1
|
Li S, Lee BK. Incorporation of biomass-derived carbon dots and hydrochar into electrospun polylactic acid membranes: A sustainable zero-waste approach to highly efficient methylene blue, malachite green and neutral red dye removal. Int J Biol Macromol 2024; 282:137160. [PMID: 39488319 DOI: 10.1016/j.ijbiomac.2024.137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Recently, biomass-derived carbon dots (CDs) and hydrochar have gained widespread attention for environmental remediation. However, hydrochar is commonly regarded as carbon waste (CW) generated in the manufacture of CDs, and only a few reports have focused on the simultaneous application of CW and CDs. Herein, we propose a sustainable zero-waste approach for efficient dye removal by incorporating CDs and CW into electrospun membranes. CDs and CW were obtained via the one-step solvothermal carbonization of apple peels. The prepared CDs with an average size of 7.36 nm were first added to the electrospinning solution to obtain electrospun polylactic acid (PLA)/CDs fibers, followed by CW-integration via ultrasonication. The optimized PLA/CDs/CW composite exhibited high dye adsorption capacities of 141.99, 130.52, and 110.83 mg/g for neutral red, methylene blue, and malachite green, respectively. These dye adsorption capacities are significantly higher than those of the CD-loaded (70.15 mg/g for MB) or CW-loaded (52.34 mg/g for MB) composites, and are attributable to the rational loading of CDs and CW. Furthermore, the optimized composite exhibited remarkable chemical stability, stable reusability, and the ability to adsorb multiple dyes concurrently. This work provides new perspectives on the development of biomass-derived carbonaceous materials for environmental preservation and remediation.
Collapse
Affiliation(s)
- Shichen Li
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Bong-Kee Lee
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Magalhães CM, Ribeiro E, Fernandes S, Esteves da Silva J, Vale N, Pinto da Silva L. Safety Evaluation of Carbon Dots in UM-UC-5 and A549 Cells for Biomedical Applications. Cancers (Basel) 2024; 16:3332. [PMID: 39409951 PMCID: PMC11475197 DOI: 10.3390/cancers16193332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUNG The rising complexity and associated side effects of cancer treatments highlight the need for safer and more effective therapeutic agents. Carbon-based nanomaterials such as CDs have been gaining prominence for their unique characteristics, opening avenues for diverse applications such as fluorescence imaging, drug and gene transport, controlled drug delivery, medical diagnosis, and biosensing. Despite promising advancements in research, it remains imperative to scrutinize the properties and potential cytotoxicity of newly developed CDs, ensuring their viability for these applications. METHODS We synthesized four N-doped CDs through a hydrothermal method. Cell viability assays were conducted on A549 and UM-UC-5 cancer cells at a range of concentrations and incubation times, both individually and with the chemotherapeutic agent 5-fluorouracil (5-FU). RESULTS The obtained results suggest that the newly developed CDs exhibit suitability for applications such as bioimaging, as no significant impact on cell viability was observed for CDs alone.
Collapse
Affiliation(s)
- Carla M. Magalhães
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences, Department of Geosciences, Environment, and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (S.F.); (J.E.d.S.)
| | - Eduarda Ribeiro
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sónia Fernandes
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences, Department of Geosciences, Environment, and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (S.F.); (J.E.d.S.)
| | - Joaquim Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences, Department of Geosciences, Environment, and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (S.F.); (J.E.d.S.)
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences, Department of Geosciences, Environment, and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (C.M.M.); (S.F.); (J.E.d.S.)
| |
Collapse
|
3
|
Solis Flores S, López-Pacheco IY, Villalba-Rodriguez AM, González-González RB, Parra-Saldívar R, Iqbal HMN. Effect of carbon dots supplementation in Chlorella vulgaris biomass production and its composition. NANO EXPRESS 2024; 5:025007. [DOI: 10.1088/2632-959x/ad3cfd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Abstract
Microalgae cultures have an excellent ability to capture CO2 and produce high, medium, and low valuable biocompounds such as proteins, carbohydrates, lipids, pigments, and polyhydroxyalkanoates; those compounds have shown excellent properties in the pharmaceutical, cosmetic, food, and medical industries. Recently, the supplementation of carbon dots (CDs) in autotrophic microalgae cultures has been explored as a new strategy to increase light capture and improve photoluminescence, which in turn enhances biomass growth and biocompounds production. In this work, we synthesized CDs through a simple carbonization method using orange juice as a natural precursor. The green synthesized CDs were analyzed in detail through characterization techniques such as Fourier-transform infrared spectroscopy (FTIR), UV–visible, fluorescence spectroscopy, and ζ potential analysis. Moreover, CDs were added to Chlorella vulgaris to analyze the response under different photoperiod cycles and CDs dosages. The optimal results were obtained with the addition of 0.5 mg l−1 of CDs under a photoperiod cycle of 16 h:8 h (light:dark). In these conditions, a maximum biomass production of 2.12 g l−1 was observed, which represents an enhancement of 112% and 17% in comparison to the control samples under the photoperiod of 12 h:12 h and 16 h:8 h (light/dark), respectively. Furthermore, the production of lipids, proteins, and carbohydrates was significantly increased to 249 mg g−1, 285 mg g−1, and 217 mg g−1 dry weight, respectively. These results suggest that the addition of CDs enhances cell growth and increases the production of lipids and proteins, being a strategy with great potential for the food and pharmaceutical industries.
Collapse
|
4
|
Shao H, Li D, Chen Z, Yin X, Chen Y, Liu Y, Yang W. Sulfur dots corrosion inhibitors with superior antibacterial and fluorescent properties. J Colloid Interface Sci 2024; 654:878-894. [PMID: 37898072 DOI: 10.1016/j.jcis.2023.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
In this study, sulfur dots (GA-SDs) synthesized by using Gum Arabic (GA) as a green stabilizer were used as corrosion inhibitors and their inhibition effect for Q235 steel in 3.5- wt% NaCl solution was investigated by weight loss, electrochemical tests, and surface and interface analysis. The results revealed that the inhibition efficiency reached the maximum value of 96.5% at 250 mg/L and the water-soluble GA-SDs were able to adhere to the iron surface through the diffusion and agglomeration effect. The unique antibacterial activities demonstrated a 99.35% inhibition efficiency at 250 mg/L. Moreover, the optical properties endowed the inhibitors with the fluorescence tracing function, which is an effective approach to detecting the residual quantity of water treatment agents. This work may facilitate the development of the next generation of multifunction water treatment agents in industrial circulating water systems.
Collapse
Affiliation(s)
- Hanlin Shao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Duanzhi Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhihao Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoshuang Yin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Dong L, Ma Y, Jin X, Feng L, Zhu H, Hu Z, Ma X. High-Efficiency Corrosion Inhibitor of Biomass-Derived High-Yield Carbon Quantum Dots for Q235 Carbon Steel in 1 M HCl Solution. ACS OMEGA 2023; 8:46934-46945. [PMID: 38107954 PMCID: PMC10719925 DOI: 10.1021/acsomega.3c06702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Eco-friendly self-doped carbon quantum dots (ZCQDs) with excellent corrosion inhibition ability were prepared via solid-phase pyrolysis only using Zanthoxylum bungeanum leaves as the raw material. Compared with the relevant research, a simpler and higher yield (25%) preparation process for carbon quantum dots was proposed. ZCQDs were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy, and the average size of ZCQDs with multitudes of O- and N-containing functional groups was about 2.53 nm. The prepared ZCQDs were used to inhibit the corrosion of Q235 steel in HCl solution, and the inhibition behavior was investigated through weight loss, electrochemical test, surface analysis, and adsorption thermodynamic analyses. The results showed that the ZCQDs, acted as a mixed corrosion inhibitor, have an effective corrosion inhibition for Q235, the corrosion inhibition efficiency reached 95.98% at 200 mg/L, and at this concentration, effective protection of at least 132h (IE > 90%) is provided. Moreover, the adsorption mechanism of ZCQDs was consistent with that of Redlich-Peterson adsorption, including chemisorption and physisorption. A new corrosion inhibition mechanism of ZCQDs has been thoroughly studied and proposed; ZCQDs have functional groups containing O and N, which can form a protective barrier through physical adsorption and chemisorption, but the coverage of the protective film is low at low concentrations. With the increase of concentration, the protective film formed by ZCQDs on the metal surface will first increase the coverage and then adsorb more ZCQDs on the protective film to form a thicker and denser protective film to protect the metal. The carbon quantum dots prepared in this paper have advantages including a green, renewable precursor, a fast method, high yield, and excellent corrosion inhibition. Therefore, this work can inspire and facilitate, to a certain extent, the future application of doped carbon quantum dots as efficient corrosion inhibitors in HCl solutions.
Collapse
Affiliation(s)
- Liming Dong
- School
of Chemistry and Chemical Engineering, North
University of China, Taiyuan 030051, China
| | - Yuyue Ma
- School
of Chemistry and Chemical Engineering, North
University of China, Taiyuan 030051, China
| | - Xiaohan Jin
- College
of Chemistry and Chemical Engineering, China
University of Petroleum (East China), Qingdao 266580, China
| | - Li Feng
- School
of Chemistry and Chemical Engineering, North
University of China, Taiyuan 030051, China
| | - Hailin Zhu
- School
of Chemistry and Chemical Engineering, North
University of China, Taiyuan 030051, China
| | - Zhiyong Hu
- School
of Chemistry and Chemical Engineering, North
University of China, Taiyuan 030051, China
| | - Xuemei Ma
- School
of Chemistry and Chemical Engineering, North
University of China, Taiyuan 030051, China
| |
Collapse
|
6
|
Du Y, Li Y, Liu Y, Liu N, Cheng Y, Shi Q, Liu X, Tao Z, Guo Y, Zhang J, Askaria N, Li H. Stalk-derived carbon dots as nanosensors for Fe 3+ ions detection and biological cell imaging. Front Bioeng Biotechnol 2023; 11:1187632. [PMID: 37187884 PMCID: PMC10175696 DOI: 10.3389/fbioe.2023.1187632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction: Iron is one of the most important needed elements for the growth and reproduction of living organisms. The detection of iron levels is important and developing fluorescent probes with excellent sensitivity for Fe3+ ions is of great significance. Carbon dot (CDs) is a new type of fluorescent nanomaterial based on abundant and low-cost carbon elements. The use of widely distributed renewable agricultural waste straw as a carbon precursor to prepare CDs sensor can not only reduce the pollution caused by burning straw to the atmospheric environment, but also achieve the transformation of resources from waste to treasure. Methods: In this study, CDs were obtained from corn stalk powder by pyrolysis and microwave process. The sensitivity and linear response range of CDs sensor was studied through analyzing the effect of different Fe3+ ions concentrations on the fluorescence quenching. The application of CDs in biological cell imaging was investigated using HGC-27 cells. Results: The fluorescence quenching showed a good linear relationship with the Fe3+ concentration in the range from 0 to 128 μM, and a low detection limit of 63 nM. In addition, the CDs have high recognition for Fe3+ ions. Meanwhile, the CDs have a low cytotoxicity and desirable biocompatibility, allowing the multicolor living cell imaging. Conclusion: The prepared CDs can be used as fluorescent sensors for the selective detection of Fe3+ ions and biological cell imaging. Our results supported that the conversion of agricultural waste into carbon nanomaterials has great potential to be developed.
Collapse
Affiliation(s)
- Yongchao Du
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yaxi Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Yunliang Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Naiyun Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Naiyun Liu, ; Xiang Liu, ; Haitao Li,
| | - Yuanyuan Cheng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Qiuzhong Shi
- Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang, China
| | - Xiang Liu
- Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang, China
- *Correspondence: Naiyun Liu, ; Xiang Liu, ; Haitao Li,
| | - Zhimin Tao
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Zhenjiang Municipal Key Laboratory of High Technology for Basic and Translational Research on Exosomes, Zhenjiang, China
| | - Yumeng Guo
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jianguo Zhang
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Najmeh Askaria
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, China
- *Correspondence: Naiyun Liu, ; Xiang Liu, ; Haitao Li,
| |
Collapse
|