1
|
Liao J, Ding C, Jiang L, Shi J, Wang Q, Wang Z, Wang L. Construction of montmorillonite-based materials for highly efficient uranium removal: adsorption behaviors and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135741. [PMID: 39259997 DOI: 10.1016/j.jhazmat.2024.135741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this work, Fe3+-doped and -NH2-grafted montmorillonite-based material was prepared and the adsorption ability for uranium(VI) was verified. The microstructure and pore size distribution of the montmorillonite-based material were investigated by N2 adsorption-desorption analyzer and scanning electron microscopy. The surface groups and composition were analyzed by Fourier transform infrared spectrometer, X-ray photoelectron spectrometer and X-ray diffractometer, which proved the successful doping of Fe3+ and grafting of -NH2. In the adsorption study, the adsorption reached equilibrium within 100 min with a maximum adsorption capacity of 661.2 mg/g at pH = 6 and a high adsorption efficiency of 99.4 % at low uranium(VI) concentration (pH = 6, m/V = 0.5 g/L). The mechanism study showed that the strong synergistic complexation of -OH and -NH2 for uranium(VI) played a decisive role in the adsorption process and the transport function of interlayer bound water could also enhance the adsorption probability of uranium(VI) species. These results were far superior to other reported similar materials, which proved that the Fe3+-doped and -NH2-grafted montmorillonite-based material possessed an extremely high application potential in adsorption, providing a new route for the modification of montmorillonite.
Collapse
Affiliation(s)
- Jun Liao
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China.
| | - CongCong Ding
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Liang Jiang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Junping Shi
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Qiuyi Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Zihao Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Lielin Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, PR China.
| |
Collapse
|
2
|
Du Z, Li R, Shen Z, Hai X, Zou R. Low-Temperature Hydrotreatment of C4/C5 Fractions Using a Dual-Metal-Loaded Composite Oxide Catalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1934. [PMID: 39683322 DOI: 10.3390/nano14231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
C4 and C5 fractions are significant by-products in the ethylene industry, with considerable research and economic potential when processed through hydrogenation technology to enhance their value. This study explored the development of hydrotreating catalysts using composite oxides as carriers, specifically enhancing low-temperature performance by incorporating electronic promoters and employing specialized surface modification techniques. This approach enabled the synthesis of non-noble metal hydrogenation catalysts supported on Al2O3-TiO2 composite oxides. The catalysts were characterized using various techniques, including X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, X-ray photoelectron spectroscopy, ammonia temperature-programmed desorption, infrared spectroscopy, and transmission electron microscopy. Mo-Ni/Al2O3-TiO2 catalysts were optimized for low-temperature hydrotreating of C4 and C5 fractions, demonstrating stable performance at inlet temperatures far below those typically required. This finding enables a shift from traditional gas-phase to gas-liquid two-phase reactions, eliminating the need for high-pressure steam in industrial settings. As a result, energy consumption is reduced, and operational stability is significantly improved.
Collapse
Affiliation(s)
- Zhou Du
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Yanshan Branch, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., No. 15 Fenghuangting Road, Fangshan District, Beijing 102500, China
| | - Renyi Li
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Zhenghui Shen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Xiao Hai
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| |
Collapse
|
3
|
Wang X, Xiao C, Qi J, Guo X, Qi L, Zhou Y, Zhu Z, Yang Y, Li J. Enhancing Uranium Removal with a Titanium-Incorporated Zirconium-Based Metal-Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17366-17377. [PMID: 37971405 DOI: 10.1021/acs.langmuir.3c02535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The urgent need to efficiently and rapidly decontaminate uranium contamination in aquatic environments underscores its significance for ecological preservation and environmental restoration. Herein, a series of titanium-doped zirconium-based metal-organic frameworks were meticulously synthesized through a stepwise process. The resultant hybrid bimetallic materials, denoted as NU-Zr-n%Ti, exhibited remarkable efficiency in eliminating uranium (U (VI)) from aqueous solution. Batch experiments were executed to comprehensively assess the adsorption capabilities of NU-Zr-n%Ti. Notably, the hybrid materials exhibited a substantial increase in adsorption capacity for U (VI) compared to the parent NU-1000 framework. Remarkably, the optimized NU-Zr-15%Ti displayed a noteworthy adsorption capacity (∼118 mg g-1) along with exceptionally rapid kinetics at pH 4.0, surpassing that of pristine NU-1000 by a factor of 10. This heightened selectivity for U (VI) persisted even when diverse ions exist. The dominant mechanisms driving this high adsorption capacity were identified as the robust electrostatic attraction between the negatively charged surface of NU-Zr-15%Ti and positively charged U (VI) species as well as surface complexation. Consequently, NU-Zr-15%Ti emerges as a promising contender for addressing uranium-laden wastewater treatment and disposal due to its favorable sequestration performance.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chengming Xiao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lanyue Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yue Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
4
|
Rani N, Singh P, Kumar S, Kumar P, Bhankar V, Kamra N, Kumar K. Recent advancement in nanomaterials for the detection and removal of uranium: A review. ENVIRONMENTAL RESEARCH 2023; 234:116536. [PMID: 37399984 DOI: 10.1016/j.envres.2023.116536] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Uranyl ions U(VI), are the common by-product of nuclear power plants and anthropogenic activities like mining, excess utilization of fertilizers, oil industries, etc. Its intake into the body causes serious health concerns such as liver toxicity, brain damage, DNA damage and reproductive issues. Therefore, there is urgent need to develop the detection and remediation strategies. Nanomaterials (NMs), due to their unique physiochemical properties including very high specific area, tiny sizes, quantum effects, high chemical reactivity and selectivity have become emerging materials for the detection and remediation of these radioactive wastes. Therefore, the current study aims to provide a holistic view and investigation of these new emerging NMs that are effective for the detection and removal of Uranium including metal nanoparticles, carbon-based NMs, nanosized metal oxides, metal sulfides, metal-organic frameworks, cellulose NMs, metal carbides/nitrides, and carbon dots (CDs). Along with this, the production status, and its contamination data in food, water, and soil samples all across the world are also complied in this work.
Collapse
Affiliation(s)
- Neeru Rani
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Permender Singh
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Sandeep Kumar
- Department of Chemistry, J. C. Bose University of Science & Technology, YMCA, Faridabad, 126006, Haryana, India.
| | - Parmod Kumar
- Department of Physics, J. C. Bose University of Science & Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Vinita Bhankar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Nisha Kamra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Krishan Kumar
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, Sonepat, 131039, Haryana, India.
| |
Collapse
|
5
|
Nguyen THA, Quang DT, Tan LV, Vo TK. Ultrasonic spray pyrolysis synthesis of TiO 2/Al 2O 3 microspheres with enhanced removal efficiency towards toxic industrial dyes. RSC Adv 2023; 13:5859-5868. [PMID: 36816090 PMCID: PMC9932635 DOI: 10.1039/d3ra00024a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Developing low-cost and highly effective adsorbent materials to decolorate wastewater is still challenging in the industry. In this study, TiO2-modified Al2O3 microspheres with different TiO2 contents were produced by spray pyrolysis, which is rapid and easy to scale up. Results reveal that the modification of γ-Al2O3 with TiO2 reduced the crystallite size of Al2O3 and generated more active sites in the composite sample. The as-synthesized Al2O3-TiO2 microspheres were applied to remove anionic methyl orange (MO) and cationic rhodamine B (RB) dyes in an aqueous solution using batch and continuous flow column sorption processes. Results show that the Al2O3 microspheres modified with 15 wt% of TiO2 exhibited the maximum adsorbing capacity of ∼41.15 mg g-1 and ∼32.28 mg g-1 for MO and RB, respectively, exceeding the bare γ-Al2O3 and TiO2. The impact of environmental complexities on the material's reactivity for the organic pollutants was further delineated by adjusting the pH and adding coexisting ions. At pH ∼5.5, the TiO2/Al2O3 microspheres showed higher sorption selectivity towards MO. In the continuous flow column removal, the TiO2/Al2O3 microspheres achieved sorption capacities of ∼31 mg g-1 and ∼19 mg g-1 until the breakthrough point for MO and RB, respectively. The findings reveal that TiO2-modified Al2O3 microspheres were rapidly prepared by spray pyrolysis, and they effectively treated organic dyes in water in batch and continuous flow removal processes.
Collapse
Affiliation(s)
- Thi Hong Anh Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Food Industry140 Le Trong Tan, Tan PhuHo Chi Minh CityVietnam
| | - Duong Tuan Quang
- University of Education, Hue University34 Le Loi, Phu HoiHue City530000Vietnam
| | - Le Van Tan
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap Ho Chi Minh City Vietnam
| | - The Ky Vo
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap Ho Chi Minh City Vietnam
| |
Collapse
|
6
|
Huang S, Chen C, Zhao Z, Jia L, Zhang Y. In situ synthesis of magnesium-doped hydroxyapatite aerogel for highly efficient U(VI) separation with ultra high adsorption capacity and excellent recyclability. CHEMOSPHERE 2023; 312:137226. [PMID: 36372341 DOI: 10.1016/j.chemosphere.2022.137226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Mg-doped HAP aerogel (MHAPA) was firstly in situ prepared via freeze-drying-calcination technology to capture U(VI). The U(VI) removal capacity by MHAPA even arrived 2685.6 mg g-1, which was about 2 times over purchased HAP, illustrating that the incorporation of Mg ions could greatly enhance the U(VI) removal capacity. Compared with HAP, MHAPA also showed better anti-ion interference ability and dynamic removal performances. In comparison with other HAP-based adsorbents, MHAPA possessed good recyclability and its desorption rate was up to 93.4% in the first cycle. The excellent U(VI) removal performances of MHAPA might be owing to its low crystallinity and grain size, fast ion exchange rate and partial ionization under acidic conditions, which would accelerate the process of electrostatic attraction, ion-exchange, and complexation to immobilize U(VI). To sum up, the prepared MHAPA was expected to be an environmentally friendly, recyclable and effective adsorbent to immobilize U(VI) in actual wastewater.
Collapse
Affiliation(s)
- Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Congcong Chen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhibo Zhao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
7
|
Highly efficient separation of uranium from wastewater by in situ synthesized hydroxyapatite modified coal fly ash composite aerogel. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|