1
|
Saraswat V, Sarkar TK, Sandhu N, Kohli S, Rawat M, Keshar K, Yadav M, Bano N. Mechanistic Insights into the Corrosion Inhibition Performance of Eco-Friendly Nitrogen and Boron Co-Doped Carbon Dots for Mild Steel in a 15% HCl Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3528-3540. [PMID: 39884313 DOI: 10.1021/acs.langmuir.4c04672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
A novel and eco-friendly route to synthesize boron, nitrogen codoped carbon dots using aniline, citric acid, and boric acid as precursor materials has been used successfully to reduce mild steel corrosion. This report describes the detailed weight-loss experiments, electrochemical measurements, and surface morphology analysis conducted to explore the efficacy of B,N-CDs as a highly effective corrosion controller for mild steel (MS) protection in 15% hydrochloric acid (HCl). The findings specify that B,N-CDs significantly decreased the corrosion of MS and attained an inhibition capacity of up to 96.7% at 75 ppm. The protection of the MS surface occurs through the generation of a protective film through adsorption of the B,N-CDs. The corrosion inhibitor undergoes predominant physisorption, which is confirmed by the values of ΔGads. Electrochemical studies further established that B,N-CDs act as a mixed type corrosion inhibitor. Hence, the aforementioned carbon dots are both cathodic and anodic corrosion inhibitors for MS. The XPS of the inhibitors explained that it is of inorganic/organic hybrid nature of the protective film generated on the surface of the substrate. The findings represent a new highly effective corrosion inhibitor that outperforms most of the alternatives at lower concentrations.
Collapse
Affiliation(s)
- Vandana Saraswat
- Division of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida 203201, India
| | - Tarun Kanti Sarkar
- Department of Chemistry, School of Sciences, IFTM University, Moradabad 244102, India
| | - Navjot Sandhu
- Department of Chemistry, UIS, Chandigarh University, Mohali 140413, India
| | - Sahil Kohli
- Research and Development Cell, Department of Chemistry, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana 121004, India
| | - Manish Rawat
- Division of Chemistry, School of Basic Sciences, Galgotias University, Greater Noida 203201, India
| | - Kumari Keshar
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Mahendra Yadav
- Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, P. O.Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Cao C, Guo W. Synthesis of metal framework-modified carbon dots with super large stokes shift using Hami melon as a green precursor for detecting thiophanate-methyl residue in leafy vegetables. Food Chem 2024; 460:140703. [PMID: 39098191 DOI: 10.1016/j.foodchem.2024.140703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Consuming leafy vegetables with excessive thiophanate-methyl (TM) residue poses serious risks to human health. To realize rapidly and sensitively detecting TM in leafy vegetables, we developed a fluorescent probe based on zeolitic imidazolate framework-8-modified carbon dots using Hami melon as the green precursor (HM-CDs@ZIF-8). Meanwhile, the mechanism of HM-CDs@ZIF-8 for detecting TM was investigated and explained. The results of the performance tests showed that the prepared HM-CDs@ZIF-8 exhibited high sensitivity, excellent selectivity, robust anti-interference capability, reliable reproducibility and repeatability, and long-term stability. After optimization experiments, the fluorescence intensity of HM-CDs@ZIF-8 showed a strong linear correlation with the concentration of TM (0.00171-3.4239 mol/L) with a detection limit of 2.025 μmol/L. The HM-CDs@ZIF-8 was successfully applied to determine TM in spiked leafy vegetables with satisfactory recoveries of 96-105%. The relative standard deviations were in the range of 0.26-2.55%. The sensor has a promising application for detecting TM in leafy vegetables.
Collapse
Affiliation(s)
- Chunhao Cao
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchuan Guo
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Usman M, Cheng S. Recent Trends and Advancements in Green Synthesis of Biomass-Derived Carbon Dots. ENG 2024; 5:2223-2263. [DOI: 10.3390/eng5030116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The push for sustainability in nanomaterials has catalyzed significant advancements in the green synthesis of carbon dots (CDs) from renewable resources. This review uniquely explores recent innovations, including the integration of hybrid techniques, such as micro-wave-assisted and ultrasonic-assisted hydrothermal methods, as well as photocatalytic synthesis. These combined approaches represent a breakthrough, offering rapid production, precise control over CD properties, and enhanced environmental sustainability. In addition, the review emphasizes the growing use of green solvents and bio-based reducing agents, which further reduce the environmental footprint of CD production. This work also addresses key challenges, such as consistently controlling CD properties—size, shape, and surface characteristics—across different synthesis processes. Advanced characterization techniques and process optimizations are highlighted as essential strategies to overcome these hurdles. Furthermore, this review pioneers the integration of circular economy principles into CD production, proposing novel strategies for sustainable material use and waste reduction. By exploring innovative precursor materials, refining doping and surface engineering techniques, and advocating for comprehensive life cycle assessments, this work sets a new direction for future research. The insights provided here represent a significant contribution to the field, paving the way for more sustainable, efficient, and scalable CD production with diverse applications in optoelectronics, sensing, and environmental remediation.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shuo Cheng
- Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
4
|
Shao H, Li D, Chen Z, Yin X, Chen Y, Liu Y, Yang W. Sulfur dots corrosion inhibitors with superior antibacterial and fluorescent properties. J Colloid Interface Sci 2024; 654:878-894. [PMID: 37898072 DOI: 10.1016/j.jcis.2023.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
In this study, sulfur dots (GA-SDs) synthesized by using Gum Arabic (GA) as a green stabilizer were used as corrosion inhibitors and their inhibition effect for Q235 steel in 3.5- wt% NaCl solution was investigated by weight loss, electrochemical tests, and surface and interface analysis. The results revealed that the inhibition efficiency reached the maximum value of 96.5% at 250 mg/L and the water-soluble GA-SDs were able to adhere to the iron surface through the diffusion and agglomeration effect. The unique antibacterial activities demonstrated a 99.35% inhibition efficiency at 250 mg/L. Moreover, the optical properties endowed the inhibitors with the fluorescence tracing function, which is an effective approach to detecting the residual quantity of water treatment agents. This work may facilitate the development of the next generation of multifunction water treatment agents in industrial circulating water systems.
Collapse
Affiliation(s)
- Hanlin Shao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Duanzhi Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhihao Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoshuang Yin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Li K, Li H, Zhang Q, Yang D, Yang Y. Core-shell structure DA-CDs/AuNPs for the recognition of fenamidone by surface-enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123865. [PMID: 38219613 DOI: 10.1016/j.saa.2024.123865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
In this work, a facile synthesis method for dopamine carbon dots-based Au nanoparticles (DA-CDs/AuNPs) by seed gold method was reported as the surface enhanced Raman scattering (SERS) booster. DA-CDs with rich in surface functional groups was synthesized using dopamine, citric acid and ethylenediamine as precursors by a facile hydrothermal method, and can be used as the capping agents and reducing agents for the synthesis of DA-CDs/AuNPs. Due to the electromagnetic "hot spots" effect, DA-CDs/AuNPs with core-shell structure exhibited strong SERS activity. Based on the specific interaction of DA-CDs/AuNPs and fenamidone, a detection method of fenamidone was established with a low detection limit of 0.05 μg/mL. Finally, the SERS sensor was successfully applied to the detection of fenamidone in fruit with recoveries between 90.6 % and 98.7 %. The method here proposed can be reliably applied for fenamidone detection on fruits.
Collapse
Affiliation(s)
- Kexiang Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China; Yunnan Agricultural University, Yunnan Province 650100, China
| | - Qian Zhang
- Yunnan Lunyang Technology Co., Ltd, Yunnan Province 650032, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
6
|
Himani, Pratap Singh Raman A, Babu Singh M, Jain P, Chaudhary P, Bahadur I, Lal K, Kumar V, Singh P. An Update on Synthesis, Properties, Applications and Toxicity of the ILs. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|