1
|
Pakeeraiah K, Swain PP, Sahoo A, Panda PK, Mahapatra M, Mal S, Sahoo RK, Sahu PK, Paidesetty SK. Multimodal antibacterial potency of newly designed and synthesized Schiff's/Mannich based coumarin derivatives: potential inhibitors of bacterial DNA gyrase and biofilm production. RSC Adv 2024; 14:31633-31647. [PMID: 39376521 PMCID: PMC11457008 DOI: 10.1039/d4ra05756b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024] Open
Abstract
The briskened urge to develop potential antibacterial candidates against multidrug-resistant pathogens has motivated the present research study. Herein, newly synthesized coumarin derivatives with azomethine and amino-methylated as the functional groups have been focused on their antibacterial efficacy. The study proposed two distinct series: 3-acetyl substituted coumarin derivatives, followed by the Schiff base approach (5a-5i), and formaldehyde-secondary cyclic amine-based derivatives (7a-7g), using the Mannich base approach, further the compounds have been confirmed through various spectral studies. Further, target-specific binding affinity has been affirmed via in silico study. In vitro antibacterial study suggested compounds 5d and 5f to be most effective against S. aureus and multidrug-resistant K. pneumoniae, with MIC values of 8 and 16 μg mL-1. Among them, the compounds 5d and 5f showed excellent binding scores against different bacterial gyrase compared to the standard novobiocin. Based on RMRS, RMSF, Rg, and H-bond plots, MD simulation study at 100 ns also suggested better stability of 5d inside gyraseB of E. coli than the complex of E. coli-GyrB-novobiocin. The toxicity and pharmacokinetic profiles showed favorable drug-likeness. Overall, systematic in vitro and in silico assessment suggested that multimodal antibacterial derivatives 5d and 5f strongly inhibit both bacterial DNA gyrase and biofilm formation of drug-resistant pathogens, suggesting their potency in mainstream antibacterial therapy.
Collapse
Affiliation(s)
- Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Pragyan Paramita Swain
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Alaka Sahoo
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
- Research and Development Division, Salixiras Research Private Limited Bhubaneswar Odisha India
| | - Preetesh Kumar Panda
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Monalisa Mahapatra
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Suvadeep Mal
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Pratap Kumar Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University Bhubaneswar 751003 Odisha India
| |
Collapse
|
2
|
Katariya KD, Nakum KJ, Soni H, Nada S, Hagar M. Imine Based Four-Ring Chalcone-Ester Liquid Crystals: Synthesis, Characterization, Mesomorphic Behaviour and DFT approach. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Dabhi RC, Sharma VS, Arya PS, Patel UP, Shrivastav PS, Maru JJ. Coumarin functionalized dimeric mesogens for promising anticoagulant activity: Tuning of liquid crystalline property. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
4
|
Cuerva C, Cano M, Schmidt R. Improving the mesomorphism in bispyrazolate Pd(II) metallomesogens: an efficient platform for ionic conduction. Dalton Trans 2023; 52:4684-4691. [PMID: 36779291 DOI: 10.1039/d2dt03754h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The introduction of structural asymmetry in metallomesogens is an established strategy to improve their mesomorphic behaviour in terms of lower melting temperatures and higher stability ranges of the mesophase, which is particularly important for metallomesogens that have potential application as electrolytes that require wide operational temperature ranges. Here in this work, a novel series of unsymmetrical bis(isoquinolinylpyrazolate)palladium(II) compounds bearing four alkyl side-chains with different lengths are described. Rectangular and hexagonal columnar mesophases were formed with low melting temperatures of 42-45 °C in most cases, whereas the clearing temperatures reached values up to 412 °C. The charge transport properties have been studied by complex impedance spectroscopy, showing that the mesophase favours proton conduction in the absence of water or humidity. The exceptional thermal stability of these species makes them promising candidates to act as a platform for ionic conduction via the nanochannels originated in the columnar mesophases. The results presented confirm that introducing structural asymmetry in the Pd(II) metallomesogens studied is a valid strategy to enhance the liquid crystalline properties, which opens new ways to develop water-free electrolytes based on unsymmetrical bis(isoquinolinylpyrazolate) Pd(II) compounds for potential applications such as proton exchange membranes (PEMs).
Collapse
Affiliation(s)
- Cristián Cuerva
- MatMoPol Group. Department of Inorganic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Ciudad Universitaria, E-28040 Madrid, Spain.
| | - Mercedes Cano
- MatMoPol Group. Department of Inorganic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Ciudad Universitaria, E-28040 Madrid, Spain.
| | - Rainer Schmidt
- GFMC. Departamento de Física de Materiales, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain.
| |
Collapse
|
5
|
Katariya KD, Nakum KJ, Soni R, Soman SS, Nada S, Hagar M. Coumarin Schiff base derivatives: Synthesis, mesomorphic properties, photophysical properties and DFT studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Ilincă TA, Chiriac LF, Ilis M, Manaila-Maximean D, Ganea PC, Pasuk I, Cîrcu V. Effect of disubstitution pattern of the terminal alkyl chains on the mesophase of liquid crystals based on lanthanide(III) complexes: A study of the thermal, emission and dielectric behavior. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Al-Kadhi NS, Alamro FS, Popoola SA, Gomha SM, Bedowr NS, Al-Juhani SS, Ahmed HA. Novel Imidazole Liquid Crystals; Experimental and Computational Approaches. Molecules 2022; 27:molecules27144607. [PMID: 35889474 PMCID: PMC9316631 DOI: 10.3390/molecules27144607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
The liquid crystalline materials named (E)-4-(2-(4-oxo-5,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)hydrazineylidene)methyl)phenyl and 4-(alkoxy)benzoate, In, were synthesized and their mesomorphic behaviors were examined. The chemical structures of the produced compounds were confirmed by Fourier-transform infrared spectroscopy (FT-IR), NMR, and elemental analysis. Differential scanning calorimetry (DSC) and polarized optical microscopy were used to investigate the mesomorphic properties of designed heterocyclic derivatives. All the compounds tested had suitable thermal stability and enantiotropic behavior of smectogenic temperature ranges. Furthermore, the enantiotropic smectic C phases were observed to cover all the homologues. Moreover, computational investigations corroborated the experimental findings of the mesomorphic behavior. The reactivity parameters were computed for the derivatives and linked with the experimental data. Theoretical calculations revealed that the polarizability of the studied series increases with the chain length, whereas the HOMO–LUMO energy gap or other reactivity descriptors were less sensitive to the size of the system. On the other hand, the predicted thermodynamic parameters revealed the size dependence of thermal stability of the compounds.
Collapse
Affiliation(s)
- Nada S. Al-Kadhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.S.A.-K.); (F.S.A.)
| | - Fowzia S. Alamro
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.S.A.-K.); (F.S.A.)
| | - Saheed A. Popoola
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
- Correspondence: (S.M.G.); (H.A.A.)
| | - Noha S. Bedowr
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia; (N.S.B.); (S.S.A.-J.)
| | - Shahd S. Al-Juhani
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia; (N.S.B.); (S.S.A.-J.)
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
- Correspondence: (S.M.G.); (H.A.A.)
| |
Collapse
|