1
|
Yokoo S, Higo T, Gerard-Mercier F, Oguchi M, Sakagami M, Bito H, Sakamoto M, Ichinohe N, Tanaka K. Projection-specific and reversible functional blockage in the association cortex of macaque monkeys. Neurosci Res 2025:S0168-0102(25)00086-0. [PMID: 40381890 DOI: 10.1016/j.neures.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The functional manipulation techniques based on optogenetics have been widely and effectively utilized in the rodent brain. However, the applications of these techniques to the macaque cerebral cortex, particularly those to the prefrontal cortex, have been limited due to the extensive size and complex functional organization of each prefrontal area. In this study, we developed projection-specific and reversible functional blockade methods applicable to areas of the macaque prefrontal cortex, based on chemogenetic techniques. In chemogenetics, once a pair of viral vectors has been injected into the regions of projection source and destination, the projection-specific functional blockage can be initiated through the oral, intravenous, or intramuscular administration of an appropriate pharmaceutical agent. Two methods were developed using two different effector proteins, an inhibitory DREADD, hM4Di, and tetanus toxin, given the substantial discrepancy in the on-off time course of functional blockade between the two. The Cre-DIO system was combined with hM4Di, and the Tet-On system with tetanus toxin. The effectiveness of these methods was evaluated by developing an electrophysiological assay using photic stimulation and field potential recordings.
Collapse
Affiliation(s)
- Seiichirou Yokoo
- Cognitive Brain Mapping Laboratory, RIKEN Center for Brain Science
| | - Takayasu Higo
- Cognitive Brain Mapping Laboratory, RIKEN Center for Brain Science,; Department of Neuroscience, Graduate School of Medicine, Kyoto University
| | | | | | | | - Haruhiko Bito
- Graduate School of Medicine, The University of Tokyo
| | - Masayuki Sakamoto
- Graduate School of Medicine, The University of Tokyo,; Graduate School of Biostudies, Kyoto University
| | - Noritake Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Keiji Tanaka
- Cognitive Brain Mapping Laboratory, RIKEN Center for Brain Science,.
| |
Collapse
|
2
|
Hsu LM, Cerri DH, Carelli RM, Shih YYI. Optogenetic stimulation of cell bodies versus axonal terminals generate comparable activity and functional connectivity patterns in the brain. Brain Stimul 2025; 18:822-828. [PMID: 40090667 DOI: 10.1016/j.brs.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025] Open
Abstract
Optogenetic techniques are often employed to dissect neural pathways with presumed specificity for targeted projections. In this study, we used optogenetic fMRI to investigate the effective landscape of stimulating the cell bodies versus one of its projection terminals. Specifically, we selected a long-range unidirectional projection from the ventral subiculum (vSUB) to the nucleus accumbens shell (NAcSh) and placed two stimulating fibers-one at the vSUB cell bodies and the other at the vSUB terminals in the NAcSh. Contrary to the conventional view that terminal stimulation confines activity to the feedforward stimulated pathway, our findings reveal that terminal stimulation induces brain activity and connectivity patterns remarkably similar to those of vSUB cell body stimulation. This observation suggests that the specificity of optogenetic terminal stimulation may induce antidromic activation, leading to broader network involvement than previously acknowledged.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Center for Animal MRI, University of North Carolina at Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, United States; Department of Radiology, University of North Carolina at Chapel Hill, United States.
| | - Domenic H Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, United States; Department of Neurology, University of North Carolina at Chapel Hill, United States
| | - Regina M Carelli
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, United States
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, United States; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, United States; Department of Neurology, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
3
|
Luff CE, de Lecea L. Can Neuromodulation Improve Sleep and Psychiatric Symptoms? Curr Psychiatry Rep 2024; 26:650-658. [PMID: 39352645 DOI: 10.1007/s11920-024-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
PURPOSE OF REVIEW In this review, we evaluate recent studies that employ neuromodulation, in the form of non-invasive brain stimulation, to improve sleep in both healthy participants, and patients with psychiatric disorders. We review studies using transcranial electrical stimulation, transcranial magnetic stimulation, and closed-loop auditory stimulation, and consider both subjective and objective measures of sleep improvement. RECENT FINDINGS Neuromodulation can alter neuronal activity underlying sleep. However, few studies utilizing neuromodulation report improvements in objective measures of sleep. Enhancements in subjective measures of sleep quality are replicable, however, many studies conducted in this field suffer from methodological limitations, and the placebo effect is robust. Currently, evidence that neuromodulation can effectively enhance sleep is lacking. For the field to advance, methodological issues must be resolved, and the full range of objective measures of sleep architecture, alongside subjective measures of sleep quality, must be reported. Additionally, validation of effective modulation of neuronal activity should be done with neuroimaging.
Collapse
Affiliation(s)
- Charlotte E Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Futia GL, Zohrabi M, McCullough C, Teel A, Simoes de Souza F, Oroke R, Miscles EJ, Ozbay BN, Kilborn K, Bright VM, Restrepo D, Gopinath JT, Gibson EA. Opto2P-FCM: A MEMS based miniature two-photon microscope with two-photon patterned optogenetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619528. [PMID: 39484501 PMCID: PMC11526896 DOI: 10.1101/2024.10.21.619528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Multiphoton microscopy combined with optogenetic photostimulation is a powerful technique in neuroscience enabling precise control of cellular activity to determine the neural basis of behavior in a live animal. Two-photon patterned photostimulation has taken this further by allowing interrogation at the individual neuron level. However, it remains a challenge to implement imaging of neural activity with spatially patterned two-photon photostimulation in a freely moving animal. We developed a miniature microscope for high resolution two-photon fluorescence imaging with patterned two-photon optogenetic stimulation. The design incorporates a MEMS scanner for two-photon imaging and a second beam path for patterned two-photon excitation in a compact and lightweight design that can be head-attached to a freely moving animal. We demonstrate cell-specific optogenetics and high resolution MEMS based two-photon imaging in a freely moving mouse. The new capabilities of this miniature microscope design can enable cell-specific studies of behavior that can only be done in freely moving animals.
Collapse
Affiliation(s)
- Gregory L. Futia
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mo Zohrabi
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Connor McCullough
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alec Teel
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fabio Simoes de Souza
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ryan Oroke
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Eduardo J. Miscles
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Baris N. Ozbay
- Intelligent Imaging Innovations Inc., Denver, CO 80216, USA
| | - Karl Kilborn
- Intelligent Imaging Innovations Inc., Denver, CO 80216, USA
| | - Victor M. Bright
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Juliet T. Gopinath
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA
| | - Emily A. Gibson
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Griggs DJ, Bloch J, Stanis N, Zhou J, Fisher S, Jahanian H, Yazdan-Shahmorad A. A large-scale optogenetic neurophysiology platform for improving accessibility in NHP behavioral experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600719. [PMID: 38979206 PMCID: PMC11230395 DOI: 10.1101/2024.06.25.600719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Optogenetics has been a powerful scientific tool for two decades, yet its integration with non-human primate (NHP) electrophysiology has been limited due to several technical challenges. These include a lack of electrode arrays capable of supporting large-scale and long-term optical access, inaccessible viral vector delivery methods for transfection of large regions of cortex, a paucity of hardware designed for large-scale patterned cortical illumination, and inflexible designs for multi-modal experimentation. To address these gaps, we introduce a highly accessible platform integrating optogenetics and electrophysiology for behavioral and neural modulation with neurophysiological recording in NHPs. We employed this platform in two rhesus macaques and showcased its capability of optogenetically disrupting reaches, while simultaneously monitoring ongoing electrocorticography activity underlying the stimulation-induced behavioral changes. The platform exhibits long-term stability and functionality, thereby facilitating large-scale electrophysiology, optical imaging, and optogenetics over months, which is crucial for translationally relevant multi-modal studies of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Devon J Griggs
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
| | - Julien Bloch
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Noah Stanis
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Jasmine Zhou
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
| | - Shawn Fisher
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
| | | | - Azadeh Yazdan-Shahmorad
- University of Washington, Seattle, Department of Electrical and Computer Engineering
- Washington National Primate Research Center
- University of Washington, Seattle, Department of Bioengineering
- Weill Neurohub
| |
Collapse
|
6
|
Lai YS, Hsieh MR, Nguyen TMH, Chen YC, Wang HC, Chiu WT. Optogenetically engineered calcium oscillations promote autophagy-mediated cell death via AMPK activation. Open Biol 2024; 14:240001. [PMID: 38653331 PMCID: PMC11057470 DOI: 10.1098/rsob.240001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Autophagy is a double-edged sword for cells; it can lead to both cell survival and death. Calcium (Ca2+) signalling plays a crucial role in regulating various cellular behaviours, including cell migration, proliferation and death. In this study, we investigated the effects of modulating cytosolic Ca2+ levels on autophagy using chemical and optogenetic methods. Our findings revealed that ionomycin and thapsigargin induce Ca2+ influx to promote autophagy, whereas the Ca2+ chelator BAPTA-AM induces Ca2+ depletion and inhibits autophagy. Furthermore, the optogenetic platform allows the manipulation of illumination parameters, including density, frequency, duty cycle and duration, to create different patterns of Ca2+ oscillations. We used the optogenetic tool Ca2+-translocating channelrhodopsin, which is activated and opened by 470 nm blue light to induce Ca2+ influx. These results demonstrated that high-frequency Ca2+ oscillations induce autophagy. In addition, autophagy induction may involve Ca2+-activated adenosine monophosphate (AMP)-activated protein kinases. In conclusion, high-frequency optogenetic Ca2+ oscillations led to cell death mediated by AMP-activated protein kinase-induced autophagy.
Collapse
Affiliation(s)
- Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
| | - Meng-Ru Hsieh
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung
University, Tainan701, Taiwan
| | - Hsueh-Chun Wang
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung
University, Tainan701, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung
University, Tainan701, Taiwan
- Medical Device Innovation Center, National Cheng Kung
University, Tainan701, Taiwan
| |
Collapse
|
7
|
Kc E, Islam J, Lee G, Park YS. Optogenetic Approach in Trigeminal Neuralgia and Potential Concerns: Preclinical Insights. Mol Neurobiol 2024; 61:1769-1780. [PMID: 37775720 DOI: 10.1007/s12035-023-03652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
The integration of optogenetics in the trigeminal pain circuitry broadens and reinforces existing pain investigations. Similar to research on spinal neuropathic pain, the exploration of the underlying determinants of orofacial pain is expanding. Optogenetics facilitates more direct, specific, and subtle investigations of the neuronal circuits involved in orofacial pain. One of the most significant concerns of both dentistry and medicine is trigeminal neuralgia (TN) management due to its substantial impact on a patient's quality of life. Our objective is to gather insights from preclinical studies conducted in TN employing an optogenetic paradigm, thereby extending the prospects for in-depth neurobiological research. This review highlights optogenetic research in trigeminal pain circuitry involving TN. We outline the central and peripheral regions associated with pain-that have been investigated using optogenetics in the trigeminal pain circuitry. The study further reports its scope and limitations as well as its potential for future applications from bench to bedside.
Collapse
Affiliation(s)
- Elina Kc
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jaisan Islam
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H. Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Young Seok Park
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Republic of Korea.
| |
Collapse
|
8
|
Lai YS, Chan TW, Nguyen TMH, Lin TC, Chao YY, Wang CY, Hung LY, Tsai SJ, Chiu WT. Store-operated calcium entry inhibits primary ciliogenesis via the activation of Aurora A. FEBS J 2024; 291:1027-1042. [PMID: 38050648 DOI: 10.1111/febs.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
The primary cilium is an antenna-like organelle protruding from the cell surface that can detect physical and chemical stimuli in the extracellular space to activate specific signaling pathways and downstream gene expressions. Calcium ion (Ca2+ ) signaling regulates a wide spectrum of cellular processes, including fertilization, proliferation, differentiation, muscle contraction, migration, and death. This study investigated the effects of the regulation of cytosolic Ca2+ levels on ciliogenesis using chemical, genetic, and optogenetic approaches. We found that ionomycin-induced Ca2+ influx inhibited ciliogenesis and Ca2+ chelator BATPA-AM-induced Ca2+ depletion promoted ciliogenesis. In addition, store-operated Ca2+ entry and the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) negatively regulated ciliogenesis. Moreover, an optogenetic platform was used to create different Ca2+ oscillation patterns by manipulating lighting parameters, including density, frequency, exposure time, and duration. Light-activated Ca2+ -translocating channelrhodopsin (CatCh) is activated by 470-nm blue light to induce Ca2+ influx. Our results show that high-frequency Ca2+ oscillations decrease ciliogenesis. Furthermore, the inhibition of cilia formation induced by Ca2+ may occur via the activation of Aurora kinase A. Cilia not only induce Ca2+ signaling but also regulate cilia formation by Ca2+ signaling.
Collapse
Affiliation(s)
- Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ta-Wei Chan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Thi My Hang Nguyen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chien Lin
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ying Chao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Liang-Yi Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shaw-Jenq Tsai
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Luo H, Yang Z, Yang PF, Wang F, Reed JL, Gore JC, Grissom WA, Chen LM. Detection of laser-associated heating in the brain during simultaneous fMRI and optogenetic stimulation. Magn Reson Med 2023; 89:729-737. [PMID: 36161670 PMCID: PMC9712166 DOI: 10.1002/mrm.29464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To calculate temperatures from T2 *-weighted images collected during optogenetic fMRI based on proton resonance frequency (PRF) shift thermometry, to monitor confounding heating effects and determine appropriate light parameters for optogenetic stimulation. METHODS fMRI is mainly based on long-TE gradient-recalled echo acquisitions that are also suitable for measuring small temperature changes via the PRF shift. A motion- and respiration-robust processing pipeline was developed to calculate temperature changes based on the PRF shift directly from the T2 *-weighted images collected for fMRI with a two-shot 2D gradient-recalled echo-EPI sequence at 9.4T. Optogenetic fMRI protocols which differed in stimulation durations (3, 6 and 9 s) within a total block duration of 30 s were applied in a squirrel monkey to validate the methods with blue and green light (20 Hz, 30 mW) delivery interleaved between periods. General linear modeling was performed on the resulting time series temperature maps to verify if light delivery with each protocol resulted in significant heating in the brain around the optical fiber. RESULTS The temperature SD was 0.05°C with the proposed imaging protocol and processing. Statistical analysis showed that the optogenetic stimulation protocol with a 3 s stimulation duration did not result in significant temperature rises. Significant temperature rises up to 0.13°C (p < 0. 05) were observed with 6 and 9 s stimulation durations for blue and green light. CONCLUSION The proposed processing pipeline can be useful for the design of optogenetic stimulation protocols and for monitoring confounding heating effects.
Collapse
Affiliation(s)
- Huiwen Luo
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
| | - Zhangyan Yang
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John C. Gore
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - William A. Grissom
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
10
|
Perkins ML, Gandara L, Crocker J. A synthetic synthesis to explore animal evolution and development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200517. [PMID: 35634925 PMCID: PMC9149795 DOI: 10.1098/rstb.2020.0517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying the general principles by which genotypes are converted into phenotypes remains a challenge in the post-genomic era. We still lack a predictive understanding of how genes shape interactions among cells and tissues in response to signalling and environmental cues, and hence how regulatory networks generate the phenotypic variation required for adaptive evolution. Here, we discuss how techniques borrowed from synthetic biology may facilitate a systematic exploration of evolvability across biological scales. Synthetic approaches permit controlled manipulation of both endogenous and fully engineered systems, providing a flexible platform for investigating causal mechanisms in vivo. Combining synthetic approaches with multi-level phenotyping (phenomics) will supply a detailed, quantitative characterization of how internal and external stimuli shape the morphology and behaviour of living organisms. We advocate integrating high-throughput experimental data with mathematical and computational techniques from a variety of disciplines in order to pursue a comprehensive theory of evolution. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Mindy Liu Perkins
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lautaro Gandara
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Justin Crocker
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
11
|
Saha R, Wu K, Bloom RP, Liang S, Tonini D, Wang JP. A review on magnetic and spintronic neurostimulation: challenges and prospects. NANOTECHNOLOGY 2022; 33:182004. [PMID: 35013010 DOI: 10.1088/1361-6528/ac49be] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In the treatment of neurodegenerative, sensory and cardiovascular diseases, electrical probes and arrays have shown quite a promising success rate. However, despite the outstanding clinical outcomes, their operation is significantly hindered by non-selective control of electric fields. A promising alternative is micromagnetic stimulation (μMS) due to the high permeability of magnetic field through biological tissues. The induced electric field from the time-varying magnetic field generated by magnetic neurostimulators is used to remotely stimulate neighboring neurons. Due to the spatial asymmetry of the induced electric field, high spatial selectivity of neurostimulation has been realized. Herein, some popular choices of magnetic neurostimulators such as microcoils (μcoils) and spintronic nanodevices are reviewed. The neurostimulator features such as power consumption and resolution (aiming at cellular level) are discussed. In addition, the chronic stability and biocompatibility of these implantable neurostimulator are commented in favor of further translation to clinical settings. Furthermore, magnetic nanoparticles (MNPs), as another invaluable neurostimulation material, has emerged in recent years. Thus, in this review we have also included MNPs as a remote neurostimulation solution that overcomes physical limitations of invasive implants. Overall, this review provides peers with the recent development of ultra-low power, cellular-level, spatially selective magnetic neurostimulators of dimensions within micro- to nano-range for treating chronic neurological disorders. At the end of this review, some potential applications of next generation neuro-devices have also been discussed.
Collapse
Affiliation(s)
- Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Robert P Bloom
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Shuang Liang
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Denis Tonini
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
12
|
Oyigeya M. Reflex memory theory of acquired involuntary motor and sensory disorders. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Explicit and implicit memories are conserved but flexible biological tools that nature uses to regulate the daily behaviors of human beings. An aberrant form of the implicit memory is presumed to exist and may be contributory to the pathophysiology of disorders such as tardive syndromes, phantom phenomena, flashback, posttraumatic stress disorders (PTSD), and related disorders. These disorders have posed significant clinical problems for both patients and physicians for centuries. All extant pathophysiological theories of these disorders have failed to provide basis for effective treatment.
Objective
The objective of this article is to propose an alternative pathophysiological theory that will hopefully lead to new treatment approaches.
Methods
The author sourced over 60 journal articles that treated topics on memory, and involuntary motor and sensory disorders, from open access journals using Google Scholar, and reviewed them and this helped in the formulation of this theory.
Results
From the reviews, the author thinks physical or chemical insult to the nervous system can cause defective circuit remodeling, leading to generation of a variant of implicit (automatic) memory, herein called “reflex memory” and this is encoded interoceptively to contribute to these phenomena states.
Conclusion
Acquired involuntary motor and sensory disorders are caused by defective circuit remodeling involving multiple neural mechanisms. Dysregulation of excitatory neurotransmitters, calcium overload, homeostatic failure, and neurotoxicity are implicated in the process. Sustained effects of these defective mechanisms are encoded interoceptively as abnormal memory in the neurons and the conscious manifestations are these disorders. Extant theories failed to recognize this possibility.
Collapse
|
13
|
Somuncu ÖS, Berns HM, Sanchez JG. New Pioneers of Optogenetics in Neuroscience. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1288:47-60. [PMID: 31983055 DOI: 10.1007/5584_2019_473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Optogenetics have recently increased in popularity as tools to study behavior in response to the brain and how these trends relate back to a neuronal circuit. Additionally, the high demand for human cerebral tissue in research has led to the generation of a new model to investigate human brain development and disease. Human Pluripotent Stem Cells (hPSCs) have been previously used to recapitulate the development of several tissues such as intestine, stomach and liver and to model disease in a human context, recently new improvements have been made in the field of hPSC-derived brain organoids to better understand overall brain development but more specifically, to mimic inter-neuronal communication. This review aims to highlight the recent advances in these two separate approaches of brain research and to emphasize the need for overlap. These two novel approaches would combine the study of behavior along with the specific circuits required to produce the signals causing such behavior. This review is focused on the current state of the field, as well as the development of novel optogenetic technologies and their potential for current scientific study and potential therapeutic use.
Collapse
Affiliation(s)
- Ö Sezin Somuncu
- Department of Medical Biology, Bahçeşehir University Faculty of Medicine, İstanbul, Turkey.
| | - H Matthew Berns
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - J Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
14
|
A drivable optrode for use in chronic electrophysiology and optogenetic experiments. J Neurosci Methods 2020; 348:108979. [PMID: 33096153 PMCID: PMC10174211 DOI: 10.1016/j.jneumeth.2020.108979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 10/13/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Combining optogenetic tools with behaving electrophysiology is a powerful approach for investigating the neural mechanisms underlying behavior. A traditional approach to ensure viable recordings during chronic long-term electrophysiological experiments is the use of drivable electrodes. However, few options exist for drivable optrodes. NEW METHOD Here, we describe the design and construction of an economical drivable optrode for chronic experiments in behaving rodents, which allows for the simultaneous photo-stimulation and recording of distinct neuronal populations. RESULTS We demonstrate the utility of the drivable optrode by recording light-evoked modulation in awake behaving rats over multiple recording sessions and across different depths. Using a virus to drive expression of channelrhodopsin-2 (ChR2) in the anterior piriform cortex, the drivable optrode was used to record consistent light-evoked modulation of neural activity in the gustatory cortex during photo-activation of the axonal projections from anterior piriform cortex in behaving rats. COMPARISON WITH EXISTING METHODS Although sophisticated optrodes have been developed, many are expensive, unmodifiable, require advanced engineering techniques, and/or lack drivability. The drivable optrode uses relatively inexpensive materials, requires no machined parts, and can be fabricated with tools available in most labs. In addition, it can be easily modified to accommodate different experimental parameters. CONCLUSION In summary, we believe that the cost-effective and relatively simple-to-prepare design makes this drivable optrode a practical option for researchers using optogenetic and electrophysiological tools to investigate network and circuit function.
Collapse
|
15
|
Kang H, Hong W, An Y, Yoo S, Kwon HJ, Nam Y. Thermoplasmonic Optical Fiber for Localized Neural Stimulation. ACS NANO 2020; 14:11406-11419. [PMID: 32885954 DOI: 10.1021/acsnano.0c03703] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thermoplasmonic effect-based neural stimulation has been suggested as an alternative optical neural stimulation technology without genetic modification. Integration of near-infrared light with plasmonic gold nanoparticles has been demonstrated as a neuromodulation tool on in vitro neuronal network models. In order to further test the validity of the thermoplasmonic neural stimulation across multiple biological models (in vitro, ex vivo, and in vivo) avoiding genetic modification in optical neuromodulation, versatile engineering approaches to apply the thermoplasmonic effect would be required. In this work, we developed a gold nanorod attached optical fiber technology for the localized neural stimulation based on a thermoplasmonic effect. A simple fabrication process was developed for efficient nanoparticle coating on commercial optical fibers. The thermoplasmonic optical fiber proved that it can locally modulate the neural activity in vitro. Lastly, we simulated the spatiotemporal temperature change by the thermoplasmonic optical fiber and analyzed its applicability to in vivo animal models.
Collapse
Affiliation(s)
- Hongki Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Information and Electronics Research Institute, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Woongki Hong
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yujin An
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangjin Yoo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Hyuk-Jun Kwon
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Tang H, Zhu Q, Li W, Qin S, Gong Y, Wang H, Shioda S, Li S, Huang J, Liu B, Fang Y, Liu Y, Wang S, Guo Y, Xia Q, Guo Y, Xu Z. Neurophysiology and Treatment of Disorders of Consciousness Induced by Traumatic Brain Injury: Orexin Signaling as a Potential Therapeutic Target. Curr Pharm Des 2020; 25:4208-4220. [PMID: 31663471 DOI: 10.2174/1381612825666191029101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause disorders of consciousness (DOC) by impairing the neuronal circuits of the ascending reticular activating system (ARAS) structures, including the hypothalamus, which are responsible for the maintenance of the wakefulness and awareness. However, the effectiveness of drugs targeting ARAS activation is still inadequate, and novel therapeutic modalities are urgently needed. METHODS The goal of this work is to describe the neural loops of wakefulness, and explain how these elements participate in DOC, with emphasis on the identification of potential new therapeutic options for DOC induced by TBI. RESULTS Hypothalamus has been identified as a sleep/wake center, and its anterior and posterior regions have diverse roles in the regulation of the sleep/wake function. In particular, the posterior hypothalamus (PH) possesses several types of neurons, including the orexin neurons in the lateral hypothalamus (LH) with widespread projections to other wakefulness-related regions of the brain. Orexins have been known to affect feeding and appetite, and recently their profound effect on sleep disorders and DOC has been identified. Orexin antagonists are used for the treatment of insomnia, and orexin agonists can be used for narcolepsy. Additionally, several studies demonstrated that the agonists of orexin might be effective in the treatment of DOC, providing novel therapeutic opportunities in this field. CONCLUSION The hypothalamic-centered orexin has been adopted as the point of entry into the system of consciousness control, and modulators of orexin signaling opened several therapeutic opportunities for the treatment of DOC.
Collapse
Affiliation(s)
- Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiumei Zhu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Wang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xia
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Yoon HH, Nam MH, Choi I, Min J, Jeon SR. Optogenetic inactivation of the entopeduncular nucleus improves forelimb akinesia in a Parkinson's disease model. Behav Brain Res 2020; 386:112551. [PMID: 32057827 DOI: 10.1016/j.bbr.2020.112551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 11/28/2022]
Abstract
We performed optogenetic inactivation of rats' entopeduncular nucleus (EP, homologous to primates' globus pallidus interna (GPi)) and investigated the therapeutic effect in a rat model of PD. 6-Hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats were injected with either a virus for halorhodopsin expression that is used to inactivate GABAergic neurons or a control virus injection and received optic fiber insertion. All the rats were illuminated by 590 nm of light. Each rat was then subjected to sequential sessions of stepping tests under controlled illumination patterns. The stepping test is a reliable evaluation method for forelimb akinesia. The number of adjusting steps was significantly higher in experimental (optogene with reporter gene expression) (5Hz - 10ms: 15.7 ± 1.9, 5Hz - 100ms: 16.0 ± 1.8, continuous: 21.6 ± 1.9) than control rats (reporter gene expression) (5Hz-10ms: 1.9 ± 1.1, 5Hz-100ms: 2.6 ± 1.0, continuous: 2.5 ± 1.2) (p < 0.001). Continuous EP illumination showed a significantly higher improvement of forelimb akinesia than other illumination patterns (p < 0.01). Optogene expression in the GABAergic neurons of the EP was confirmed by immunohistochemistry. Optogenetic inhibition of EP was effective to improve contralateral forelimb akinesia. However, further studies using prolonged illumination are needed to investigate the best illumination pattern for optogenetic stimulation.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Ho Nam
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Il Choi
- Department of Neurosurgery, Hallym University, Dongtan Sacred Heart Hospital, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do 445-907, Republic of Korea
| | - Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
18
|
Navabpour S, Kwapis JL, Jarome TJ. A neuroscientist's guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev 2020; 108:732-748. [PMID: 31843544 PMCID: PMC8049509 DOI: 10.1016/j.neubiorev.2019.12.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The past decade has produced an explosion in the number and variety of genetic tools available to neuroscientists, resulting in an unprecedented ability to precisely manipulate the genome and epigenome in behaving animals. However, no single resource exists that describes all of the tools available to neuroscientists. Here, we review the genetic, transgenic, and viral techniques that are currently available to probe the complex relationship between genes and cognition. Topics covered include types of traditional transgenic mouse models (knockout, knock-in, reporter lines), inducible systems (Cre-loxP, Tet-On, Tet-Off) and cell- and circuit-specific systems (TetTag, TRAP, DIO-DREADD). Additionally, we provide details on virus-mediated and siRNA/shRNA approaches, as well as a comprehensive discussion of the myriad manipulations that can be made using the CRISPR-Cas9 system, including single base pair editing and spatially- and temporally-regulated gene-specific transcriptional control. Collectively, this review will serve as a guide to assist neuroscientists in identifying and choosing the appropriate genetic tools available to study the complex relationship between the brain and behavior.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, College Park, PA, USA; Center for the Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, College Park, PA, USA.
| | - Timothy J Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
19
|
Optogenetics in Brain Research: From a Strategy to Investigate Physiological Function to a Therapeutic Tool. PHOTONICS 2019. [DOI: 10.3390/photonics6030092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dissecting the functional roles of neuronal circuits and their interaction is a crucial step in basic neuroscience and in all the biomedical field. Optogenetics is well-suited to this purpose since it allows us to study the functionality of neuronal networks on multiple scales in living organisms. This tool was recently used in a plethora of studies to investigate physiological neuronal circuit function in addition to dysfunctional or pathological conditions. Moreover, optogenetics is emerging as a crucial technique to develop new rehabilitative and therapeutic strategies for many neurodegenerative diseases in pre-clinical models. In this review, we discuss recent applications of optogenetics, starting from fundamental research to pre-clinical applications. Firstly, we described the fundamental components of optogenetics, from light-activated proteins to light delivery systems. Secondly, we showed its applications to study neuronal circuits in physiological or pathological conditions at the cortical and subcortical level, in vivo. Furthermore, the interesting findings achieved using optogenetics as a therapeutic and rehabilitative tool highlighted the potential of this technique for understanding and treating neurological diseases in pre-clinical models. Finally, we showed encouraging results recently obtained by applying optogenetics in human neuronal cells in-vitro.
Collapse
|
20
|
Li W, Lin J, Wang T, Huang P. Photo-triggered Drug Delivery Systems for Neuron-related Applications. Curr Med Chem 2019; 26:1406-1422. [PMID: 29932026 DOI: 10.2174/0929867325666180622121801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/09/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
The development of materials, chemistry and genetics has created a great number of systems for delivering antibiotics, neuropeptides or other drugs to neurons in neuroscience research, and has also provided important and powerful tools in neuron-related applications. Although these drug delivery systems can facilitate the advancement of neuroscience studies, they still have limited applications due to various drawbacks, such as difficulty in controlling delivery molecules or drugs to the target region, and trouble of releasing them in predictable manners. The combination of optics and drug delivery systems has great potentials to address these issues and deliver molecules or drugs to the nervous system with extraordinary spatiotemporal selectivity triggered by light. In this review, we will introduce the development of photo-triggered drug delivery systems in neuroscience research and their neuron-related applications including regulating neural activities, treating neural diseases and inducing nerve regenerations.
Collapse
Affiliation(s)
- Wei Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta GA 30332, United States
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tianfu Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Walker WH, Borniger JC. Molecular Mechanisms of Cancer-Induced Sleep Disruption. Int J Mol Sci 2019; 20:E2780. [PMID: 31174326 PMCID: PMC6600154 DOI: 10.3390/ijms20112780] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Sleep is essential for health. Indeed, poor sleep is consistently linked to the development of systemic disease, including depression, metabolic syndrome, and cognitive impairments. Further evidence has accumulated suggesting the role of sleep in cancer initiation and progression (primarily breast cancer). Indeed, patients with cancer and cancer survivors frequently experience poor sleep, manifesting as insomnia, circadian misalignment, hypersomnia, somnolence syndrome, hot flushes, and nightmares. These problems are associated with a reduction in the patients' quality of life and increased mortality. Due to the heterogeneity among cancers, treatment regimens, patient populations and lifestyle factors, the etiology of cancer-induced sleep disruption is largely unknown. Here, we discuss recent advances in understanding the pathways linking cancer and the brain and how this leads to altered sleep patterns. We describe a conceptual framework where tumors disrupt normal homeostatic processes, resulting in aberrant changes in physiology and behavior that are detrimental to health. Finally, we discuss how this knowledge can be leveraged to develop novel therapeutic approaches for cancer-associated sleep disruption, with special emphasis on host-tumor interactions.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA.
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Han HW, Ko LN, Yang CS, Hsu SH. Potential of Engineered Bacteriorhodopsins as Photoactivated Biomaterials in Modulating Neural Stem Cell Behavior. ACS Biomater Sci Eng 2019; 5:3068-3078. [PMID: 33405539 DOI: 10.1021/acsbiomaterials.9b00367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacteriorhodopsin (BR), a light-sensitive bacterial proton pump, has been demonstrated the capacity for regulating the neural activity in mammalian cells. Because of the difficulty in production and purification in large quantities, the BR proteins have neither been directly employed to biomedical applications nor verified the functionality by protein administration. Previously, we have invented a highly expressible bacteriorhodopsin (HEBR) and established the massive production protocol. In the current study, we mass-produced the two types of HEBR proteins that have normal or abnormal activity on the proton pumping, and then we treated murine neural stem cells (NSCs) with these HEBR proteins. We discovered that the cell behaviors including growth, metabolism, mitochondrial inner membrane potential, and differentiation were obviously affected in NSCs after the treatment of HEBR proteins. Particularly, these effects induced by HEBR proteins were correlated to their proton pump activity and could be altered by cell culture substrate materials. Current findings suggest that the engineered light-sensitive HEBR protein can serve as a biological material to directly influence the multiple behaviors of mammalian cells, which is further modified by the cell culture substrate material, revealing the versatile potential of HEBR protein in biomaterial applications.
Collapse
Affiliation(s)
| | | | | | - Shan-Hui Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Zhunan, Miaoli County, Taiwan 35053, R.O.C
| |
Collapse
|
23
|
Nepovimova E, Janockova J, Misik J, Kubik S, Stuchlik A, Vales K, Korabecny J, Mezeiova E, Dolezal R, Soukup O, Kobrlova T, Pham NL, Nguyen TD, Konecny J, Kuca K. Orexin supplementation in narcolepsy treatment: A review. Med Res Rev 2018; 39:961-975. [PMID: 30426515 DOI: 10.1002/med.21550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Narcolepsy is a rare, chronic neurological disease characterized by excessive daytime sleepiness, cataplexy, vivid hallucinations, and sleep paralysis. Narcolepsy occurs in approximately 1 of 3000 people, affecting mainly adolescents aged 15 to 30 years. Recently, people with narcolepsy were shown to exhibit extensive orexin/hypocretin neuronal loss. The orexin system regulates sleep/wake control via complex interactions with monoaminergic, cholinergic and GABA-ergic neuronal systems. Currently, no cure for narcolepsy exists, but some symptoms can be controlled with medication (eg, stimulants, antidepressants, etc). Orexin supplementation represents a more sophisticated way to treat narcolepsy because it addresses the underlying cause of the disease and not just the symptoms. Research on orexin supplementation in the treatment of sleep disorders has strongly increased over the past two decades. This review focuses on a brief description of narcolepsy, the mechanisms by which the orexin system regulates sleep/wake cycles, and finally, possible therapeutic options based on orexin supplementation in animal models and patients with narcolepsy.
Collapse
Affiliation(s)
- Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Misik
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Stepan Kubik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ngoc Lam Pham
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Thuy Duong Nguyen
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
24
|
Camporeze B, Manica BA, Bonafé GA, Ferreira JJC, Diniz AL, de Oliveira CTP, Mathias Junior LR, de Aguiar PHP, Ortega MM. Optogenetics: the new molecular approach to control functions of neural cells in epilepsy, depression and tumors of the central nervous system. Am J Cancer Res 2018; 8:1900-1918. [PMID: 30416844 PMCID: PMC6220144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023] Open
Abstract
The optogenetic tools have been described as valuable techniques to study neural activity through light stimulation, as well as potential neuromodulator approaches in the management of several central nervous system (CNS) diseases. Since the first bacteriorhodopsin protein described as a single-component light-activated regulator of transmembrane ion flow description, in 1980's, the focus has been on channel proteins for neurobiology; however, the advances in engineering techniques showed involvement changes in cellular biological behavior in several types of proteins involved in cell cytoskeleton regulation, motility and gene expression. Although the use of this technology has been published in many papers, a question still remains regarding real results and potential clinical applicability in CNS diseases, as well as the publications scarcity that systematically analyses the published results. Lastly, the aim of this review is to discuss the experimental results, molecular mechanisms and potential clinical applications of optogenetic tools in epilepsy and depression treatment, as well as its applicability in the treatment of CNS tumors.
Collapse
Affiliation(s)
- Bruno Camporeze
- Postgraduate Program in Health Science, Laboratory of Cellular and Molecular Biology and Bioactive Compounds, São Francisco University (USF)Bragança Paulista-SP, Brazil
- Postgraduate Program in Health Science, Department of Neurosurgery, Institute of Medical Assistance of The State Public Servant (IAMSPE)São Paulo-SP, Brazil
| | - Bruno Alcântara Manica
- Departament of Neurology, Medical School University Pontifical University Catholic of São Paulo (PUCSP)Sorocaba-SP, Brazil
| | - Gabriel Alves Bonafé
- Postgraduate Program in Health Science, Laboratory of Cellular and Molecular Biology and Bioactive Compounds, São Francisco University (USF)Bragança Paulista-SP, Brazil
| | | | - Aurélio Lourenço Diniz
- Departament of Neurology, Medical School University Pontifical University Catholic of São Paulo (PUCSP)Sorocaba-SP, Brazil
| | | | | | - Paulo Henrique Pires de Aguiar
- Postgraduate Program in Health Science, Department of Neurosurgery, Institute of Medical Assistance of The State Public Servant (IAMSPE)São Paulo-SP, Brazil
- Departament of Neurology, Medical School University Pontifical University Catholic of São Paulo (PUCSP)Sorocaba-SP, Brazil
- Departament of Neurosurgery, Hospital Santa PaulaSão Paulo-SP, Brazil
- Department of Research and Innovation, Laboratory of Cellular and Molecular Biology, Medical School of ABC (FMABC)Santo André-SP, Brazil
| | - Manoela Marques Ortega
- Postgraduate Program in Health Science, Laboratory of Cellular and Molecular Biology and Bioactive Compounds, São Francisco University (USF)Bragança Paulista-SP, Brazil
| |
Collapse
|
25
|
Goncalves SB, Ribeiro JF, Silva AF, Costa RM, Correia JH. Design and manufacturing challenges of optogenetic neural interfaces: a review. J Neural Eng 2018; 14:041001. [PMID: 28452331 DOI: 10.1088/1741-2552/aa7004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Optogenetics is a relatively new technology to achieve cell-type specific neuromodulation with millisecond-scale temporal precision. Optogenetic tools are being developed to address neuroscience challenges, and to improve the knowledge about brain networks, with the ultimate aim of catalyzing new treatments for brain disorders and diseases. To reach this ambitious goal the implementation of mature and reliable engineered tools is required. The success of optogenetics relies on optical tools that can deliver light into the neural tissue. Objective/Approach: Here, the design and manufacturing approaches available to the scientific community are reviewed, and current challenges to accomplish appropriate scalable, multimodal and wireless optical devices are discussed. SIGNIFICANCE Overall, this review aims at presenting a helpful guidance to the engineering and design of optical microsystems for optogenetic applications.
Collapse
Affiliation(s)
- S B Goncalves
- CMEMS-UMinho, Department of Industrial Electronics, University of Minho, Guimaraes, Portugal
| | | | | | | | | |
Collapse
|
26
|
Barnett SC, Perry BAL, Dalrymple-Alford JC, Parr-Brownlie LC. Optogenetic stimulation: Understanding memory and treating deficits. Hippocampus 2018; 28:457-470. [DOI: 10.1002/hipo.22960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- S. C. Barnett
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
| | - B. A. L. Perry
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
| | - J. C. Dalrymple-Alford
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
- New Zealand Brain Research Institute; Christchurch New Zealand
| | - L. C. Parr-Brownlie
- Brain Research New Zealand; New Zealand
- Department of Anatomy, School of Biomedical Science; Brain Health Research Centre, University of Otago; Dunedin New Zealand
| |
Collapse
|
27
|
Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018; 43:937-952. [PMID: 29206811 PMCID: PMC5854814 DOI: 10.1038/npp.2017.294] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
Humans have been fascinated by sleep for millennia. After almost a century of scientific interrogation, significant progress has been made in understanding the neuronal regulation and functions of sleep. The application of new methods in neuroscience that enable the analysis of genetically defined neuronal circuits with unprecedented specificity and precision has been paramount in this endeavor. In this review, we first discuss electrophysiological and behavioral features of sleep/wake states and the principal neuronal populations involved in their regulation. Next, we describe the main modulatory drives of sleep and wakefulness, including homeostatic, circadian, and motivational processes. Finally, we describe a revised integrative model for sleep/wake regulation.
Collapse
Affiliation(s)
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
28
|
Wang W. Optogenetic manipulation of ENS - The brain in the gut. Life Sci 2017; 192:18-25. [PMID: 29155296 DOI: 10.1016/j.lfs.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Optogenetics has emerged as an important tool in neuroscience, especially in central nervous system research. It allows for the study of the brain's highly complex network with high temporal and spatial resolution. The enteric nervous system (ENS), the brain in the gut, plays critical roles for life. Although advanced progress has been made, the neural circuits of the ENS remain only partly understood because the appropriate research tools are lacking. In this review, I highlight the potential application of optogenetics in ENS research. Firstly, I describe the development of optogenetics with focusing on its three main components. I discuss the applications in vitro and in vivo, and summarize current findings in the ENS research field obtained by optogenetics. Finally, the challenges for the application of optogenetics to the ENS research will be discussed.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
| |
Collapse
|
29
|
Cho YK, Kim S, Jung HH, Chang JW, Kim YJ, Shin HC, Jun SB. Neuromodulation methods for animal locomotion control. Biomed Eng Lett 2017. [DOI: 10.1007/s13534-016-0234-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Liu M, Blanco-Centurion C, Shiromani PJ. Rewiring brain circuits to block cataplexy in murine models of narcolepsy. Curr Opin Neurobiol 2017; 44:110-115. [PMID: 28445807 PMCID: PMC5511086 DOI: 10.1016/j.conb.2017.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
Abstract
Narcolepsy was first identified almost 130 years ago, but it was only 15 years ago that it was identified as a neurodegenerative disease linked to a loss of orexin neurons in the brain. It is unclear what causes the orexin neurons to die, but our strategy has been to place the gene for orexin into surrogate neurons in the validated mouse models of narcolepsy, and test whether it can block narcolepsy symptoms, such as cataplexy. In both the orexin knockout and the orexin-ataxin-3 mouse models of narcolepsy we have found that cataplexy can be blocked if the surrogate neurons are part of the circuit responsible for cataplexy. We have also determined that the orexin gene can be inserted into surrogate neurons in the amygdala to block emotion-induced cataplexy. Through the use of optogenetics we anticipate that it will be possible to preemptively block cataplexy.
Collapse
Affiliation(s)
- Meng Liu
- Ralph H. Johnson VA and Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Carlos Blanco-Centurion
- Ralph H. Johnson VA and Medical University of South Carolina, Charleston, SC 29425, United States
| | - Priyattam J Shiromani
- Ralph H. Johnson VA and Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
31
|
Hoshiba Y, Wada T, Hayashi-Takagi A. Synaptic Ensemble Underlying the Selection and Consolidation of Neuronal Circuits during Learning. Front Neural Circuits 2017; 11:12. [PMID: 28303092 PMCID: PMC5332426 DOI: 10.3389/fncir.2017.00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Memories are crucial to the cognitive essence of who we are as human beings. Accumulating evidence has suggested that memories are stored as a subset of neurons that probably fire together in the same ensemble. Such formation of cell ensembles must meet contradictory requirements of being plastic and responsive during learning, but also stable in order to maintain the memory. Although synaptic potentiation is presumed to be the cellular substrate for this process, the link between the two remains correlational. With the application of the latest optogenetic tools, it has been possible to collect direct evidence of the contributions of synaptic potentiation in the formation and consolidation of cell ensemble in a learning task specific manner. In this review, we summarize the current view of the causative role of synaptic plasticity as the cellular mechanism underlying the encoding of memory and recalling of learned memories. In particular, we will be focusing on the latest optoprobe developed for the visualization of such “synaptic ensembles.” We further discuss how a new synaptic ensemble could contribute to the formation of cell ensembles during learning and memory. With the development and application of novel research tools in the future, studies on synaptic ensembles will pioneer new discoveries, eventually leading to a comprehensive understanding of how the brain works.
Collapse
Affiliation(s)
- Yoshio Hoshiba
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University Maebashi, Japan
| | - Takeyoshi Wada
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University Maebashi, Japan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashi, Japan; PRESTO, Japan Science and Technology AgencyKawaguchi, Japan
| |
Collapse
|
32
|
Restani L, Caleo M. Reorganization of Visual Callosal Connections Following Alterations of Retinal Input and Brain Damage. Front Syst Neurosci 2016; 10:86. [PMID: 27895559 PMCID: PMC5107575 DOI: 10.3389/fnsys.2016.00086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 01/16/2023] Open
Abstract
Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital epilepsy. A particular focus will be on reviewing noninvasive brain stimulation techniques and optogenetic approaches that allow to selectively manipulate callosal function and to probe its involvement in cortical processing and plasticity. Overall, the data indicate that experience can potently impact on transcallosal connectivity, and that the callosum itself is crucial for plasticity and recovery in various disorders of the visual pathway.
Collapse
Affiliation(s)
- Laura Restani
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR) Pisa, Italy
| |
Collapse
|
33
|
Govorunova EG, Koppel LA. The Road to Optogenetics: Microbial Rhodopsins. BIOCHEMISTRY (MOSCOW) 2016; 81:928-40. [PMID: 27682165 DOI: 10.1134/s0006297916090029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Optogenetics technology (using light-sensitive microbial proteins to control animal cell physiology) is becoming increasingly popular in laboratories around the world. Among these proteins, particularly important are rhodopsins that transport ions across the membrane and are used in optogenetics to regulate membrane potential by light, mostly in neurons. Although rhodopsin ion pumps transport only one charge per captured photon, channelrhodopsins are capable of more efficient passive transport. In this review, we follow the history of channelrhodopsin discovery in flagellate algae and discuss the latest addition to the channelrhodopsin family, channels with anion, rather than cation, selectivity.
Collapse
Affiliation(s)
- E G Govorunova
- Lomonosov Moscow State University, School of Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
34
|
Jiang S, Liu YF, Wang XM, Liu KF, Zhang DH, Li YD, Yu AP, Zhang XH, Zhang JY, Xu JG, Gu YD, Xu WD, Zeng SQ. Automated, highly reproducible, wide-field, light-based cortical mapping method using a commercial stereo microscope and its applications. BIOMEDICAL OPTICS EXPRESS 2016; 7:3478-3490. [PMID: 27699114 PMCID: PMC5030026 DOI: 10.1364/boe.7.003478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
We introduce a more flexible optogenetics-based mapping system attached on a stereo microscope, which offers automatic light stimulation to individual regions of interest in the cortex that expresses light-activated channelrhodopsin-2 in vivo. Combining simultaneous recording of electromyography from specific forelimb muscles, we demonstrate that this system offers much better efficiency and precision in mapping distinct domains for controlling limb muscles in the mouse motor cortex. Furthermore, the compact and modular design of the system also yields a simple and flexible implementation to different commercial stereo microscopes, and thus could be widely used among laboratories.
Collapse
Affiliation(s)
- Su Jiang
- Department of Hand Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China; These authors contributed equally to the study and paper
| | - Ya-Feng Liu
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; These authors contributed equally to the study and paper
| | - Xiao-Min Wang
- Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Shanghai, 200040, China
| | - Ke-Fei Liu
- Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ding-Hong Zhang
- Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Graduate University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Ding Li
- Institute of Neuroscience, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Ai-Ping Yu
- Department of Hand Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jia-Yi Zhang
- Institutes of Brain Science, Fudan University, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center of Brain Science, Fudan University, Shanghai, 200031, China
| | - Jian-Guang Xu
- Department of Hand Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Dong Gu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wen-Dong Xu
- Department of Hand Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China; Department of Hand and Upper Extremity Surgery, Jing'an District Central Hospital, Shanghai, 200040, China; State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center of Brain Science, Fudan University, Shanghai, 200031, China;
| | - Shao-Qun Zeng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China; MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China;
| |
Collapse
|
35
|
Probing Neural Transplant Networks In Vivo with Optogenetics and Optogenetic fMRI. Stem Cells Int 2016; 2016:8612751. [PMID: 27293449 PMCID: PMC4880717 DOI: 10.1155/2016/8612751] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/18/2016] [Indexed: 01/23/2023] Open
Abstract
Understanding how stem cell-derived neurons functionally integrate into the brain upon transplantation has been a long sought-after goal of regenerative medicine. However, methodological limitations have stood as a barrier, preventing key insight into this fundamental problem. A recently developed technology, termed optogenetic functional magnetic resonance imaging (ofMRI), offers a possible solution. By combining targeted activation of transplanted neurons with large-scale, noninvasive measurements of brain activity, ofMRI can directly visualize the effect of engrafted neurons firing on downstream regions. Importantly, this tool can be used to identify not only whether transplanted neurons have functionally integrated into the brain, but also which regions they influence and how. Furthermore, the precise control afforded over activation enables the input-output properties of engrafted neurons to be systematically studied. This review summarizes the efforts in stem cell biology and neuroimaging that made this development possible and outlines its potential applications for improving and optimizing stem cell-based therapies in the future.
Collapse
|
36
|
Papp EA, Leergaard TB, Csucs G, Bjaalie JG. Brain-Wide Mapping of Axonal Connections: Workflow for Automated Detection and Spatial Analysis of Labeling in Microscopic Sections. Front Neuroinform 2016; 10:11. [PMID: 27148038 PMCID: PMC4835481 DOI: 10.3389/fninf.2016.00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 01/11/2023] Open
Abstract
Axonal tracing techniques are powerful tools for exploring the structural organization of neuronal connections. Tracers such as biotinylated dextran amine (BDA) and Phaseolus vulgaris leucoagglutinin (Pha-L) allow brain-wide mapping of connections through analysis of large series of histological section images. We present a workflow for efficient collection and analysis of tract-tracing datasets with a focus on newly developed modules for image processing and assignment of anatomical location to tracing data. New functionality includes automatic detection of neuronal labeling in large image series, alignment of images to a volumetric brain atlas, and analytical tools for measuring the position and extent of labeling. To evaluate the workflow, we used high-resolution microscopic images from axonal tracing experiments in which different parts of the rat primary somatosensory cortex had been injected with BDA or Pha-L. Parameters from a set of representative images were used to automate detection of labeling in image series covering the entire brain, resulting in binary maps of the distribution of labeling. For high to medium labeling densities, automatic detection was found to provide reliable results when compared to manual analysis, whereas weak labeling required manual curation for optimal detection. To identify brain regions corresponding to labeled areas, section images were aligned to the Waxholm Space (WHS) atlas of the Sprague Dawley rat brain (v2) by custom-angle slicing of the MRI template to match individual sections. Based on the alignment, WHS coordinates were obtained for labeled elements and transformed to stereotaxic coordinates. The new workflow modules increase the efficiency and reliability of labeling detection in large series of images from histological sections, and enable anchoring to anatomical atlases for further spatial analysis and comparison with other data.
Collapse
Affiliation(s)
- Eszter A Papp
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | | | - Gergely Csucs
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Jan G Bjaalie
- Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
37
|
Yoon HH, Min J, Hwang E, Lee CJ, Suh JKF, Hwang O, Jeon SR. Optogenetic Inhibition of the Subthalamic Nucleus Reduces Levodopa-Induced Dyskinesias in a Rat Model of Parkinson's Disease. Stereotact Funct Neurosurg 2016; 94:41-53. [PMID: 26962855 DOI: 10.1159/000442891] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND The inhibition of neuronal activity by electrical deep brain stimulation is one of the mechanisms explaining the amelioration of levodopa-induced dyskinesia. However, electrical deep brain stimulation cannot specifically activate or inactivate selected types of neurons. OBJECTIVES We applied optogenetics as an alternative treatment to deep brain stimulation for levodopa-induced dyskinesia, and also to confirm that the mechanism of levodopa-induced dyskinesia amelioration by subthalamic nucleus deep brain stimulation is mediated through neuronal inhibition. METHODS 6-hydroxydopamine-induced hemiparkinsonian rats received injections of hSynapsin1-NpHR-YFP adeno-associated virus (AAV) or hSynapsin1-YFP AAV. Two weeks after viral injections, all rats were treated with daily injections of levodopa. Then, the optic fiber was implanted into the ipsilateral subthalamic nucleus. We performed various behavioral tests to evaluate the changes in levodopa-induced dyskinesias after optogenetic expression and illumination in the subthalamic nucleus. RESULTS The behavioral tests revealed that optical inhibition of the subthalamic nucleus significantly ameliorated levodopa-induced dyskinesia by reducing the duration of the dyskinesias as well as the severity of axial dyskinesia. CONCLUSIONS These findings will provide a useful foundation for the future development of optogenetic modulation systems that could be considered as an approach to dyskinesia therapy.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Konadhode RR, Pelluru D, Shiromani PJ. Unihemispheric Sleep: An Enigma for Current Models of Sleep-Wake Regulation. Sleep 2016; 39:491-4. [PMID: 26856898 DOI: 10.5665/sleep.5508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022] Open
Affiliation(s)
- Roda Rani Konadhode
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina
| | - Dheeraj Pelluru
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina
| | - Priyattam J Shiromani
- Departments of Psychiatry & Behavioral Sciences, Medical University of South Carolina.,Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
39
|
Kale RP, Kouzani AZ, Walder K, Berk M, Tye SJ. Evolution of optogenetic microdevices. NEUROPHOTONICS 2015; 2:031206. [PMID: 26158015 PMCID: PMC4481025 DOI: 10.1117/1.nph.2.3.031206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/27/2015] [Indexed: 05/30/2023]
Abstract
Implementation of optogenetic techniques is a recent addition to the neuroscientists' preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices.
Collapse
Affiliation(s)
- Rajas P. Kale
- Deakin University School of Engineering, Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
- Mayo Clinic Department of Psychiatry and Psychology, 200 First Street SW, Rochester, Minnesota 55905, United States
| | - Abbas Z. Kouzani
- Deakin University School of Engineering, Faculty of Science, Engineering, and Built Environment, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Ken Walder
- Deakin University School of Medicine, 75 Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Faulty of Health, School of Medicine, Barwon Health, Geelong, Victoria, Australia
- Orygen, National Centre of Excellence in Youth Mental Health, Department of Psychiatry, 35 Poplar Road, Parkville, Victoria 3052, Australia
- University of Melbourne, Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville Victoria 3052, Australia
| | - Susannah J. Tye
- Mayo Clinic Department of Psychiatry and Psychology, 200 First Street SW, Rochester, Minnesota 55905, United States
| |
Collapse
|
40
|
Kim YC, Alberico SL, Emmons E, Narayanan NS. New therapeutic strategies targeting D1-type dopamine receptors for neuropsychiatric disease. ACTA ACUST UNITED AC 2015; 10:230-238. [PMID: 28280503 DOI: 10.1007/s11515-015-1360-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The neurotransmitter dopamine acts via two major classes of receptors, D1-type and D2-type. D1 receptors are highly expressed in the striatum and can also be found in the cerebral cortex. Here we review the role of D1 dopamine signaling in two major domains: L-DOPA-induced dyskinesias in Parkinson's disease and cognition in neuropsychiatric disorders. While there are many drugs targeting D2-type receptors, there are no drugs that specifically target D1 receptors. It has been difficult to use selective D1-receptor agonists for clinical applications due to issues with bioavailability, binding affinity, pharmacological kinetics, and side effects. We propose potential therapies that selectively modulate D1 dopamine signaling by targeting second messengers downstream of D1 receptors, allosteric modulators, or by making targeted modifications to D1-receptor machinery. The development of therapies specific to D1-receptor signaling could be a new frontier in the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Young-Cho Kim
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Eric Emmons
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; Aging Mind and Brain Initiative, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
41
|
Thompson AC, Stoddart PR, Jansen ED. Optical Stimulation of Neurons. ACTA ACUST UNITED AC 2015; 3:162-177. [PMID: 26322269 PMCID: PMC4541079 DOI: 10.2174/2211555203666141117220611] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/26/2014] [Accepted: 10/20/2014] [Indexed: 01/01/2023]
Abstract
Our capacity to interface with the nervous system remains overwhelmingly reliant on electrical stimulation devices, such as electrode arrays and cuff electrodes that can stimulate both central and peripheral nervous systems. However, electrical stimulation has to deal with multiple challenges, including selectivity, spatial resolution, mechanical stability, implant-induced injury and the subsequent inflammatory response. Optical stimulation techniques may avoid some of these challenges by providing more selective stimulation, higher spatial resolution and reduced invasiveness of the device, while also avoiding the electrical artefacts that complicate recordings of electrically stimulated neuronal activity. This review explores the current status of optical stimulation techniques, including optogenetic methods, photoactive molecule approaches and infrared neural stimulation, together with emerging techniques such as hybrid optical-electrical stimulation, nanoparticle enhanced stimulation and optoelectric methods. Infrared neural stimulation is particularly emphasised, due to the potential for direct activation of neural tissue by infrared light, as opposed to techniques that rely on the introduction of exogenous light responsive materials. However, infrared neural stimulation remains imperfectly understood, and techniques for accurately delivering light are still under development. While the various techniques reviewed here confirm the overall feasibility of optical stimulation, a number of challenges remain to be overcome before they can deliver their full potential.
Collapse
Affiliation(s)
- Alexander C Thompson
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Australia
| | - Paul R Stoddart
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Australia
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
42
|
Pienaar IS, Dexter DT, Gradinaru V. Neurophysiological and Optogenetic Assessment of Brain Networks Involved in Motor Control. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Yoon HH, Park JH, Kim YH, Min J, Hwang E, Lee CJ, Suh JKF, Hwang O, Jeon SR. Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease. Neurosurgery 2014; 74:533-40; discussion 540-1. [PMID: 24463495 DOI: 10.1227/neu.0000000000000297] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The inhibition of neuronal activity by electrical deep brain stimulation is one of the mechanisms explaining the therapeutic effects in patients with Parkinson disease (PD) but cannot specifically activate or inactivate different types of neurons. Recently, a new technology based on optogenetics has been developed to modulate the activity of specific neurons. However, the therapeutic effects of optical inactivation in the subthalamic nucleus (STN) have not been fully investigated. OBJECTIVE To perform various behavioral tests to evaluate changes in motor functions in a PD rat model after optogene expression and, unlike previous studies, to assess the therapeutic effects of direct optogenetic inactivation in the STN. METHODS 6-Hydroxydopamine-induced hemiparkinsonian rats received injections of hSynapsin1-NpHR-YFP adeno-associated virus or an equivalent volume of phosphate-buffered saline. Three weeks after injection of adeno-associated virus or phosphate-buffered saline, the optic fiber was implanted into the ipsilateral STN. A stepping test, a cylinder test, and an apomorphine-induced rotation test were performed in 3 sequential steps: during light-off state, during light stimulation, and again during light-off state. RESULTS Stepping tests revealed that optical inhibition of the STN significantly improved 6-hydroxydopamine-induced forelimb akinesia. PD motor signs, as assessed by cylinder and apomorphine tests, were not affected by optical inhibition. Immunofluorescence revealed that halorhodopsin was highly expressed and colocalized with vesicular glutamate transporter 2 in the STN. CONCLUSION Optogenetic inhibition in the STN may be effective in improving contralateral forelimb akinesia but not in changing forelimb preference or reducing dopaminergic receptor supersensitivity. These findings are useful as a basis for future studies on optogenetics in PD.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- ‡Department of Neurological Surgery and **Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea; §Department of Neurological Surgery, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea; ¶Department of Computer Science and Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana; ‖Center for Neural Science and WCI Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, Republic of Korea; #Center for Bionics of Korea Institute of Science and Technology, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Belzung C, Turiault M, Griebel G. Optogenetics to study the circuits of fear- and depression-like behaviors: A critical analysis. Pharmacol Biochem Behav 2014; 122:144-57. [DOI: 10.1016/j.pbb.2014.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 02/05/2023]
|
45
|
Circuit dynamics of adaptive and maladaptive behaviour. Nature 2014; 505:309-17. [PMID: 24429629 DOI: 10.1038/nature12982] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/08/2013] [Indexed: 02/08/2023]
Abstract
The recent development of technologies for investigating specific components of intact biological systems has allowed elucidation of the neural circuitry underlying adaptive and maladaptive behaviours. Investigators are now able to observe and control, with high spatio-temporal resolution, structurally defined intact pathways along which electrical activity flows during and after the performance of complex behaviours. These investigations have revealed that control of projection-specific dynamics is well suited to modulating behavioural patterns that are relevant to a broad range of psychiatric diseases. Structural dynamics principles have emerged to provide diverse, unexpected and causal insights into the operation of intact and diseased nervous systems, linking form and function in the brain.
Collapse
|
46
|
Abstract
In 1998, our group discovered a cDNA that encoded the precursor of two putative neuropeptides that we called hypocretins for their hypothalamic expression and their similarity to the secretin family of neuropeptides. In the last 16 years, numerous studies have placed the hypocretin system as an integrator of homeostatic functions with a crucial, non-redundant function as arousal stabilizer. We recently applied optogenetic methods to interrogate the role of individual neuronal circuits in sleep-to-wake transitions. The neuronal connections between the hypocretin system and the locus coeruleus (LC) seem to be crucial in establishing the appropriate dynamic of spontaneous awakenings.
Collapse
|
47
|
Yawo H, Asano T, Sakai S, Ishizuka T. Optogenetic manipulation of neural and non-neural functions. Dev Growth Differ 2013; 55:474-90. [PMID: 23550617 DOI: 10.1111/dgd.12053] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
Abstract
Optogenetic manipulation of the neuronal activity enables one to analyze the neuronal network both in vivo and in vitro with precise spatio-temporal resolution. Channelrhodopsins (ChRs) are light-sensitive cation channels that depolarize the cell membrane, whereas halorhodopsins and archaerhodopsins are light-sensitive Cl(-) and H(+) transporters, respectively, that hyperpolarize it when exogenously expressed. The cause-effect relationship between a neuron and its function in the brain is thus bi-directionally investigated with evidence of necessity and sufficiency. In this review we discuss the potential of optogenetics with a focus on three major requirements for its application: (i) selection of the light-sensitive proteins optimal for optogenetic investigation, (ii) targeted expression of these selected proteins in a specific group of neurons, and (iii) targeted irradiation with high spatiotemporal resolution. We also discuss recent progress in the application of optogenetics to studies of non-neural cells such as glial cells, cardiac and skeletal myocytes. In combination with stem cell technology, optogenetics may be key to successful research using embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) derived from human patients through optical regulation of differentiation-maturation, through optical manipulation of tissue transplants and, furthermore, through facilitating survival and integration of transplants.
Collapse
Affiliation(s)
- Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Tohoku University Graduate School of Life Sciences, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | | | | | | |
Collapse
|
48
|
Khroyan TV, Zhang J, Yang L, Zou B, Xie J, Pascual C, Malik A, Xie J, Zaveri NT, Vazquez J, Polgar W, Toll L, Fang J, Xie X. Rodent motor and neuropsychological behaviour measured in home cages using the integrated modular platform SmartCage™. Clin Exp Pharmacol Physiol 2012; 39:614-22. [PMID: 22540540 DOI: 10.1111/j.1440-1681.2012.05719.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening.
Collapse
|
49
|
Hegerl U, Hensch T. The vigilance regulation model of affective disorders and ADHD. Neurosci Biobehav Rev 2012; 44:45-57. [PMID: 23092655 DOI: 10.1016/j.neubiorev.2012.10.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 10/09/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
According to the recently proposed vigilance model of affective disorders (vigilance in the sense of "brain arousal"), manic behaviour is partly interpreted as an autoregulatory attempt to stabilise vigilance by creating a stimulating environment, and the sensation avoidance and withdrawal in Major Depressive Disorder (MDD) is seen as an autoregulatory reaction to tonically increased vigilance. Indeed, using a newly developed EEG-based algorithm, hyperstable vigilance was found in MDD, and the contrary, with rapid drops to sleep stages, in mania. Furthermore, destabilising vigilance (e.g. by sleep deprivation) triggers (hypo)mania and improves depression, whereas stabilising vigilance, e.g. by prolonged sleep, improves mania. ADHD and mania have common symptoms, and the unstable vigilance might be a common pathophysiology. There is even evidence that psychostimulants might ameliorate both ADHD and mania. Hyperactivity of the noradrenergic system could explain both the high vigilance level in MDD and, as recently argued, anhedonia and behavioural inhibition. Interestingly, antidepressants and electroconvulsions decrease the firing rate of neurons in the noradrenergic locus coeruleus, whereas many antimanic drugs have opposite effects.
Collapse
Key Words
- Vigilance regulation, Arousal, EEG, Autoregulatory behaviour, Sensation seeking, Novelty seeking, Mania, ADHD, Bipolar disorder, Depression, Noradrenergic system, Norepinephrine, Locus coeruleus, Anti-manic drugs, Antidepressants
Collapse
Affiliation(s)
- Ulrich Hegerl
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstr. 10, 04103, Leipzig, Germany.
| | - Tilman Hensch
- Department of Psychiatry and Psychotherapy, University of Leipzig, Semmelweisstr. 10, 04103, Leipzig, Germany
| |
Collapse
|
50
|
Duncan JR. Current perspectives on the neurobiology of drug addiction: a focus on genetics and factors regulating gene expression. ISRN NEUROLOGY 2012; 2012:972607. [PMID: 23097719 PMCID: PMC3477671 DOI: 10.5402/2012/972607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Drug addiction is a chronic, relapsing disorder defined by cyclic patterns of compulsive drug seeking and taking interspersed with episodes of abstinence. While genetic variability may increase the risk of addictive behaviours in an individual, exposure to a drug results in neuroadaptations in interconnected brain circuits which, in susceptible individuals, are believed to underlie the transition to, and maintenance of, an addicted state. These adaptations can occur at the cellular, molecular, or (epi)genetic level and are associated with synaptic plasticity and altered gene expression, the latter being mediated via both factors affecting translation (epigenetics) and transcription (non coding microRNAs) of the DNA or RNA itself. New advances using techniques such as optogenetics have the potential to increase our understanding of the microcircuitry mediating addictive behaviours. However, the processes leading to addiction are complex and multifactorial and thus we face a major contemporary challenge to elucidate the factors implicated in the development and maintenance of an addicted state.
Collapse
Affiliation(s)
- Jhodie R Duncan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|