1
|
Rahman AMA, Bakar ARA, Yee AQ, Zainudin MAM, Daud NMAN, Gunny AAN, Sarip MSM, Peron RV, Khairuddin NH. A review on the role of deep eutectic solvents in mango ( Mangifera indica) extraction. RSC Adv 2025; 15:4296-4321. [PMID: 39931390 PMCID: PMC11808295 DOI: 10.1039/d5ra00097a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
The present review attempts to evaluate the applicability of deep eutectic solvents (DES) as a green technique for the extraction of phytochemicals from Mangifera indica L. and their therapeutic potential. Mango has been reported to show numerous therapeutic activities, which are attributed to its abundant source of bioactive compounds. Thus, the therapeutic potential of phytochemicals in mangoes is reviewed based on different reported bioactivity tests. The use of DESs is considered a green approach for the extraction of bioactive compounds from natural sources utilizing two or more components and a safe alternative for application in the nutritional, pharmaceutical and other sectors. The trends in the extraction of phytochemicals from mango using different DES components and different extraction parameters of the optimum protocol are reviewed. Hence, DESs are considered potential solvents with selective and efficient properties for extracting bioactive ingredients from mango. However, there are several knowledge gaps that need to be assessed for DES-based bioactive compound extraction from mango such as information on the local and specific varieties of mangoes, standardization of the extraction protocols and use of other parts of the mango plant as alternatives to its peel as bioactive sources. Accordingly, the extraction of bioactive compounds from mango using DESs will provide useful information for subsequent agricultural, pharmaceutical and nutraceutical applications in the future.
Collapse
Affiliation(s)
| | - Amirul Ridzuan Abu Bakar
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis Jejawi Perlis 02600 Malaysia
| | - Ang Qian Yee
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis Jejawi Perlis 02600 Malaysia
| | - Mohd Asraf Mohd Zainudin
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis Jejawi Perlis 02600 Malaysia
| | | | - Ahmad Anas Nagoor Gunny
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis Jejawi Perlis 02600 Malaysia
| | - Mohd Sharizan Md Sarip
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis Jejawi Perlis 02600 Malaysia
| | - Ryan Vitthaya Peron
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis Jejawi Perlis 02600 Malaysia
| | - Nurul Husna Khairuddin
- M. Kandiah Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman Bandar Sungai Long Kajang Selangor 43000 Malaysia
| |
Collapse
|
2
|
Dhameliya TM, Vekariya DD, Bhatt PR, Kachroo T, Virani KD, Patel KR, Bhatt S, Dholakia SP. Synthetic account on indoles and their analogues as potential anti-plasmodial agents. Mol Divers 2025; 29:871-897. [PMID: 38709459 DOI: 10.1007/s11030-024-10842-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
Malaria caused by P. falciparum, has been recognized as one of the major infectious diseases causing the death of several patients as per the reports from the World Health Organization. In search of effective therapeutic agents against malaria, several research groups have started working on the design and development of novel heterocycles as anti-malarial agents. Heterocycles have been recognized as the pharmacophoric features for the different types of medicinally important activities. Among all these heterocycles, nitrogen containing aza-heterocycles should not be underestimated owing to their wide therapeutic window. Amongst the aza-heterocycles, indoles and fused indoles such as marinoquinolines, isocryptolepines and their regioisomers, manzamines, neocryptolenines, and indolones have been recognized as anti-malarial agents active against P. falciparum. The present work unleashes the synthetic attempts of anti-malarial indoles and fused indoles through cyclocondensation, Fischer-indole synthesis, etc. along with the brief discussions on structure-activity relationships, in vitro or in vivo studies for the broader interest of these medicinal chemists, working on their design and development as potential anti-malarial agents.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India.
- Present Address: Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Drashtiben D Vekariya
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Pooja R Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Tarun Kachroo
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Kumkum D Virani
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Khushi R Patel
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Shelly Bhatt
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| | - Sandip P Dholakia
- Department of Pharmaceutical Chemistry and Quality Assurance, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380 009, Gujarat, India
| |
Collapse
|
3
|
Nasri A, Jaleh B, Shabanlou E, Nasrollahzadeh M, Ali Khonakdar H, Kruppke B. Ionic liquid-based (nano)catalysts for hydrogen generation and storage. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Chen Y, Li Y, Wang H, Chen Z, Lei YZ. Facile Construction of Carboxyl-Functionalized Ionic Polymer towards Synergistic Catalytic Cycloaddition of Carbon Dioxide into Cyclic Carbonates. Int J Mol Sci 2022; 23:ijms231810879. [PMID: 36142788 PMCID: PMC9506212 DOI: 10.3390/ijms231810879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
The development of bifunctional ionic polymers as heterogeneous catalysts for effective, cocatalyst- and metal-free cycloaddition of carbon dioxide into cyclic carbonates has attracted increasing attention. However, facile fabrication of such polymers having high numbers of ionic active sites, suitable types of hydrogen bond donors (HBDs), and controlled spatial positions of dual active sites remains a challenging task. Herein, imidazolium-based ionic polymers with hydroxyl/carboxyl groups and high ionic density were facilely prepared by a one-pot quaternization reaction. Catalytic evaluation demonstrated that the presence of HBDs (hydroxyl or carboxyl) could enhance the catalytic activities of ionic polymers significantly toward the CO2 cycloaddition reaction. Among the prepared catalysts, carboxyl-functionalized ionic polymer (PIMBr-COOH) displayed the highest catalytic activity (94% yield) in the benchmark cycloaddition reaction of CO2 and epichlorohydrin, which was higher than hydroxyl-functionalized ionic polymer (PIMBr-OH, 76% yield), and far exceeded ionic polymer without HBDs groups (PIMBr, 54% yield). Furthermore, PIMBr-COOH demonstrated good recyclability and wide substrate tolerance. Under ambient CO2 pressure, a number of epoxides were smoothly cycloadded into cyclic carbonates. Additionally, density functional theory (DFT) calculation verified the formation of strong hydrogen bonds between epoxide and the HBDs of ionic polymers. Furthermore, a possible mechanism was proposed based on the synergistic effect between carboxyl and Br− functionalities. Thus, a facile, one-pot synthetic strategy for the construction of bifunctional ionic polymers was developed for CO2 fixation.
Collapse
Affiliation(s)
- Ying Chen
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Yingjun Li
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Hu Wang
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Zaifei Chen
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
| | - Yi-Zhu Lei
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
- Guizhou Provincial Key Laboratory of Coal Clean Utilization, School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China
- Correspondence:
| |
Collapse
|
5
|
Sureja DK, Shah AP, Gajjar ND, Jadeja SB, Bodiwala KB, Dhameliya TM. In-silico Computational Investigations of AntiViral Lignan Derivatives as Potent Inhibitors of SARS CoV-2. ChemistrySelect 2022; 7:e202202069. [PMID: 35942360 PMCID: PMC9349937 DOI: 10.1002/slct.202202069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Due to alarming outbreak of pandemic COVID-19 in recent times, there is a strong need to discover and identify new antiviral agents acting against SARS CoV-2. Among natural products, lignan derivatives have been found effective against several viral strains including SARS CoV-2. Total of twenty-seven reported antiviral lignan derivatives of plant origin have been selected for computational studies to identify the potent inhibitors of SARS CoV-2. Molecular docking study has been carried out in order to predict and describe molecular interaction between active site of enzyme and lignan derivatives. Out of identified hits, clemastatin B and erythro-strebluslignanol G demonstrated stronger binding and high affinity with all selected proteins. Molecular dynamics simulation studies of clemastin B and savinin against promising targets of SARS CoV-2 have revealed their inhibitory potential against SARS CoV-2. In fine, in-silico computational studies have provided initial breakthrough in design and discovery of potential SARS CoV-2 inhibitors.
Collapse
Affiliation(s)
- Dipen K. Sureja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Ashish P. Shah
- Department of Pharmacy, Sumandeep VidyapeethVadodara391760, GujaratIndia
| | - Normi D. Gajjar
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Shwetaba B. Jadeja
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Kunjan B. Bodiwala
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality AssuranceL. M. College of Pharmacy, NavrangpuraAhmedabad380009, GujaratIndia
| |
Collapse
|