1
|
Borikhonov B, Berdimurodov E, Kholikov T, Nik WBW, Katin KP, Demir M, Sapaev F, Turaev S, Jurakulova N, Eliboev I. Development of new sustainable pyridinium ionic liquids: From reactivity studies to mechanism-based activity predictions. J Mol Model 2024; 30:359. [PMID: 39356293 DOI: 10.1007/s00894-024-06157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
CONTEXT This study addresses the development of sustainable pyridinium ionic liquids (ILs) because of their potential applications in agriculture and pharmaceuticals. Pyridinium-based ILs are known for their low melting points, high thermal stability, and moderate solvation properties. We synthesized three novel pyridinium-based ILs: 1-(2-(isopentyloxy)-2-oxoethyl)pyridin-1-ium chloride, 1-(2-(hexyloxy)-2-oxoethyl)pyridin-1-ium chloride, and 1-(2-(benzyloxy)-2-oxoethyl)pyridin-1-ium chloride. The biological activities of these compounds were evaluated through plant growth promotion, herbicidal, and insecticidal assays. Our results show that the benzyloxy derivative significantly enhances wheat and cucumber growth, whereas the isopentyloxy compound has potent herbicidal effects. Computational methods, including DFT calculations and molecular docking, were applied to understand the structure‒activity relationships (SARs) and mechanisms of action. METHODS The computational techniques involved dispersion-corrected density functional theory (DFT) with the B3LYP functional and the 6-311G** basis set. Grimme's D3 corrections were included to account for dispersion interactions. The calculations were performed via GAMESS-US software. Quantum descriptors of reactivity, such as ionization potential, electron affinity, chemical potential, and electrophilicity index, were derived from the HOMO and LUMO energies. Molecular docking studies were conducted via the CB-Dock server via AutoDock Vina software to predict binding affinities to cancer-related proteins. Petra/Osiris/Molinspiration (POM) analysis was used to predict the drug likeness and other pharmaceutical properties of the synthesized ILs.
Collapse
Affiliation(s)
- Bakhtiyor Borikhonov
- Faculty of Chemistry-Biology, Karshi State University, 130100, Karshi, Uzbekistan
| | - Elyor Berdimurodov
- Chemical & Materials Engineering, New Uzbekistan University, 54 Mustaqillik Ave, 100007, Tashkent, Uzbekistan.
- Faculty of Chemistry, National University of Uzbekistan, 100034, Tashkent, Uzbekistan.
- Physics and Chemistry, "Tashkent Institute of Irrigation and Agricultural Mechanization Engineers" National Research University, 100000, Tashkent, Uzbekistan.
| | - Tursunali Kholikov
- Faculty of Chemistry, National University of Uzbekistan, 100034, Tashkent, Uzbekistan
| | - W B Wan Nik
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Konstantin P Katin
- National Research Nuclear University "MEPhI", Kashirskoe Shosse 31, Moscow, 115409, Russian Federation
| | - Muslum Demir
- TUBITAK Marmara Research Center, Material Institute, Gebze, 41470, Turkey
- Osmaniye Korkut Ata University, Osmaniye, 80000, Turkey
| | - Frunza Sapaev
- Faculty of Chemistry, National University of Uzbekistan, 100034, Tashkent, Uzbekistan
| | - Sherzod Turaev
- Faculty of Chemistry, National University of Uzbekistan, 100034, Tashkent, Uzbekistan
| | - Nigora Jurakulova
- Faculty of Chemistry-Biology, Karshi State University, 130100, Karshi, Uzbekistan
| | - Ilyos Eliboev
- University of Tashkent for Applied Sciences, Str. Gavhar 1, 100149, Tashkent, Uzbekistan
- Physics and Chemistry, Western Caspian University, Baku, AZ-1001, Azerbaijan
- Uzbek-Finnish Pedagogical Institute, Spitamen Street, 166-Home, Samarqand, Uzbekistan
| |
Collapse
|
2
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Qi Z, Chen J, Chen J, Qiu T, Ye C. Studies on the Stability and Deactivation Mechanism of Immobilized Ionic Liquids in Catalytic Esterification Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:851-861. [PMID: 36599647 DOI: 10.1021/acs.langmuir.2c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid-supported ionic liquid catalysts (SILs) are the simplest form of a heterogenized ionic liquid and have attracted soaring attention because of the high catalytic activity as well as separation. Unfortunately, instability severely hinders their practical application, and the reason for the deactivation of SILs has not been investigated in detail. In the present study, the immobilized ionic liquid catalysts MIL-101-[IA-SO3H][HSO4] and MIL-101-[IA-COOH][HSO4] were prepared and used to study the stability in the esterification reaction. The results show that compared with MIL-101-[IA-COOH][HSO4], MIL-101-[IA-SO3H][HSO4] has a higher catalytic activity and a lower stability. The deactivation mechanism is discussed based on experiments and theoretical analysis: the protons on -SO3H dissociate in a polar solvent and combine with anion HSO4-, and then, the formative H2SO4 molecule will leach out into the solvent. Our discussion indicates that the stability of immobilized ionic liquids is determined by the substituents of ionic liquid cations and becomes the significant factor controlling the stability limits. The study presented here would be important for understanding the deactivation reason and can help in choosing the suitable cation to avoid leaching of the active site during the reaction.
Collapse
Affiliation(s)
- Zhaoyang Qi
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Jinyi Chen
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Jie Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Ting Qiu
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Changshen Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| |
Collapse
|