1
|
Ghosh S, Bal T. Neem gum and its derivatives as potential polymeric scaffold for diverse applications: a review. Int J Biol Macromol 2025; 310:143012. [PMID: 40216102 DOI: 10.1016/j.ijbiomac.2025.143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Naturally occurring polymers, particularly polysaccharides, are gaining significant attention for their eco-friendly, non-toxic nature and abundant availability. Neem Gum (NEG), a natural exudate from the neem tree (Azadirachta indica), is secreted as a defense mechanism to protect against microbial invasion and physical damage. Unlike common polysaccharides, NEG exhibits a distinct composition rich in bioactive constituents, including heteropolysaccharides and secondary metabolites, contributing to its diverse functional and therapeutic potential. These unique characteristics make NEG a promising biopolymer for applications in pharmaceuticals, food, cosmetics, and environmental industries, where it serves as a binding, emulsifying, gelling, and stabilizing agent. Recent advancements have focused on developing NEG composites and derivatives with enhanced properties and broader applications. Structural modifications like grafting and carboxymethylation have improved its utility in drug delivery, wound healing, and biodegradable materials. Modified NEG derivatives exhibit superior antimicrobial, anti-inflammatory, and antioxidant effects, expanding their biomedical potential in tissue engineering and controlled drug release. NEG-based hydrogels and films show promise in eco-friendly packaging and self-healing biomaterials. This review compiles NEG's diverse applications, highlighting its role in sustainable technologies and emerging fields like self-healing materials and smart polymers. It addresses challenges in scaling production, regulatory compliance, and technical constraints.
Collapse
Affiliation(s)
- Soumyadip Ghosh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology-Mesra, Ranchi, Jharkhand-835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology-Mesra, Ranchi, Jharkhand-835215, India.
| |
Collapse
|
2
|
Hachim D, Hernández‐Cruz O, Foote JEJ, Wang R, Delahaye MW, Stuckey DJ, Feng Z, Wojciechowski JP, Salter LCB, Lin J, Harding SE, Stevens MM. Self-Doped and Biodegradable Glycosaminoglycan-PEDOT Conductive Hydrogels Facilitate Electrical Pacing of iPSC-Derived Cardiomyocytes. Adv Healthc Mater 2025; 14:e2403995. [PMID: 40018808 PMCID: PMC11973950 DOI: 10.1002/adhm.202403995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Conductive polymers hold promise in biomedical applications owing to their distinct conductivity characteristics and unique properties. However, incorporating these polymers into biomaterials poses challenges related to mechanical performance, electrical stability, and biodegradation. This study proposes an injectable hydrogel scaffold composed of a self-doped conductive polymer, constituted of a sulfated glycosaminoglycan (GAG) with side chains of PEDOT (poly 3,4-ethylenedioxythiophene). This brush copolymer is synthesized via oxidative polymerization from an EDOT monomer grafted onto the backbone of the sulfated GAG. The GAG backbone offers biodegradability, while sulfate groups act as acidic self-doping agents. Conductive hydrogels form through oxime crosslinking, initially existing as a liquid mixture that undergoes gelation within the tissue, allowing for injectability. The conductive hydrogels show tunable stiffness and gelation kinetics influenced by both concentration and pH, and exhibit adhesive properties. They showcase dual ionic and electronic conductivity, where sulfate groups in the GAG backbone act as doping moieties, enhancing conductivity and electrical stability. These properties of conductive hydrogels are associated with the facilitation of electrical pacing of iPSC-cardiomyocytes. Furthermore, hydrogels exhibit biodegradation and show evidence of biocompatibility, highlighting their potential for diverse biomedical applications.
Collapse
Affiliation(s)
- Daniel Hachim
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- School of PharmacyFaculty of Chemistry and PharmacyPontifical Catholic University of ChileAV. VICUNA MACKENNA 4860Santiago7820436Chile
| | - Olivia Hernández‐Cruz
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- National Heart and Lung InstituteImperial College LondonDu Cane RoadLondonW12 0NNUK
| | - James E. J. Foote
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Richard Wang
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Matthew W. Delahaye
- National Heart and Lung InstituteImperial College LondonDu Cane RoadLondonW12 0NNUK
| | - Daniel J. Stuckey
- Centre for Advanced Biomedical ImagingUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Zhiping Feng
- Centre for Advanced Biomedical ImagingUniversity College London72 Huntley StreetLondonWC1E 6DDUK
| | - Jonathan P. Wojciechowski
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Department of PhysiologyAnatomy and GeneticsDepartment of Engineering ScienceKavli Institute for Nanoscience DiscoveryUniversity of OxfordSherrington RoadOxfordOX1 3QUUK
| | - Luke C. B. Salter
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Junliang Lin
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Department of PhysiologyAnatomy and GeneticsDepartment of Engineering ScienceKavli Institute for Nanoscience DiscoveryUniversity of OxfordSherrington RoadOxfordOX1 3QUUK
| | - Sian E. Harding
- National Heart and Lung InstituteImperial College LondonDu Cane RoadLondonW12 0NNUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineering and Institute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
- Department of PhysiologyAnatomy and GeneticsDepartment of Engineering ScienceKavli Institute for Nanoscience DiscoveryUniversity of OxfordSherrington RoadOxfordOX1 3QUUK
| |
Collapse
|
3
|
Baron RI, Biliuta G, Bejan D, Darie-Nita RN, Coseri S, Dinu MV. Advancing the design of conductive composite cryogels based on hydroxypropyl cellulose derivatives for improving the compressibility and anti-freezing properties. Int J Biol Macromol 2025; 296:139764. [PMID: 39800029 DOI: 10.1016/j.ijbiomac.2025.139764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/15/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Conductive hydrogels are an appealing class of "smart" materials with great application potential, as they combine the stimuli-responsiveness of hydrogels with the conductivity of magnetic fillers. However, fabricating multifunctional conductive hydrogels that simultaneously exhibit conductivity, self-healing, adhesiveness, and anti-freezing properties remains a significant challenge. To address this issue, we introduce here a freeze-thawing approach to develop versatile, multiresponsive composite cryogels able to preserve their features under low-temperature conditions. Thus, we engineered robust 3D polymer networks by combining oxidized hydroxypropyl cellulose (HPCox) and polyvinyl alcohol (PVA) in glycerol-water mixtures. The presence of glycerol reduces the water loss by evaporation and prevents elasticity decrease upon storage at -20 °C by forming hydrogen bonds with water, HPCox, and PVA. These interactions result in flexible, stable composite cryogels with an extremely fast shape recovery (few seconds) after 100 % mechanical compression, even after freezing. Additionally, the homogeneous dispersion of magnetite nanoparticles (FeNP) into cryogels imparts both magnetic responsiveness and electrical conductivity. Overall, our innovative strategy generates highly adaptable composite cryogels that retain their properties even after exposure to freezing conditions. This opens new avenues for the development of new functional materials for electronics, sensors, wearable devices, and energy storage systems operating at extremely low temperatures.
Collapse
Affiliation(s)
- Raluca Ioana Baron
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania.
| | - Gabriela Biliuta
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania
| | - Dana Bejan
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania
| | - Raluca-Nicoleta Darie-Nita
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
4
|
Li B, Li C, Yan Z, Yang X, Xiao W, Zhang D, Liu Z, Liao X. A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications. Int J Biol Macromol 2025; 287:138323. [PMID: 39645113 DOI: 10.1016/j.ijbiomac.2024.138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Collapse
Affiliation(s)
- Bo Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chenchen Li
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Ziyi Yan
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Yang
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wenqian Xiao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Dawei Zhang
- Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China.
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China.
| | - Xiaoling Liao
- Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
5
|
Ahmad A, Kamaruddin MA, H.P.S. AK, Yahya EB, Muhammad S, Rizal S, Ahmad MI, Surya I, Abdullah CK. Recent Advances in Nanocellulose Aerogels for Efficient Heavy Metal and Dye Removal. Gels 2023; 9:416. [PMID: 37233007 PMCID: PMC10218182 DOI: 10.3390/gels9050416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Water pollution is a significant environmental issue that has emerged because of industrial and economic growth. Human activities such as industrial, agricultural, and technological practices have increased the levels of pollutants in the environment, causing harm to both the environment and public health. Dyes and heavy metals are major contributors to water pollution. Organic dyes are a major concern because of their stability in water and their potential to absorb sunlight, increasing the temperature and disrupting the ecological balance. The presence of heavy metals in the production of textile dyes adds to the toxicity of the wastewater. Heavy metals are a global issue that can harm both human health and the environment and are mainly caused by urbanization and industrialization. To address this issue, researchers have focused on developing effective water treatment procedures, including adsorption, precipitation, and filtration. Among these methods, adsorption is a simple, efficient, and cheap method for removing organic dyes from water. Aerogels have shown potential as a promising adsorbent material because of their low density, high porosity, high surface area, low thermal and electrical conductivity, and ability to respond to external stimuli. Biomaterials such as cellulose, starch, chitosan, chitin, carrageenan, and graphene have been extensively studied for the production of sustainable aerogels for water treatment. Cellulose, which is abundant in nature, has received significant attention in recent years. This review highlights the potential of cellulose-based aerogels as a sustainable and efficient material for removing dyes and heavy metals from water during the treatment process.
Collapse
Affiliation(s)
- Azfaralariff Ahmad
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Anuar Kamaruddin
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H.P.S.
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Syaifullah Muhammad
- Chemical Engineering Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- ARC-PUIPT Nilam Aceh, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Samsul Rizal
- Mechanical Engineering Department, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Indra Surya
- Department of Chemical Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - C. K. Abdullah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
6
|
Tang L, Wu P, Zhuang H, Qin Z, Yu P, Fu K, Qiu P, Liu Y, Zhou Y. Nitric oxide releasing polyvinyl alcohol and sodium alginate hydrogels as antibacterial and conductive strain sensors. Int J Biol Macromol 2023; 241:124564. [PMID: 37094648 DOI: 10.1016/j.ijbiomac.2023.124564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
Conductive hydrogels have promising applications in flexible electronic devices and artificial intelligence, which have attracted much attention in recent years. However, most conductive hydrogels have no antimicrobial activity, inevitably leading to microbial infections during utilization. In this work, a series of antibacterial and conductive polyvinyl alcohol and sodium alginate (PVA-SA) hydrogels were successfully developed with the incorporation of S-nitroso-N-acetyl-penicillamine (SNAP) and MXene through a freeze-thaw approach. Due to the reversibility of hydrogen bonding and electrostatic interactions, the resulting hydrogels had excellent mechanical properties. Specifically, the presence of MXene readily interrupted the crosslinked hydrogel network, but the best stretching can reach up to >300 %. Moreover, the impregnation of SNAP achieved the release of NO over several days under physiological conditions. Due to the release of NO, these composited hydrogels demonstrated high antibacterial activities (> 99 %) against both Gram-positive and negative S. aureus and E. coli bacteria. Notably, the excellent conductivity of MXene endowed the hydrogel with a sensitive, fast, and stable strain-sensing ability, to accurately monitor and distinguish subtle physiological activities of the human body including finger bending and pulse beating. These novel composited hydrogels are likely to have potential as strain-sensing materials in the field of biomedical flexible electronics.
Collapse
Affiliation(s)
- Lingjuan Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Peixuan Wu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Hao Zhuang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Ziyu Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Peng Yu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Kun Fu
- Department of Joint Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Ping Qiu
- Haikou Wuyuanhe School, Haikou, Hainan 570312, China
| | - Yuanyuan Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| | - Yang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
7
|
Chen M, Wang W, Fang J, Guo P, Liu X, Li G, Li Z, Wang X, Li J, Lei K. Environmentally adaptive polysaccharide-based hydrogels and their applications in extreme conditions: A review. Int J Biol Macromol 2023; 241:124496. [PMID: 37086763 DOI: 10.1016/j.ijbiomac.2023.124496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Polysaccharide hydrogels are one of the most promising hydrogel materials due to their inherent characteristics, including biocompatibility, biodegradability, renewability, and easy modification, and their structure and functional designs have been widely researched to adapt to different application scenarios as well as to broaden their application fields. As typical wet-soft materials, the high water content and water-absorbing ability of polysaccharide-based hydrogels (PHs) are conducive to their wide biomedical applications, such as wound healing, tissue repair, and drug delivery. In addition, along with technological progress, PHs have shown potential application prospects in some high-tech fields, including human-computer interaction, intelligent driving, smart dressing, flexible sensors, etc. However, in practical applications, due to the poor ability of PHs to resist freezing below zero, dehydration at high temperature, and acid-base/swelling-induced deformation in a solution environment, they are prone to lose their wet-soft peculiarities, including structural integrity, injectability, flexibility, transparency, conductivity and other inherent characteristics, which greatly limit their high-tech applications. Hence, reducing their freezing point, enhancing their high-temperature dehydration resistance, and improving their extreme solution tolerance are powerful approaches to endow PHs with multienvironmental adaptability, broadening their application areas. This report systematically reviews the study advances of environmentally adaptive polysaccharide-based hydrogels (EAPHs), comprising anti-icing hydrogels, high temperature/dehydration resistant hydrogels, and acid/base/swelling deformation resistant hydrogels in recent years. First, the construction methods of EAPHs are presented, and the mechanisms and properties of freeze-resistant, high temperature/dehydration-resistant, and acid/base/swelling deformation-resistant adaptations are simply demonstrated. Meanwhile, the features of different strategies to prepare EAPHs as well as the strategies of simultaneously attaining multienvironmental adaptability are reviewed. Then, the applications of extreme EAPHs are summarized, and some meaningful works are well introduced. Finally, the issues and future outlooks of PH environment adaptation research are elucidated.
Collapse
Affiliation(s)
- Meijun Chen
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Weiyi Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Junjun Fang
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Pengshan Guo
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Xin Liu
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Guangda Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Zhao Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Jinghua Li
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China
| | - Kun Lei
- School of Medical Technology and Engineering, Henan University of Science and Technology, 263 Kaiyuan Road, Luolong District, Luoyang 471023, China.
| |
Collapse
|
8
|
Self-Healing Polymer Coating with efficient delivery for Alginates and Calcium Nitrite to Provide Corrosion Protection for Carbon Steel. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
In vitro evaluation of antibacterial activity and biocompatibility of synergistically cross-linked gelatin-alginate hydrogel beads as gentamicin carriers. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Sánchez-Cid P, Jiménez-Rosado M, Romero A, Pérez-Puyana V. Novel Trends in Hydrogel Development for Biomedical Applications: A Review. Polymers (Basel) 2022; 14:polym14153023. [PMID: 35893984 PMCID: PMC9370620 DOI: 10.3390/polym14153023] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/11/2022] Open
Abstract
Nowadays, there are still numerous challenges for well-known biomedical applications, such as tissue engineering (TE), wound healing and controlled drug delivery, which must be faced and solved. Hydrogels have been proposed as excellent candidates for these applications, as they have promising properties for the mentioned applications, including biocompatibility, biodegradability, great absorption capacity and tunable mechanical properties. However, depending on the material or the manufacturing method, the resulting hydrogel may not be up to the specific task for which it is designed, thus there are different approaches proposed to enhance hydrogel performance for the requirements of the application in question. The main purpose of this review article was to summarize the most recent trends of hydrogel technology, going through the most used polymeric materials and the most popular hydrogel synthesis methods in recent years, including different strategies of enhancing hydrogels’ properties, such as cross-linking and the manufacture of composite hydrogels. In addition, the secondary objective of this review was to briefly discuss other novel applications of hydrogels that have been proposed in the past few years which have drawn a lot of attention.
Collapse
Affiliation(s)
| | | | - Alberto Romero
- Correspondence: (P.S.-C.); (A.R.); Tel.: +34-954557179 (A.R.)
| | | |
Collapse
|
11
|
Rapid preparation of conductive and self-healing ionic gels with tunable mechanical properties via frontal polymerization of deep eutectic monomers. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|