. [PMID: 38375499 PMCID: PMC10876087 DOI: 10.1021/acsomega.3c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Nonfullerene-based organic solar cells can be utilized as favorable photovoltaic and optoelectronic devices due to their enhanced life span and efficiency. In this research, seven new molecules were designed to improve the working efficiency of organic solar cells by utilizing a terminal acceptor modification approach. The perceived A2-D-A1-D-A2 configuration-based molecules possess a lower band gap ranging from 1.95 to 2.21 eV compared to the pre-existing reference molecule (RW), which has a band gap of 2.23 eV. The modified molecules also exhibit higher λmax values ranging from 672 to 768 nm in the gaseous and 715-839 nm in solvent phases, respectively, as compared to the (RW) molecule, which has λmax values at 673 and 719 nm in gas and chloroform medium, respectively. The ground state geometries, molecular planarity parameter, and span of deviation from the plane were analyzed to study the planarity of all of the molecules. The natural transition orbitals, the density of state, molecular electrostatic potential, noncovalent interactions, frontier molecular orbitals, and transition density matrix analysis of all studied molecules were executed to validate the optoelectronic properties of these molecules. Improved charge mobilities and dipole moments were observed, as newly designed molecules possessed lower internal reorganization energies. The open circuit voltage (Voc) of W4, W5, W6, and W7 among newly designed molecules was improved as compared to the reference molecule. These results elaborate on the superiority of these novel-designed molecules over the pre-existing (RW) molecule as potential blocks for better organic solar cell applications.
Collapse
Affiliation(s)
- Tanzeela Noor
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Shanza Hameed
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ateeq-ur-Rehman
- Department
of Physics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samia Ben Ahmed
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - H. A. Alrafai
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Sameerah I. Al-Saeedi
- Department
of Chemistry, Collage of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - N. M. A. Hadia
- Physics
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Al-Jouf, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Abeer A. Hassan
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
- Department
of chemistry, Faculty of science for Girls, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
7
|
Zaier R, Martel A, Antosiewicz TJ. Effect of Benzothiadiazole-Based π-Spacers on Fine-Tuning of Optoelectronic Properties of Oligothiophene-Core Donor Materials for Efficient Organic Solar Cells: A DFT Study. J Phys Chem A 2023; 127:10555-10569. [PMID: 38086177 PMCID: PMC10749456 DOI: 10.1021/acs.jpca.3c04866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
In this work, five novel A-π-D-π-A type molecules D1-D5 were designed by adding unusual benzothiadiazole derivatives as π-spacer blocks to the efficient reference molecule DRCN5T for application as donor materials in organic solar cells (OSCs). Based on a density functional theory approach, a comprehensive theoretical study was performed with different functionals (B3LYP, B3LYP-GD3, B3LYP-GD3BJ, CAM-B3LYP, M06, M062X, and wB97XD) and with different solvent types (PCM and SMD) at the extended basis set 6-311+g(d,p) to evaluate the structural, optoelectronic, and intramolecular charge transfer properties of these molecules. The B3LYP-GD3BJ hybrid functional was used to optimize the studied molecules in CHCl3 solution with the SMD model solvent as it provided the best results compared to experimental data. Transition density matrix maps were simulated to examine the hole-electron localization and the electronic excitation processes in the excited state, and photovoltaic parameters including open-circuit photovoltage and fill factor were investigated to predict the efficiency of these materials. All the designed materials showed promising optoelectronic and photovoltaic characteristics, and for most of them, a red shift. Out of the proposed molecules, [1,2,5]thiadiazolo[3,4-d]pyridazine was selected as a promising π-spacer block to evaluate its interaction with PC61BM in a composite to understand the charge transfer between the donor and acceptor subparts. Overall, this study showed that adding π-spacer building blocks to the molecular structure is undoubtedly a potential strategy to further enhance the performance of donor materials for OSC applications.
Collapse
Affiliation(s)
- Rania Zaier
- Faculty
of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Arnaud Martel
- Institut
des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | | |
Collapse
|
8
|
Iftikhar R, Irshad R, Zahid WA, Akram W, Shehzad RA, Abdelmohsen SAM, Alanazi MM, Shahzad N, Iqbal J. Designing of fluorine-substituted benzodithiophene-based small molecules with efficient photovoltaic parameters. J Mol Graph Model 2023; 125:108588. [PMID: 37557026 DOI: 10.1016/j.jmgm.2023.108588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
In this study, four hole-transporting materials (JY-M1, JY-M2, JY-M3, and JY-M4) are designed by modifying benzothiadiazole-based core with diphenylamine-based carbazole via acceptors through thiophene linkers. The designed molecules exhibited deeper HOMO energy with smaller energy gaps than the reference JY molecule which enhance their hole mobility. The absorption spectra of the JY-M1, JY-M2, JY-M3, and JY-M4 molecules are located at 380 nm to 407 nm in the gaseous phase and 397 nm to 433 nm in the solvent phase, which is red-shifted and higher than the reference molecule, demonstrating that designed molecules possess improved light absorption properties and enhanced effective hole transfer. The dipole moments of the designed molecules (14.74 D to 26.12 D) indicate a greater ability for charge separation, solubility and will be beneficial to produce multilayer films. Moreover, the results of hole reorganization energy (0.38198 eV to 0.45304 eV) and charge transfer integral (0.14315 eV to 0.14665 eV) of designing molecules show improved hole mobility and lower recombination losses compared to the JY molecule. Overall, we suggested that the structural modifications in the designed molecules contributed to their enhanced efficiency in converting light energy into electrical energy and have the potential for utilization in solar devices, paving the way for future advancements in the field of photovoltaics.
Collapse
Affiliation(s)
- Rabia Iftikhar
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rabiya Irshad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Waqar Ali Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Waqas Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rao Aqil Shehzad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shaimaa A M Abdelmohsen
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Meznah M Alanazi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Nabeel Shahzad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
9
|
Khanam S, Akram SJ, Khera RA, Zohra ST, Shawky AM, Alatawi NS, Ibrahim MAA, Rashid EU. Exploration of charge transfer analysis and photovoltaics properties of A-D-A type non-fullerene phenazine based molecules to enhance the organic solar cell properties. J Mol Graph Model 2023; 125:108580. [PMID: 37544020 DOI: 10.1016/j.jmgm.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
To intensify the photovoltaic properties of organic solar cells, density functional theory (DFT) based computational techniques were implemented on six non-fullerene A-D-A type small molecules (N1-N6) modified from reference molecule (R) which consists of phenazine fused with 1,4- Dimethyl-4H-3,7-dithia-4-aza- cyclopenta [α] pentalene on both sides with one of its phenyl rings acting as the central donor unit, further attached with 2-(5,6-Difluoro-2-methylene-3-oxo-indan-1-ylidene)-malononitrile acceptor groups at terminal sites. All proposed compounds have a phenazine base modified with a variety of substituents at the terminals. Transition density matrix, density of states, frontier molecular orbitals, intramolecular charge transfer abilities and optoelectronic properties of these compounds were investigated using B3LYP/6-31G (d, p) and B3LYP/6-31G++ (d,p) level of theory. All six designed compounds exhibited a bathochromic sift in their λmax as compared to the R molecule. All designed molecules also have reduced band gap and smaller excitation energy than R. Among all, N6 exhibited highest λmax and lowest bandgap as compared to reference molecule indicating its promising photovoltaic properties. Decreased hole and electron reorganization energy in several of the suggested compounds is indicative of greater charge mobility in them. PTB7-Th donor was employed to calculate open circuit voltage of all investigated molecules. N1-N5 molecules had improved optoelectronic properties, significant probable power conversion efficiency as evident from their absorption aspects, high values of Voc, and fill factor, compared to R molecule. Designed A-D-A type NF based molecules make OSCs ideal for use in wearable devices, building-integrated photovoltaics and smart fabrics.
Collapse
Affiliation(s)
- Sabiha Khanam
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan; Theoretical Physics IV, University of Bayreuth, Universität straße 30, 95447, Bayreuth, Germany
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sadia Tul Zohra
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
10
|
Peng M, Wang Y, Wu C, Cai X, Wu Y, Du E, Zheng L, Fu J. Investigating sulfonamides - Human serum albumin interactions: A comprehensive approach using multi-spectroscopy, DFT calculations, and molecular docking. Biochem Biophys Res Commun 2023; 683:149108. [PMID: 37862782 DOI: 10.1016/j.bbrc.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
The environmental and health risks associated with sulfonamide antibiotics (SAs) are receiving increasing attention. Through multi-spectroscopy, density functional theory (DFT), and molecular docking, this study investigated the interaction features and mechanisms between six representative SAs and human serum albumin (HSA). Multi-spectroscopy analysis showed that the six SAs had significant binding capabilities with HSA. The order of binding constants at 298 K was as follows: sulfadoxine (SDX): 7.18 × 105 L mol-1 > sulfamethizole (SMT): 6.28 × 105 L mol-1 > sulfamerazine (SMR): 2.70 × 104 L mol-1 > sulfamonomethoxine (SMM): 2.54 × 104 L mol-1 > sulfamethazine (SMZ): 3.06 × 104 L mol-1 > sulfadimethoxine (SDM): 2.50 × 104 L mol-1. During the molecular docking process of the six SAs with HSA, the binding affinity range is from -7.4 kcal mol-1 to -8.6 kcal mol-1. Notably, the docking result of HSA-SDX reached the maximum of -8.6 kcal mol-1, indicating that SDX may possess the highest binding capacity to HSA. HSA-SDX binding, identified as a static quenching and exothermic process, is primarily driven by hydrogen bonds (H bonds) or van der Waals (vdW) interactions. The quenching processes of SMR/SMZ/SMM/SDX/SMT to HSA are a combination of dynamic and static quenching, indicating an endothermic reaction. Hydrophobic interactions are primarily accountable for SMR/SMZ/SMM/SDX/SMT and HSA binding. Competition binding results revealed that the primary HSA-SAs binding sites are in the subdomain IB of the HAS structure, consistent with the results of molecule docking. The correlation analysis based on DFT calculations revealed an inherent relationship between the structural chemical features of SAs and the binding performance of HSA-SAs. The dual descriptor (DD) and the electrophilic Fukui function were found to have a significant relationship (0.71 and -0.71, respectively) with the binding constants of HSA-SAs, predicting the binding performance of SAs and HSA. These insights have substantial scientific value for evaluating the environmental risks of SAs as well as understanding their impact on biological life activities.
Collapse
Affiliation(s)
- Mingguo Peng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Yicui Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Chunge Wu
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Xuewen Cai
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Yao Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Erdeng Du
- School of Urban Construction, Changzhou University, Changzhou, 213164, China.
| | - Lu Zheng
- School of Urban Construction, Changzhou University, Changzhou, 213164, China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
11
|
Rehman F, Waqas M, Imran M, Ibrahim MAA, Iqbal J, Khera RA, Hadia NMA, Al-Saeedi SI, Shaban M. Approach toward Low Energy Loss in Symmetrical Nonfullerene Acceptor Molecules Inspired by Insertion of Different π-Spacers for Developing Efficient Organic Solar Cells. ACS OMEGA 2023; 8:43792-43812. [PMID: 38027352 PMCID: PMC10666235 DOI: 10.1021/acsomega.3c05665] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this quantum approach, by adding bridge/π-spacer fragments between the donor and acceptor parts of a newly constructed DF-PCIC (A-D-A type) molecule, it is the aim to improve the photovoltaic characteristics of organic solar cells (OSCs). After π-spacer insertion into the reference molecule (DF-R), six new molecules (DF-M1 to DF-M6) were designed. The optoelectronic attributes of newly inspected molecules were theoretically calculated using MPW1PW91/6-31G(d,p) level of theory. All newly proposed molecules possessed a lower band gap (Eg), a higher value of absorption, lower reorganization energy, greater dipole moment, and lower energies of excitations than the DF-R molecule. The frontier molecular orbital study proclaimed that the DF-M1 molecule has the lowest band gap of 1.62 eV in comparison to the 2.41 eV value of DF-R. Absorption properties represented that DF-M1 and DF-M2 molecules show the highest absorption values of up to 1006 and 1004 nm, respectively, in the near-infrared region. Regarding the reorganization energy, DF-M2 has the lowest value of λe (0.0683896 eV) and the lowest value of λh (0.1566471 eV). DF-M2 and DF-M5 manifested greater dipole moments with the values of 5.514665 and 7.143434 D, respectively. The open circuit voltage (VOC) of all the acceptors was calculated with J61, a donor complex. DF-M4 and DF-M6 molecules showed higher values of VOC and fill factor than the DF-R molecule. Based on the given results, it was supposed that all the newly presented molecules might prove themselves to be better than the reference and thus might be of great interest to experimentalists. Thus, they are suggested to be used to develop proficient OSC devices with improved photovoltaic prospects in the near future.
Collapse
Affiliation(s)
- Faseh
ur Rehman
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry
Department, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Javed Iqbal
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - N. M. A. Hadia
- Physics
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Sameerah I. Al-Saeedi
- Department
of Chemistry, Collage of Science, Princess
Nourah Bint Abdulrahman University, P.O.Box
84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
12
|
Mubarik A, Shafiq F, Wang HR, Jiang J, Ju XH. Theoretical design and evaluation of efficient small donor molecules for organic solar cells. J Mol Model 2023; 29:373. [PMID: 37957312 DOI: 10.1007/s00894-023-05782-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
CONTEXT The development of high-efficiency photovoltaic devices is the need of time with increasing demand for energy. Herein, we designed seven small molecule donors (SMDs) with A-π-D-π-A backbones containing various acceptor groups for high-efficiency organic solar cells (OSCs). Molecular engineering was performed by substituting the acceptor group in the synthesized compound (BPR) with another highly efficient acceptor group to improve the photoelectric performance of the molecule. METHOD The photovoltaic, optoelectronic, and photophysical properties of the proposed compounds (BP1-BP7) were investigated in comparison to BPR using DFT and TD-DFT at MPW1PW91/6-311G(d,p) level of theory. All molecules we designed have red-shifted absorption spectra. The modification of the acceptor fragment of the BPR resulted in a reduced HOMO-LUMO energy gap; thus, the designed compounds (BP1-BP7) had improved optoelectronic responses as compared with the BPR molecule. Various key factors that are crucial for efficient SMDs such as exciton binding energy, frontier molecular orbitals (FMOs), absorption maximum (λmax), open circuit voltage (VOC), dipole moment (μ), excitation charge mobilities, and the transition density matrix of (BPR, BP1-BP7) have also been studied. Low reorganizational energy (holes and electrons) values provide high charge mobility, and all the designed compounds are efficient in this regard. Here, BP6 exhibits low excitation energy (1.66 eV), highest open circuit voltage (2.00 V), normalized VOC (77.23), and fill factor (0.931). Consequently, the superiority of the designed molecules advises experimenters to envision future developments in extremely effective OSC devices.
Collapse
Affiliation(s)
- Adeel Mubarik
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Faiza Shafiq
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Hao-Ran Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Xue-Hai Ju
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
13
|
Maqsood MH, Khera RA, Mehmood RF, Akram SJ, Al-Zaqri N, Ibrahim MAA, Noor S, Waqas M. End-cap modeling on the thienyl-substituted benzodithiophene trimer-based donor molecule for achieving higher photovoltaic performance. J Mol Graph Model 2023; 124:108550. [PMID: 37331259 DOI: 10.1016/j.jmgm.2023.108550] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Despite the substantial advancements in organic solar cells (OSCs), the best devices still have quite low efficiencies due to less focus on donor molecules. With the intention to present efficient donor materials, seven small donor molecules (T1-T7) were devised from DRTB-T molecule by using end-capped modeling. Newly designed molecules exhibited remarkable improved optoelectronic properties such as less band gap (from 2.00 to 2.23 eV) than DRTB-T having band gap of 2.57 eV. Similarly, a significant improvement in λmax values was noticed in designed molecules in gaseous medium (666 nm-738 nm) and solvent medium (691 nm-776 nm) than DRTB-T having λmax values at 568 nm and 588 nm in gas and solvent phase respectively. Among all molecules, T1 and T3 exhibited significant improvement in optoelectronic properties such as narrow band gap, lower excitation energy, higher λmax values and lower electron reorganization energy as compared to pre-existed DRTB-T molecule. The better functional ability of T1-T7 is also suggested by an improvement in open circuit voltage (Voc) of designed structures (1.62 eV-1.77 eV) as compared to R (1.49 eV) when PC61BM is used as an acceptor. So, all our newly derived donors can be employed in the active layer of organic solar cells to manufacture efficient OSCs.
Collapse
Affiliation(s)
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Sadia Noor
- Department of Chemistry, University of Hohenheim Stuttgart, 70599, Germany
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
14
|
Raza A, Mehmood RF, Rashid EU, Nasr S, Yahia IS, Iqbal J, Alatawi NS, Khera RA. Amplifying the photovoltaic properties of phenylene dithiophene core based non-fused ring by engineering the terminal acceptors modification to enhance the efficiency of organic solar cells. J Mol Graph Model 2023; 124:108563. [PMID: 37480831 DOI: 10.1016/j.jmgm.2023.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
In this study, a series of eight non-fused rings-based semiconducting acceptors (AR1-AR8) were computationally developed by making modifications to the parent molecule (PTICO). In this study, a DFT analysis was conducted at an accurately chosen level of theory to gather a comprehensive inventory of the optoelectronic characteristics of AR1-AR8 and PTICO. The findings indicate that all recently developed molecules exhibit a bathochromic shift in their maximum UV-visible absorbance (λmax) with a smaller band gap (Eg). AR1 has demonstrated the most significant red shift in UV-visible absorbance and possesses the smallest Eg when compared to other recently developed acceptors. AR2 acceptor has shown the best results both as electron and hole-transporting materials owing to its smallest value of reorganization energy for electrons and holes. J61 donor was engaged to calculate the open-circuit voltage (VOC) and the highest VOC with maximum FF % value was observed in AR4. The investigation of charge transfer was also conducted utilizing J61 in conjunction with the AR4 acceptor. Natural transition orbitals (NTO) have also been inspected to recognize the percentage electron transport contribution (% ETC) from the ground state to the first excites state (S0 to S1). The findings of this research suggest that the modified acceptors exhibit potential for practical implementation in the development of organic solar cells that possess improved photovoltaic performance.
Collapse
Affiliation(s)
- Ahmad Raza
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, University of Education, Township, Lahore, 54770, Pakistan D Research, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Samia Nasr
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia
| | - I S Yahia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, P.O. Box 9004, Saudi Arabia; Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia; Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
15
|
Zubair H, Mahmood RF, Waqas M, Ishtiaq M, Iqbal J, Ibrahim MAA, Sayed SRM, Noor S, Khera RA. Effect of tailoring π-linkers with extended conjugation on the SJ-IC molecule for achieving high VOC and improved charge mobility towards enhanced photovoltaic applications. RSC Adv 2023; 13:26050-26068. [PMID: 37664200 PMCID: PMC10472344 DOI: 10.1039/d3ra03317a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
The problem of low efficiency of organic solar cells can be solved by improving the charge mobility and open circuit voltage of these cells. The current research aims to present the role of π-linkers, having extended conjugation, between the donor and acceptor moieties of indacenodithiophene core-based A-π-D-π-A type SJ-IC molecule to improve the photovoltaic performance of pre-existing SJ-IC. Several crucial photovoltaic parameters of SJ-IC and seven newly proposed molecules were studied using density functional theory. Surprisingly, this theoretical framework manifested that the tailoring of SJ-IC by replacing its π-linker with linkers having extended π-conjugation gives a redshift in maximum absorption coefficient in the range of 731.69-1112.86 nm in a solvent. In addition, newly designed molecules exhibited significantly narrower bandgaps (ranging from 1.33 eV to 1.93 eV) than SJ-IC having a bandgap of 2.01 eV. Similarly, newly designed molecules show significantly less excitation energy in gaseous and solvent phases than SJ-IC. Furthermore, the reorganization energies of DL1-DL7 are much lower than that of SJ-IC, indicating high charge mobility in these molecules. DL6 and DL7 have shown considerably improved open circuit voltage (VOC), reaching 1.49 eV and 1.48 eV, respectively. Thus, the modification strategy employed herein has been fruitful with productive effects, including better tuning of the energy levels, lower bandgaps, broader absorption, improved charge mobility, and increased VOC. Based on these results, it can be suggested that these newly presented molecules can be considered for practical applications in the future.
Collapse
Affiliation(s)
- Hira Zubair
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rana Farhat Mahmood
- Department of Chemistry, Division of Science and Technology, University of Education Township Lahore 54770 Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Mariam Ishtiaq
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
- School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4000 South Africa
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Sadia Noor
- Department of Chemistry, University of Hohenheim Stuttgart 70599 Germany
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
16
|
Aloufi F, Halawani RF, Jamoussi B, Hajri AK, Zahi N. Quantum Modification of Indacenodithieno[3,2- b]thiophene-Based Non-fullerene Acceptor Molecules for Organic Solar Cells of High Efficiency. ACS OMEGA 2023; 8:21425-21437. [PMID: 37360427 PMCID: PMC10286251 DOI: 10.1021/acsomega.2c07975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/11/2023] [Indexed: 06/28/2023]
Abstract
In order to enhance the efficacy of organic solar cells, six new three-dimensional small donor molecules (IT-SM1 to IT-SM6) have been computationally designed by modifying the peripheral acceptors of the reference molecule (IT-SMR). The frontier molecular orbitals revealed that IT-SM2 to IT-SM5 had a smaller band gap (Egap) than IT-SMR. They also had smaller excitation energies (Ex) and exhibited a bathochromic shift in their absorption maxima (λmax) when compared to IT-SMR. In both the gas and chloroform phases, IT-SM2 had the largest dipole moment. IT-SM2 also had the best electron mobility, while IT-SM6 had the best hole mobility owing to their smallest reorganization energy for electron (0.1127 eV) and hole (0.0907 eV) mobility, respectively. The analyzed donor molecules' open-circuit voltage (VOC) indicated that all of these proposed molecules had greater VOC and fill factor (FF) values than the IT-SMR molecule. In accordance with the evidence of this work, the altered molecules can seem to be quite proficient for usage by experimentalists and have prospective use in future in the manufacture of organic solar cells with improved photovoltaic properties.
Collapse
Affiliation(s)
- Fahed
A. Aloufi
- Department
of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Riyadh F. Halawani
- Department
of Environment, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bassem Jamoussi
- Department
of Environmental Science, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nesrine Zahi
- Applied
College, Huraymila, Imam Mohammad Ibn Saud
Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
- Thermal
and Energetic Systems Studies Laboratory (LESTE), National Engineering
School of Monastir (ENIM), University of
Monastir, Monastir 5000, Tunisia
| |
Collapse
|
17
|
Sadiq S, Waqas M, Zahoor A, Mehmood RF, Essid M, Aloui Z, Khera RA, Akram SJ. Synergistic modification of end groups in Quinoxaline fused core-based acceptor molecule to enhance its photovoltaic characteristics for superior organic solar cells. J Mol Graph Model 2023; 123:108518. [PMID: 37235903 DOI: 10.1016/j.jmgm.2023.108518] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The competence of organic solar cells (OSCs) could be enhanced by improving the light absorption capabilities as well as the open-circuit voltage (Voc) of utilized molecules. To upgrade overall functionality of OSCs, seven new molecules were designed in this work using an end-cap alteration technique on Quinoxaline fused core-based non-fullerene acceptor (Qx-2) molecule. This technique is known to be quite advantageous in terms of improvement of the effectiveness and optoelectrical behavior of various OSCs. Critical parameters like the absorption maximum, frontier molecular orbitals, excitation energy, exciton binding energy, Voc, and fill factor of molecules were considered for the molecules thus designed. All newly designed molecules showed outstanding improvement in optoelectronic as well as performance-related properties. Out of all scrutinized molecules, Q1 exhibited highest wavelength of absorption peak (λmax = 779 nm) with the reduced band gap (1.90 eV), least excitation energy (Ex = 1.59 eV), along with the highest dipole moment (17.982950 D). Additionally, the newly designed compounds Q4, Q5, and Q6 exhibited significantly improved Vocs that were 1.55, 1.47, and 1.50 eV accordingly, as compared to the 1.37 eV of Qx-2 molecule. These molecules also showed remarkable improvement in fill factor attributed to direct correspondence of Voc with it. Inclusively, these results support the superiority of these newly developed molecules as prospective constituents of upgraded OSCs.
Collapse
Affiliation(s)
- Sonia Sadiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Zahoor
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
18
|
Gul S, Ans M, Abdelmohsen SAM, Alanazi MM, Hossain I, Iqbal J. Methoxy triphenylamine hexaazatrinaphthylene based small molecules as donor material for photovoltaic applications. J Mol Graph Model 2023; 122:108486. [PMID: 37080003 DOI: 10.1016/j.jmgm.2023.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Organic solar cells (OSCs) are capturing huge interest because of their numerous benefits, which include transparency, flexibility, and solution processability. In current project, five new donor molecules (J1-J5) were designed by employing the strategy of end capped alteration of the acceptor moieties on the two sides of the reference molecule. The Methoxy Triphenylamine hexaazatrinaphthylene (MeO-TPA-HATNA) have been used as a reference molecule in this study. DFT and TD-DFT methods employing B3LYP/6-31G (d, p) functional has been applied to perform different analysis. Geometrical, and opto-electronic features of all tailored chromophores were investigated, and comparison was made with the reference J. Among all tailored molecules, J5 shows highest λmax (862 nm) with the least band gap of 1.28 eV. TDM and DOS analysis revealed the high rate of charge transfer. Further, reorganization energy calculations are also executed to examine the charge transfer features of the designed molecules. The results shows that J5 among all these molecules has the highest rate of charge carrier (electron and hole) mobility with least RE values and this molecule can be used as a promising donor material for OSCs with remarkable charge transferring properties. Furthermore, the designed materials showed a suitable HOMO along with higher LUMO energy levels with respect to PC61BM molecule and coupling the PC61BM acceptor with investigated donor molecules gives highly increased Voc (0.66-0.76 V) than reference molecule (0.49 V) and also the power conversion efficiency (PCE) is elevated to 15.09%. The outcomes of current theoretical research have demonstrated that the end capped alteration of different acceptor groups is an excellent strategy to get OSCs with desirable photovoltaic performance. As, all the newly created molecules (J1-J5) have exhibited outstanding electronic and optical properties therefore, these can be expectedly prove excellent material for creating high efficiency future organic photovoltaic devices.
Collapse
Affiliation(s)
- Shehla Gul
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Ans
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Shaimaa A M Abdelmohsen
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Meznah M Alanazi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ismail Hossain
- School of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg, 620000, Russia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
19
|
Azaid A, Abram T, Alaqarbeh M, Raftani M, Kacimi R, Sbai A, Lakhlifi T, Bouachrine M. Design new organic material based on triphenylamine (TPA) with D-π-A-π-D structure used as an electron donor for organic solar cells: A DFT approach. J Mol Graph Model 2023; 122:108470. [PMID: 37116334 DOI: 10.1016/j.jmgm.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/30/2023]
Abstract
Because of the increasing scarcity of fossil fuels and the growing need for energy, it has become necessary to research new renewable energy resources. In this study, five new high-performance materials (TP-FA1F-TP - TP-FA5F-TP) of the D-π-A-π-D configuration based on triphenylamine (TPA) were theoretically investigated by applying DFT and TD-DFT methods for future application as heterojunction organic solar cells (BHJ). The influence of the modification of the acceptor (A) of the parent molecule TP-FTzF-TP on the structural, electronic, photovoltaic and optical properties of the TP-FA1F-TP - TP-FA5F-TP organic molecules was investigated in detail. TP-FA1F-TP - TP-FA5F-TP showed Egap in the interval of 1.44-2.01 eV with λabs in the range of 536-774 nm, open-circuit voltage (Voc) values varied between 0.3 and 0.56 V and power conversion efficiencies (PCE) ranging from (3-6) %. Our results also show that the donor molecules suggested in this research exhibit an improved performance compared to the recently synthesized TP-FTzF-TP, such as a lowest HOMO energy, a smaller Egap, and a greater absorption spectrum, and can lead to higher performance. Indeed, this theoretical research could lead to the future synthesis of better compounds as active substances used in BHJ.
Collapse
Affiliation(s)
- Ahmed Azaid
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Tayeb Abram
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al-Baqa, 19381, Jordan.
| | - Marzouk Raftani
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Rchid Kacimi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco; EST Khenifra, University Sultan Moulay Sliman, Morocco.
| |
Collapse
|
20
|
Akram S, Hadia NMA, Shawky AM, Iqbal J, Khan MI, Alatawi NS, Ibrahim MAA, Ans M, Khera RA. Designing of Thiophene [3, 2-b] Pyrrole Ring-Based NFAs for High-Performance Electron Transport Materials: A DFT Study. ACS OMEGA 2023; 8:11118-11137. [PMID: 37008161 PMCID: PMC10061509 DOI: 10.1021/acsomega.2c07954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Among the blended components of a photoactive layer in organic photovoltaic (OPV) cells, the acceptor is of high importance. This importance is attributed to its increased ability to withdraw electrons toward itself for their effective transport toward the respective electrode. In this research work, seven new non-fullerene acceptors were designed for their possible utilization in the OPVs. These molecules were designed through side-chain engineering of the PTBTP-4F molecule, with its fused pyrrole ring-based donor core and different strongly electron-withdrawing acceptors. To elucidate their effectiveness, the band gaps, absorption characteristics, chemical reactivity indices, and photovoltaic parameters of all of the architecture molecules were compared with the reference. Through various computational software, transition density matrices, graphs of absorption, and density of states were also plotted for these molecules. From some chemical reactivity indices and electron mobility values, it was proposed that our newly designed molecules could be better electron-transporting materials than the reference. Among all, TP1, due to its most stabilized frontier molecular orbitals, lowest band gap and excitation energies, highest absorption maxima in both the solvent and gas medium, least hardness, highest ionization potential, superior electron affinity, lowest electron reorganization energy, as well as highest rate constant of charge hopping, seemed to be the best molecule in terms of its electron-withdrawing abilities in the photoactive layer blend. In addition, in terms of all of the photovoltaic parameters, TP4-TP7 was perceived to be better suited in comparison to TPR. Thus, all our suggested molecules could act as superior acceptors to TPR.
Collapse
Affiliation(s)
- Sahar
Javaid Akram
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - N. M. A. Hadia
- Physics
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72446, Al-Jouf, Saudi Arabia
| | - Ahmed M. Shawky
- Science
and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Javed Iqbal
- Department
of Chemistry and Punjab Bio-Energy Institute, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran Khan
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Naifa S. Alatawi
- Physics
Department, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School of
Health Sciences, University of Kwa-Zulu-Natal, Westville, Durban 4000, South Africa
| | - Muhammad Ans
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
21
|
Matlou ML, Louis H, Charlie DE, Agwamba EC, Amodu IO, Tembu VJ, Manicum ALE. Anticancer Activities of Re(I) Tricarbonyl and Its Imidazole-Based Ligands: Insight from a Theoretical Approach. ACS OMEGA 2023; 8:10242-10252. [PMID: 36969470 PMCID: PMC10035000 DOI: 10.1021/acsomega.2c07779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Rhenium complexes have been observed experimentally to exhibit good inhibitory activity against malignant cells. Hence, our motivation is to explore this activity from a theoretical perspective. In the present study, density functional theory (DFT) and in silico molecular docking approaches were utilized to unravel the unique properties of metal-based rhenium tricarbonyl complexes as effective anticancer drugs. All DFT calculations and geometric optimizations were conducted using the well-established hybrid functional B3LYP-GD(BJ)/Gen/6-311++G(d,p)/LanL2DZ computational method. The FT-IR spectroscopic characterization of the complexes: fac-[Re(Pico)(CO)3(Pz)] (R1), fac-[Re(Pico)(CO)3(Py)] (R2), fac-[Re(Dfpc)(CO)3(H2O)] (R3), fac-[Re(Dfpc)(CO)3(Pz)] (R4), fac-[Re(Dfpc)(CO)3(Py)] (R5), fac-[Re(Tfpc)(CO)3(H2O)] (R6), fac-[Re(Tfpc)(CO)3(Py)] (R7), and fac-[Re(Tfpc)(CO)3(Im)] (R8) was explored. To gain insights into the electronic structural properties, bioactivity, and stability of these complexes, the highest occupied molecular orbital-lowest unoccupied molecular orbital analysis, binding energy, and topological analysis based on quantum theory of atoms-in-molecules were considered. The anticancer activities of the complexes were measured via in silico molecular docking against human BCL-2 protein (IG5M) and proapoptotic (agonist) BAX 1 protein (450O). The results showed that the studied complexes exhibited good binding affinity (-3.25 to -10.16 kcal/mol) and could cause significant disruption of the normal physiological functions of the studied proteins. The results of DFT calculations also showed that the studied complexes exhibited good stability and are suitable candidates for the development of anticancer agents.
Collapse
Affiliation(s)
- Mabu L. Matlou
- Department
of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria 0001, South Africa
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540211, Nigeria
| | - Destiny E. Charlie
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540211, Nigeria
| | - Ernest C. Agwamba
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540211, Nigeria
- Department
of Chemistry, Covenant University, Ota 50001, Nigeria
| | - Ismail O. Amodu
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540211, Nigeria
| | - Vuyelwa J. Tembu
- Department
of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria 0001, South Africa
| | - Amanda-Lee E. Manicum
- Department
of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria 0001, South Africa
| |
Collapse
|
22
|
Asif A, Maqsood N, Akram SJ, Nouman M, Elmushyakhi A, Shawky AM, Iqbal J. Efficient side-chain engineering of thieno-imidazole salt-based molecule to boost the optoelectronic attributes of organic solar cells: A DFT approach. J Mol Graph Model 2023; 121:108428. [PMID: 36801585 DOI: 10.1016/j.jmgm.2023.108428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
This study focused on modeling and density functional theory (DFT) analysis of reference (AI1) and designed structures (AI11-AI15), based on the thieno-imidazole core, in order to create profitable candidates for solar cells. All the optoelectronic properties of the molecular geometries were computed using DFT and time dependent-DFT approaches. The influence of terminal acceptors on the bandgaps, absorption, hole and electron mobilities, charge transfer capabilities, fill factor, dipole moment, etc. Of the recently designed structures (AI11-AI15), as well as reference (AI1), were evaluated. Optoelectronics and chemical parameters of newly architecture geometries were shown to be superior to the cited molecule. The FMOs and DOS graphs also demonstrated that the linked acceptors remarkably improved the dispersion of charge density in the geometries under study, particularly in AI11 and AI14. Calculated values of binding energy and chemical potential confirmed the thermal stability of the molecules. All the derived geometries surpassed the AI1 (Reference) molecule in terms of maximum absorbance ranging from 492 to 532 nm (in chlorobenzene solvent) and a narrower bandgap ranging from 1.76 to 1.99eV. AI15 had the lowest exciton dissociation energy of 0.22eV as well as lowest electrons and hole dissociation energies, while AI11 and AI14 showed highest VOC, fill factor, power conversion efficiency (PCE), IP and EA (owing to presence of strong electron pulling cyano (CN) moieties at their acceptor portions and extended conjugation) than all the examined molecules, implying that they could be used to build elite solar cells with enhanced photovoltaic attributes.
Collapse
Affiliation(s)
- Areeba Asif
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Nimra Maqsood
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Nouman
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abraham Elmushyakhi
- Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan.
| |
Collapse
|
23
|
Rashid EU, Hadia NMA, Shawky AM, Ijaz N, Essid M, Iqbal J, Alatawi NS, Ans M, Khera RA. Quantum modeling of dimethoxyl-indaceno dithiophene based acceptors for the development of semiconducting acceptors with outstanding photovoltaic potential. RSC Adv 2023; 13:4641-4655. [PMID: 36760314 PMCID: PMC9900428 DOI: 10.1039/d2ra07957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/08/2023] Open
Abstract
In the current DFT study, seven dimethoxyl-indaceno dithiophene based semiconducting acceptor molecules (ID1-ID7) are designed computationally by modifying the parent molecule (IDR). Here, based on a DFT exploration at a carefully selected level of theory, we have compiled a list of the optoelectronic properties of ID1-ID7 and IDR. In light of these results, all newly designed molecules, except ID5 have shown a bathochromic shift in their highest absorbance (λ max). ID1-ID4, ID6 and ID7 molecules have smaller band gap (E gap) and excitation energy (E x). IP of ID5 is the smallest and EA of ID1 is the largest among all others. Compared to the parent molecule, ID1-ID3 have increased electron mobility, with ID1 being the most improved in hole mobility. ID4 had the best light harvesting efficiency in this investigation, due to its strongest oscillator. The acceptor molecules' open-circuit voltages (V OC) were computed after being linked to the PTB7-Th donor molecule. Fill factor (FF) and normalized V OC of ID1-ID7 were calculated and compared to the parent molecule. Based on the outcomes of this study, the modified acceptors may be further scrutinised for empirical usage in the production of organic solar cells with enhanced photovoltaic capabilities.
Collapse
Affiliation(s)
- Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - N. M. A. Hadia
- Physics Department, College of Science, Jouf UniversityP.O. Box 2014SakakaAl-JoufSaudi Arabia
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| | - Nashra Ijaz
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU)P.O. Box 9004AbhaSaudi Arabia,Université de Carthage, Faculté des Sciences de Bizerte, LR13ES08 Laboratoire de Chimie des MatériauxZarzouna Bizerte7021Tunisia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Naifa S. Alatawi
- Physics Department, Faculty of Science, University of TabukTabuk 71421Saudi Arabia
| | - Muhammad Ans
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
24
|
Rani M, Hadia NMA, Shawky AM, Mehmood RF, Hameed S, Zahid S, Iqbal J, Alatawi NS, Ahmed A, Khera RA. Novel A-π-D-π-A type non-fullerene acceptors of dithienyl diketopyrropopyrrole derivatives to enhance organic photovoltaic applications: a DFT study. RSC Adv 2023; 13:1640-1658. [PMID: 36712641 PMCID: PMC9833106 DOI: 10.1039/d2ra07291b] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023] Open
Abstract
To boost the photovoltaic attributes of organic photovoltaic cells, seven dithienyl diketopyrropopyrrole (TDPP) donor-based A-π-D-π-A (acceptor-bridge-donor-bridge-acceptor) type molecules (TM1-TM7) were formulated by modifying the electron accepting ends of the reference molecule (TMR). Optical and quantum chemical parameters of seven synthesized molecules were investigated using density functional theory with the MPW1PW91/6-31G(d,p) functional. Several parameters that can be used to measure and improve the efficiency of solar cells have been analyzed and summed up. These parameters include binding energy of exciton, excitation energy of electron, reorganization energies, dipole moment, molecular electrostatic potential, charge mobility, wavelength of maximum absorption, open circuit voltage, short circuit current, fill factor, density of states, transition density matrices, as well as iso-surface and non-covalent interactions. Thus, all of our proposed structures are perceived to be superior to the reference in terms of the maximum possible solar energy yield in solar cells with bulk heterojunctions, as determined by analyses of our designed molecules for the aforementioned parameters.
Collapse
Affiliation(s)
- Mafia Rani
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan
| | - N. M. A. Hadia
- Physics Department, College of Science, Jouf UniversityP.O. Box 2014SakakaAl-JoufSaudi Arabia
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of EducationTownshipLahore 54770Pakista
| | - Shanza Hameed
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan
| | - Saba Zahid
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan,Department of Chemistry, College of Science, University of BahrainSakhir, P. O. Box 32038Bahrain
| | - Naifa S. Alatawi
- Physics Department, Faculty of Science, University of TabukTabuk 71421Saudi Arabia
| | - Asma Ahmed
- Department of Computer Science Faculty of Computer and Information Technology, University of TabukTabukSaudi Arabia
| | | |
Collapse
|
25
|
End-group engineering of non-fused benzothiadiazol derivatives with thiophene rings based small donor molecules for tuning the photovoltaic properties via DFT approach. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
Impact of end-group modifications and planarity on BDP-based non-fullerene acceptors for high-performance organic solar cells by using DFT approach. J Mol Model 2022; 28:397. [PMID: 36416987 DOI: 10.1007/s00894-022-05382-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022]
Abstract
With the aim to enhance the photovoltaic properties of organic solar cells (OSCs), seven new non-fullerene acceptors (K1-K7) have been designed by end-group modifications of benzo[2,1-b:3,4-b']bis(4H-dithieno[3,2-b:2',3'-d]pyrrole) (BDP)-based small molecule "MH" (which is taken as our reference R) using computational techniques. To investigate their various optoelectronic parameters, DFT studies were applied using the B3LYP functional at 6-31G (d, p) basis set. The measurement of molecular planarity parameter (MPP) and span of deviation from plane (SDP) confirmed the planar geometries of these structures resulting in enhanced conjugation. Frontier molecular orbital (FMO) and density of states (DOS) analyses confirmed shorter band gaps of K1-K7 as compared to R, which promotes charge transfer in them. Optical properties demonstrated that these compounds have absorption range from 692 to 711 nm, quite better than the 684 nm of reference R. Molecular electrostatic potential (MEP) and Mulliken' charge distribution analysis also revealed the presence of epic charge separation in these structures. K1-K7 showed enhanced LHE values as compared to R putting emphasis on their better abilities to produce charge carrier by absorption of light. Reorganization energies showed that all newly designed compound could have better rate of charge carrier mobility (except K4) than R. Calculations of open-circuit voltage (Voc) and fill factor (FF) revealed its highest values for K3 and K4. Among newly designed molecules, K3 showed betterment in all its investigated parameters, making it a strong candidate to get enhanced power conversion efficiencies of OSCs.
Collapse
|
27
|
Waqas M, Iqbal J, Mehmood RF, Akram SJ, Shawky AM, Raheel M, Rashid EU, Khera RA. Impact of end-capped modification of MO-IDT based non-fullerene small molecule acceptors to improve the photovoltaic properties of organic solar cells. J Mol Graph Model 2022; 116:108255. [PMID: 35779337 DOI: 10.1016/j.jmgm.2022.108255] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022]
Abstract
Density functional theory, along with its time dependent computational approach were employed in order to fine tune the photovoltaic attributes along with the efficiency of the MO-IDIC-2F molecule. Thus, five new molecules were designed by substitution of the different notable acceptor fragments in the MO-IDIC-2F molecule, along with the addition of the "[1, 2, 5] thiadiazolo[3,4-d] pyridazine" spacer moieties between donor core and newly substituted acceptor groups. In this research work, various photovoltaic properties, which could affect the efficiency of an organic chromophores, such as bandgap, oscillator strength, dipole moment, binding energy, light-harvesting efficiency, etc. were studied. All the newly proposed molecules demonstrated significantly improved outcomes in comparison to that of the reference molecule, in their absorption spectrum, excitation, as well as binding energy values, etc. In order to confirm the results of optoelectronic properties, density of states, transition density matrix, and electrostatic potential analyses of molecules were also performed, which supported our computational findings. All of the results confirmed the high potential of all the newly proposed molecules for the development of improved OSCs.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan.
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Muhammad Raheel
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Quetta, 87300, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
28
|
Novel A-π-D-π-A-type non-fullerene acceptors for solution-processed organic photovoltaic cells: A DFT study. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Sabir S, Hadia N, Iqbal J, Mehmood RF, Akram SJ, Khan MI, Shawky AM, Raheel M, Somaily H, Khera RA. DFT molecular modeling of A2-D-A1-D-A2 type DF-PCIC based small molecules acceptors for organic photovoltaic cells. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Rani S, Al-Zaqri N, Iqbal J, Akram SJ, Boshaala A, Mehmood RF, Saeed MU, Rashid EU, Khera RA. Designing dibenzosilole core based, A 2-π-A 1-π-D-π-A 1-π-A 2 type donor molecules for promising photovoltaic parameters in organic photovoltaic cells. RSC Adv 2022; 12:29300-29318. [PMID: 36320777 PMCID: PMC9558076 DOI: 10.1039/d2ra05934g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
In this research work, four new molecules from the π-A-π-D-π-A-π type reference molecule "DBS-2PP", were designed for their potential application in organic solar cells by adding peripheral A2 acceptors to the reference. Under density functional theory, a comprehensive theoretical investigation was conducted to examine the structural geometries, along with the optical and photovoltaic parameters; comprising frontier molecular orbitals, density of states, light-harvesting effectiveness, excitation, binding, and reorganizational energies, molar absorption coefficient, dipole moment, as well as transition density matrix of all the molecules under study. In addition, some photo-voltaic characteristics (open circuit photo-voltage and fill factor) were also studied for these molecules. Although all the developed compounds (D1-D4) surpassed the reference molecule in the attributes mentioned above, D4 proved to be the best. D4 possessed the narrowest band-gap, as well as the highest absorption maxima and dipole moment of all the molecules in both the evaluated phases. Moreover, with PC61BM as the acceptor, D4 showed the maximum V OC and FF values. Furthermore, while D3 had the greatest hole mobility owing to its lowest value of hole reorganization energy, D4 exhibited the maximum electron mobility due to its lowermost value of electron reorganization energy. Overall, all the chromophores proposed in this study showed outstanding structural, optical, and photovoltaic features. Considering this, organic solar cell fabrication can be improved by using these newly derived donors at the donor-acceptor interfaces.
Collapse
Affiliation(s)
- Saima Rani
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
- Department of Chemistry, College of Science, University of Bahrain Zallaq Bahrain
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Ahmed Boshaala
- Research Centre, Manchester Salt & Catalysis Unit C, 88-90 Chorlton Rd M15 4AN Manchester UK
- Libyan Authority for Scientific Research P. O. Box 80045 Tripoli Libya
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education Township Lahore 54770 Pakistan
| | - Muhammad Umar Saeed
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
31
|
Rashid EU, Hadia NMA, Alaysuy O, Iqbal J, Hessien MM, Mersal GAM, Mehmood RF, Shawky AM, Khan MI, Khera RA. Quantum chemical modification of indaceno dithiophene-based small acceptor molecules with enhanced photovoltaic aspects for highly efficient organic solar cells. RSC Adv 2022; 12:28608-28622. [PMID: 36320510 PMCID: PMC9539724 DOI: 10.1039/d2ra05239c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
In this computational work, with the aim of boosting the ultimate efficiency of organic photovoltaic cells, seven small acceptors (IDST1-IDST7) were proposed by altering the terminal-acceptors of reference molecule IDSTR. The optoelectronic characteristics of the IDSTR and IDST1-IDST7 molecules were investigated using the MPW1PW91/6-31G(d,p) level of theory, and solvent-state computations were examined using time-dependent density functional theory (TD-DFT) simulation. Nearly all the investigated photovoltaic aspects of the newly proposed molecules were found to be better than those of the IDSTR molecule e.g. in comparison to IDSTR, IDST1-IDST7 exhibit a narrower bandgap (E gap), lower first excitation energy (E x), and a significant red-shift in the absorbance maxima (λ max). According to the findings, IDST3 has the lowest E x (1.61 eV), the greatest λ max (770 nm), and the shortest E gap (2.09 eV). IDST1-IDST7 molecules have higher electron mobility because their RE of electrons is less than that of IDSTR. Hole mobility of IDST2-IDST7 is higher than that of the reference owing to their lower RE for hole mobility than IDSTR. By coupling with the PTB7-Th donor, the open circuit voltage (V OC) of the investigated acceptor molecules (IDSTR and IDST1-IDST7) was calculated and investigation revealed that IDST4-IDST6 molecules showed higher V OC and fill factor (FF) values than IDSTR molecules. Accordingly, the modified molecules can be seriously evaluated for actual use in the fabrication of OSCs with enhanced photovoltaic and optoelectronic characteristics in light of the findings of this study.
Collapse
Affiliation(s)
- Ehsan Ullah Rashid
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan
| | - N. M. A. Hadia
- Physics Department, College of Science, Jouf UniversityP.O. Box 2014SakakaAl-JoufSaudi Arabia
| | - Omaymah Alaysuy
- Department of Chemistry, College of Science, University of Tabuk71474TabukSaudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of AgricultureFaisalabad 38000Pakistan,Department of Chemistry, College of Science, University of Bahrain ZallaqBahrain
| | - M. M. Hessien
- Department of Chemistry, College of Science, Taif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science, Taif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of EducationTownshipLahore 54770Pakistan
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| | | | | |
Collapse
|
32
|
Rashid EU, Hadia NMA, Javed Iqbal, Mehmood RF, Somaily HH, Akram SJ, Shawky AM, Khan MI, Noor S, Khera RA. Engineering of W-shaped benzodithiophenedione-based small molecular acceptors with improved optoelectronic properties for high efficiency organic solar cells. RSC Adv 2022; 12:21801-21820. [PMID: 36043078 PMCID: PMC9358680 DOI: 10.1039/d2ra03280e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
In the current study, with the objective to improve the overall performance of organic solar cells, seven new W-shaped small molecular acceptors – were developed theoretically by the end-group alteration of the reference (WR) molecule. The MPW1PW91 functional with the basis set 6-31G(d,p) was used to explore the optoelectronic properties of the WR and W1–W7 molecules and the time-dependent self-consistent filed (TD-SCF) simulation was used to investigate the solvent-state calculations. The several explored photovoltaic attributes were the absorption spectra, excitation energies, bandgap between the FMOs, oscillator strength, full width at half maximum, light-harvesting efficiency, transition density matrices, open-circuit voltage, fill factor, density of states, binding energy, interaction coefficient, etc. Overall, the results revealed a bathochromic shift in the absorption maxima (λmax), a reduced HOMO–LUMO gap (Egap), and smaller excitation energy (Ex) of the altered molecules as compared to the WR molecule. Some of the optoelectronic aspects of a well-known fused ring based acceptor named Y6 are also compared with the studied W-shaped molecules. Additionally, the W1 molecule presented the smallest Egap, along with highest λmax and the lowest Ex, amongst all, in both the evaluated media (gas and solvent). The open circuit voltage (VOC) of all the considered small molecular acceptors was calculated by pairing them with the PTB7-Th donor. Here, W6 and W7 displayed the best results for the VOC (1.48 eV and 1.51 eV), normalized VOC (57.25 and 58.41) and FF (0.9131 and 0.9144). Consequently, in light of the results of this research, the altered molecules could be considered for practical implementation in the manufacturing of OSCs with improved photovoltaic capabilities. The developed molecules have a reduced band gap and lower excitation energy. Their VOC was calculated by making complexes of them with the PTB7-Th donor.![]()
Collapse
Affiliation(s)
- Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - N M A Hadia
- Physics Department, College of Science, Jouf University Sakaka Al-Jouf P. O. Box 2014 Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education Township Lahore 54770 Pakistan
| | - H H Somaily
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia.,Department of Physics, Faculty of Science, King Khalid University Abha P.O. Box 9004 Saudi Arabia
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Muhammad Imran Khan
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Sadia Noor
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
33
|
Spirothienoquinoline-based acceptor molecular systems for organic solar cell applications: DFT investigation. J Mol Model 2022; 28:244. [PMID: 35927594 DOI: 10.1007/s00894-022-05226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
In this research, eight three-dimensional benzothiadiazole and spirothienoquinoline-based donor molecules of the A-D-A-D-A configuration were formulated by introducing new acceptor groups (A1-A4) to the terminal sites of recently synthesized potent donor molecule (tBuSAF-Th-BT-Th-tBuSAF). Frontier molecular orbital analysis, reorganization energies, the density of states analysis, transition density matrix analysis, dipole moment, open-circuit voltage, and some photophysical properties were all assessed using CAMB3LYP/LanL2DZ. The optoelectronic properties of freshly proposed compounds were compared to the reference molecule (SQR). Due to the existence of robust electron-attracting acceptor moiety, SQM3 and SQM7 had the greatest maximum absorption of all other investigated molecules, with the values of 534 and 536 nm, respectively. The maximum dipole moment, narrow bandgap (3.81 eV and 3.66 eV), and HOMO energies (- 5.92 eV, 5.95 eV) are also found in SQM3 and SQM7, respectively. The SQM3 molecule also possesses the least reorganization energy for hole mobility (0.007237 eV) than all other considered molecules. The open-circuit voltage of all the molecules considered to be donors, was calculated with respect to PC61BM and it is estimated that except SQM7 and SQM3 all other newly developed molecules have improved open-circuit voltage. The findings show that most of the designed donor molecules can perform better experimentally and should be employed for practical implementations in the future.
Collapse
|
34
|
Engineering of A-π-D-π-A system based non-fullerene acceptors to enhance the photovoltaic properties of organic solar cells; A DFT approach. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Akram SJ, Hadia NMA, Iqbal J, Mehmood RF, Iqbal S, Shawky AM, Asif A, Somaily HH, Raheel M, Khera RA. Impact of various heterocyclic π-linkers and their substitution position on the opto-electronic attributes of the A-π-D-π-A type IECIO-4F molecule: a comparative analysis. RSC Adv 2022; 12:20792-20806. [PMID: 35919141 PMCID: PMC9297698 DOI: 10.1039/d2ra04097b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/21/2022] Open
Abstract
To investigate the consequence of different substitution positions of various π-linkers on the photovoltaic properties of an organic solar cell molecule, we have introduced two series of six three-donor molecules, by the substitution of some effective π-linkers on the A-π-D-π-A type reference molecule IECIO-4F (taken as IOR). In series "a" the thienyl or furyl bridge is directly linked between the donor and acceptor moieties, while in series "b" the phenyl ring of the same bridge is working as the direct point of attachment. The frontier molecular orbitals, density of states, transition density matrix, molecular electrostatic potential surfaces, exciton binding energy, excitation energy, wavelength of maximum absorption, open-circuit voltage, fill factor, and some other photovoltaic attributes of the proposed molecules were analyzed through density functional theory (DFT) and its time-dependent (TD) approach; the TD-DFT method. Though both series of newly derived molecules were a step up from the reference molecule in almost all of the studied characteristics, the "a" series (IO1a to IO3a) seemed to be better due to their desirable properties such as the highest maximum absorption wavelength (λ max), open-circuit voltage, and fill factor, along with the lowest excitation and exciton dissociation energy, etc. of its molecules. Also, the studied morphology, optical characteristics, and electronic attributes of this series of proposed molecules signified the fact that the molecules with thienyl or furyl ring working as the direct link between the acceptor and donor molecules showed enhanced charge transfer abilities, and could provide a maximum quantum yield of the solar energy supplied.
Collapse
Affiliation(s)
- Sahar Javaid Akram
- Department of Chemistry, University of Agriculture 38000 Faisalabad Pakistan
| | - N M A Hadia
- Physics Department, College of Science, Jouf University P.O. Box 2014 Sakaka Al-Jouf Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture 38000 Faisalabad Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education Township Lahore 54770 Pakistan
| | - Saleem Iqbal
- Department of Chemical Engineering, Wah Engineering College, University of Wah Quaid Avenue 47040 Wah Cantt Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Areeba Asif
- Department of Chemistry, University of Agriculture 38000 Faisalabad Pakistan
| | - H H Somaily
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia
- Department of Physics, Faculty of Science, King Khalid University P.O. Box 9004 Abha Saudi Arabia
| | - Muhammad Raheel
- Department of Chemistry, Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Quetta 87300 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture 38000 Faisalabad Pakistan
| |
Collapse
|
36
|
Engineering of A2-D-A1-D-A2 type BT-dIDT based non-fullerene acceptors for effective organic solar cells. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Rani M, Iqbal J, Farhat Mehmood R, Ullah Rashid E, Misbah, Rani S, Raheel M, Ahmad Khera R. Strategies toward the end-group modifications of indacenodithiophene based non-fullerene small molecule acceptor to improve the efficiency of Organic solar Cells; a DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Shahzadi A, Iqbal J, Akram SJ, Rasool A, El-Badry YA, Khera RA. Symmetrical end-capped molecular engineering of star-shaped triphenylamine-based derivatives having remarkable photovoltaic properties for efficient organic solar cells. J Mol Model 2022; 28:132. [PMID: 35501509 DOI: 10.1007/s00894-022-05106-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022]
Abstract
In the present research work, four novel triphenylamine (TPA)-based acceptor molecules have been architectured to step up the solar efficiency of organic solar cells. The four designed molecules abbreviated as T1-T4 have a common TPA donor core and different strong electron pulling peripheral acceptor groups connected through thiophene spacers. Computational simulations of T1-T4 were performed to compute and compare their optoelectronic properties with well-known reference molecule S(TPA-DPP) designated as R in the current project. For geometric optimizations of designed molecules, MPW1PW91 functional along with a basis set of 6-31G (d, p) was enforced. Assessment of the optoelectronic features of newly reported 3-D molecules (T1-T4) has been executed through density functional theory (DFT) and time-dependent density functional theory (TD-DFT) computations. Transition density matrix (TDM) and density of state (DOS) evaluations were performed for the investigation of exciton dynamics and electronic contribution between two states. All the derived molecules exhibited admirable photovoltaic features when compared to that of the reference molecule. Amidst all these newly modified molecules, T3 manifested itself as the finest candidate having the least energy band gap (1.84 eV) and the highest λmax (865 nm) in dichloromethane solvent. Also, T1 molecule has the lowest hole reorganization energy (0.0036 eV) value. These designed candidates (T1-T4) confirm that peripheral acceptor tempering is an effectual approach for the attainment of the desirable optoelectronic properties.
Collapse
Affiliation(s)
- Aneeza Shahzadi
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan. .,Punjab Bio-Energy Institute, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Alvina Rasool
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Yaser A El-Badry
- Department of Chemistry, Faculty of Science, Taif University, Khurma, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|