1
|
Xu L, Geng X, Li Q, Li M, Chen S, Liu X, Dai X, Zhu X, Wang X, Suo H. Calcium-based MOFs as scaffolds for shielding immobilized lipase and enhancing its stability. Colloids Surf B Biointerfaces 2024; 237:113836. [PMID: 38479261 DOI: 10.1016/j.colsurfb.2024.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
The enzyme immobilization technology has become a key tool in the field of enzyme applications; however, improving the activity recovery and stability of the immobilized enzymes is still challenging. Herein, we employed a magnetic carboxymethyl cellulose (MCMC) nanocomposite modified with ionic liquids (ILs) for covalent immobilization of lipase, and used Ca-based metal-organic frameworks (MOFs) as the support skeleton and protective layer for immobilized enzymes. The ILs contained long side chains (eight CH2 units), which not only enhanced the hydrophobicity of the carrier and its hydrophobic interaction with the enzymes, but also provided a certain buffering effect when the enzyme molecules were subjected to compression. Compared to free lipase, the obtained CaBPDC@PPL-IL-MCMC exhibited higher specific activity and enhanced stability. In addition, the biocatalyst could be easily separated using a magnetic field, which is beneficial for its reusability. After 10 cycles, the residual activity of CaBPDC@PPL-IL-MCMC could reach up to 86.9%. These features highlight the good application prospects of the present immobilization method.
Collapse
Affiliation(s)
- Lili Xu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinyue Geng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qi Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Moju Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Shu Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiangnan Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xusheng Dai
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiuhuan Zhu
- Liaocheng Customs of the People's Republic of China, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Hongbo Suo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
2
|
Li Y, Liu M, Kong Y, Guo L, Yu X, Yu W, Shen J, Wen K, Wang Z. Significantly improved detection performances of immunoassay for ractopamine in urine based on highly urea-tolerant rabbit monoclonal antibody. Food Chem Toxicol 2022; 168:113358. [PMID: 35964837 DOI: 10.1016/j.fct.2022.113358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 10/16/2022]
Abstract
Highly sensitive and accurate screening of ractopamine (RAC) residue in animal urine is greatly needed to ensure food security. The detection performance of immunoassay for RAC was always seriously harmed by the antibody inactivation derived from urea. Here, we first discovered one rabbit monoclonal antibody (RmAb) to RAC with a high affinity of 0.007 ng mL-1 and a surprising urea tolerance of 3 M urea, which is beneficial for developing robustly developed immunoassay in urine without sample pretreatment. The limits of detection of developed indirect competitive enzyme-linked immunosorbent assay based on RmAb1 for RAC were 0.0042-0.014 μg L-1 with the coefficient of variation below 11.7% in swine, sheep, and cow urine, significantly improved 10-100-fold in sensitivity. Moreover, the urea-tolerant mechanism of RmAb1 showed that more non-polar amino acids, more hydrogen bond donors on the surface, and preponderant Pi interaction of antibody-RAC all contributed to the stability of the RmAb1 in a high concentration of urea.
Collapse
Affiliation(s)
- Yuan Li
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Minggang Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Yihui Kong
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Lina Guo
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, People's Republic of China.
| |
Collapse
|