1
|
Nicolaescu OE, Ionescu C, Samide A, Tigae C, Spînu CI, Oprea B. Advancements in Cyclodextrin Complexes with Bioactive Secondary Metabolites and Their Pharmaceutical Applications. Pharmaceutics 2025; 17:506. [PMID: 40284503 PMCID: PMC12030412 DOI: 10.3390/pharmaceutics17040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Cyclodextrins (CDs) have largely been investigated during the last decades for their outstanding properties, such as biocompatibility and biodegradability, with wide applications in the pharmaceutical field, among which the formation of inclusion complexes (ICs) with natural or synthetic lipophilic compounds. This review prioritizes the research of recent years (2022-2025), being focused on (1) systematization of the research of ICs based on the structure of the secondary metabolite, namely (i) polyphenols (PPs), (ii) terpenes and terpenoids (TTs), and (iii) alkaloids (Alks); (2) for each type of inclusion complex, the following aspects have been discussed: benefits of complexation, composite materials, and in vitro/in vivo and theoretical studies; and (3) pharmacokinetics and pharmacodynamics, risks, limitations, and perspectives of cyclodextrin inclusion complexes with secondary metabolites.
Collapse
Affiliation(s)
- Oana Elena Nicolaescu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş, 200349 Craiova, Dolj, Romania;
| | - Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Dolj, Romania; (A.S.); (C.T.); (C.I.S.)
| | - Adriana Samide
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Dolj, Romania; (A.S.); (C.T.); (C.I.S.)
| | - Cristian Tigae
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Dolj, Romania; (A.S.); (C.T.); (C.I.S.)
| | - Cezar Ionuţ Spînu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Dolj, Romania; (A.S.); (C.T.); (C.I.S.)
| | - Bogdan Oprea
- Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rares, 200349 Craiova, Dolj, Romania;
| |
Collapse
|
2
|
Azevedo AM, Nunes C, Moniz T, Pérez RL, Ayala CE, Rangel M, Reis S, Santos JL, Warner IM, Saraiva MLM. Studies of Protein Binding to Biomimetic Membranes Using a Group of Uniform Materials Based on Organic Salts Derived From 8-Anilino-1-naphthalenesulfonic Acid. APPLIED SPECTROSCOPY 2024; 78:806-814. [PMID: 38747750 PMCID: PMC11340245 DOI: 10.1177/00037028241249768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/27/2024] [Indexed: 08/22/2024]
Abstract
Tuning the 8-anilino-1-naphthalenesulfonic acid (ANS) structure usually requires harsh conditions and long reaction times, which can result in low yields. Herein, ANS was modified to form an ANS group of uniform materials based on organic salts (GUMBOS), prepared with simple metathesis reactions and distinct cations, namely tetrabutylammonium (N4444), tetrahexylammonium (N6666), and tetrabutylphosphonium (P4444). These ANS-based GUMBOS were investigated as fluorescent probes for membrane binding studies with four proteins having distinct physicochemical properties. Liposomes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine were employed as membrane models as a result of their ability to mimic the structure and chemical composition of cell membranes. Changes in fluorescence intensity were used to monitor protein binding to liposomes, and adsorption data were fitted to a Freundlich-like isotherm. It was determined that [N4444][ANS] and [P4444][ANS] GUMBOS have enhanced optical properties and lipophilicity as compared to parent ANS. As a result, these two GUMBOS were selected for subsequent protein-membrane binding studies. Both [N4444][ANS] and [P4444][ANS] GUMBOS and parent ANS independently reached membrane saturation within the same concentration range. Furthermore, distinct fluorescence responses were observed upon the addition of proteins to each probe, which demonstrates the impact of properties such as lipophilicity on the binding process. The relative maintenance of binding cooperativity and maximum fluorescence intensity suggests that proteins compete with ANS-based probes for the same membrane binding sites. Finally, this GUMBOS-based approach is simple, rapid, and involves relatively small amounts of reagents, making it attractive for high-throughput purposes. These results presented herein can also provide relevant information for designing GUMBOS with ameliorated properties.
Collapse
Affiliation(s)
- Ana M.O. Azevedo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Tânia Moniz
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Rocío L. Pérez
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Chemistry and Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Caitlan E. Ayala
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Maria Rangel
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - João L.M. Santos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isiah M. Warner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana, USA
| | - M. Lúcia M.F.S. Saraiva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Huang J, Wang X, Huang T, Yang Y, Tu J, Zou J, Yang H, Yang R. Application of sodium sulfobutylether-β-cyclodextrin based on encapsulation. Carbohydr Polym 2024; 333:121985. [PMID: 38494236 DOI: 10.1016/j.carbpol.2024.121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Sodium Sulfobutylether-β-cyclodextrin (SBE-β-CD) is a derivative of β-cyclodextrin, characterized by its stereo structure, which closely resembles a truncated cone with a hydrophobic internal cavity. The solubility of insoluble substances within the hydrophobic cavity is significantly enhanced, reducing contact between the guest and the environment. Consequently, SBE-β-CD is frequently employed as a co-solvent and stabilizer. As the research progresses, it has been observed that the inclusion of SBE-β-CD is reversible and competitive. Besides, some inclusion complexes undergo distinct physicochemical property alterations compared to the guests. Additionally, certain guests exhibit varying inclusions with SBE-β-CD at different concentrations. These features have contributed to the expanding applications. SBE-β-CD finds widespread application in pharmaceutics as a protective agent and pKa regulator, in pharmaceutical analysis as a chiral substance separator, and in biomedical engineering for encapsulating dyes and modifying sensors. The article will elaborate in detail on the physicochemical properties of SBE-β-CD, encapsulation principles, and factors influencing the formation of inclusion complexes. Furthermore, the review focuses on the application of SBE-β-CD through encapsulation in pharmaceutics, pharmaceutical analysis, and biomedical engineering. Finally, the prospects and potential applications of SBE-β-CD are discussed.
Collapse
Affiliation(s)
- Jiaqi Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Xiaofeng Wang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Ting Huang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Yang Yang
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Jiasheng Tu
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Zou
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China
| | - Huiying Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| | - Rui Yang
- National Institutes for Food and Drug Control, National Key Laboratory for Quality Control of Pharmaceutical Excipients, Beijing 100050, China.
| |
Collapse
|
4
|
Kanti Mal D, Nilaya Jonnalgadda P, Kant Chittela R, Chakraborty G. Utilization of Host Assisted Aggregation-Induced Emission of ANS Dye for ATP Sensing. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Miskolczy Z, Megyesi M, Biczók L. Entropy-Driven Inclusion of Natural Protoberberine Alkaloids in Sulfobutylether-β-Cyclodextrin. Molecules 2022; 27:7514. [PMID: 36364339 PMCID: PMC9657192 DOI: 10.3390/molecules27217514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The understanding of the relationship between molecular structure and the thermodynamics of host-guest binding is essential for the rational design of the applications of inclusion complexes. To obtain insight into the factors governing the driving force of complex formation in aqueous solutions, the encapsulation of five pharmaceutically important protoberberine alkaloids was studied in sulfobutylether-β-cyclodextrin having on average 6.4 degrees of substitution (SBE6.4βCD). Spectrophotometric, fluorescence spectroscopic, and isothermal calorimetric measurements showed 1:1 complexation in dilute solutions. From 1.92 × 104 M−1, about an eight-fold decrease of the association constant was observed in the series of berberine ≈ coptisine >> palmatine > epiberberine > dehydrocorydaline. The embedment of these alkaloids in the SBE6.4βCD cavity was entropy-controlled with mildly negative enthalpy contributions. These findings suggest that the stabilization of the examined complexes arises primarily from the hydrophobic interaction between the constituents. The more than three orders of magnitude smaller association constants of protoberberine alkaloids with SBE6.4βCD than with cucurbit[7]uril, a host having similar cavity size, originates from the much smaller exothermicity of the confinement in the former macrocycle.
Collapse
Affiliation(s)
| | | | - László Biczók
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, P.O. Box 286, 1519 Budapest, Hungary
| |
Collapse
|