1
|
Konjengbam BD, Meitei HN, Pandey A, Haobam R. Goals and strategies in vaccine development against tuberculosis. Mol Immunol 2025; 183:56-71. [PMID: 40327952 DOI: 10.1016/j.molimm.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), continues to be a major health problem globally. The emergence of multi-drug-resistant TB and extensively drug-resistant TB has become a severe threat to TB control programs. Currently, the Bacille Calmette-Guerin (BCG) vaccine protects a child from disease dissemination efficiently, but its efficiency wanes in adults. Despite all the limitations of BCG and accelerated TB vaccine research, BCG remains the only approved vaccine available for TB. Anti-TB drug treatment has been successful in combating the disease, but it has various side effects and requires an extended drug treatment period. So, vaccination is the finest outlook that can surpass the above-mentioned limitations. Several vaccine candidates are in the pipeline, and the hope for a potential candidate to either boost the BCG vaccine or replace BCG is underway. This review discusses different approaches to TB vaccine development. It summarizes all the challenges and limitations in vaccine development, and its preclinical and clinical trials. Additionally, DNA vaccines and their vaccination techniques are also discussed. Furthermore, the immunoinformatics approach and nanomaterial-based vaccine delivery with practical and productive endpoints are also discussed. Lastly, the potential prospects are also suggested for further studies, which would help bring positive outcomes.
Collapse
Affiliation(s)
| | | | - Anupama Pandey
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur 795003, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur 795003, India.
| |
Collapse
|
2
|
Sharma N, Joshi B, Sharma B, Kumar S, Mohanty KK, Prakash H. Customized MHC Class I & II restricted peptides from clinical isolates of Mycobacterium tuberculosis tweak strong cellular immune response in Healthy individuals and Pulmonary Tuberculosis patients: A potential candidate in vaccine design. Tuberculosis (Edinb) 2025; 152:102640. [PMID: 40262464 DOI: 10.1016/j.tube.2025.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025]
Abstract
Tuberculosis (TB) remains a global health challenge as annual mortality rate due to drug resistant TB is increasing exponentially. This is mostly associated with the delayed diagnosis of Multidrug-resistant (MDR) or latent TB. Effective management of TB demands development of novel immunological strategies, such as peptide-based/subunit vaccines that can stimulate specific immune responses. In this context, we evaluated the immunogenic potential of two Major Histocompatibility Complex (MHC) Class I/II-restricted peptides from Mycobacterium tuberculosis (M. tuberculosis): Rv2588c and Rv0148. The peptides were tested on T and monocyte populations from healthy donors and pulmonary TB (PTB) patients. Flow cytometry analysis revealed significant T cell activation in peripheral blood mononuclear cells (PBMC) from both groups. Enzyme-linked immunosorbent assay (ELISA) demonstrated a strong IFN-γ response, confirming effective T cell activation. Additionally, these peptides induced increased nitric oxide (NO) production in macrophages, indicating their role in activating the innate immune system. Overall, Rv2588c and Rv0148 peptides exhibited robust immunogenicity, stimulating both adaptive and innate immune responses in PBMCs from healthy and PTB individuals. These findings highlight their potential as promising TB vaccine candidates, paving the way for improved TB treatment and prevention strategies.
Collapse
Affiliation(s)
- Niharika Sharma
- Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India; Amity Centre for Translational Research, Amity University, Noida, Uttar Pradesh, India
| | - Beenu Joshi
- Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Bhawna Sharma
- Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Santosh Kumar
- TB and Chest Department, Sarojini Naidu Medial College, Agra, Uttar Pradesh, India
| | - Keshar Kunja Mohanty
- Department of Immunology, ICMR- National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Hridayesh Prakash
- Amity Centre for Translational Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
3
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
4
|
Kumar Das D, Zafar MA, Nanda S, Singh S, Lamba T, Bashir H, Singh P, Maurya SK, Nadeem S, Sehrawat S, Bhalla V, Agrewala JN. Targeting dendritic cells with TLR-2 ligand-coated nanoparticles loaded with Mycobacterium tuberculosis epitope induce antituberculosis immunity. J Biol Chem 2022; 298:102596. [PMID: 36257405 PMCID: PMC9674924 DOI: 10.1016/j.jbc.2022.102596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Novel vaccination strategies are crucial to efficiently control tuberculosis, as proposed by the World Health Organization under its flagship program "End TB Strategy." However, the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), particularly in those coinfected with HIV-AIDS, constitutes a major impediment to achieving this goal. We report here a novel vaccination strategy that involves synthesizing a formulation of an immunodominant peptide derived from the Acr1 protein of Mtb. This nanoformulation in addition displayed on the surface a toll-like receptor-2 ligand to offer to target dendritic cells (DCs). Our results showed an efficient uptake of such a concoction by DCs in a predominantly toll-like receptor-2-dependent pathway. These DCs produced elevated levels of nitric oxide, proinflammatory cytokines interleukin-6, interleukin-12, and tumor necrosis factor-α, and upregulated the surface expression of major histocompatibility complex class II molecules as well as costimulatory molecules such as CD80 and CD86. Animals injected with such a vaccine mounted a significantly higher response of effector and memory Th1 cells and Th17 cells. Furthermore, we noticed a reduction in the bacterial load in the lungs of animals challenged with aerosolized live Mtb. Therefore, our findings indicated that the described vaccine triggered protective anti-Mtb immunity to control the tuberculosis infection.
Collapse
Affiliation(s)
- Deepjyoti Kumar Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Adeel Zafar
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Sidhanta Nanda
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Taruna Lamba
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Pargat Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sudeep Kumar Maurya
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sajid Nadeem
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Vijayender Bhalla
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India,Biosensor Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India,For correspondence: Javed Naim Agrewala; Vijayender Bhalla
| | - Javed Naim Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India,Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India,For correspondence: Javed Naim Agrewala; Vijayender Bhalla
| |
Collapse
|
5
|
Muhi S, Stinear TP. Systematic review of M. Bovis BCG and other candidate vaccines for Buruli ulcer prophylaxis. Vaccine 2021; 39:7238-7252. [PMID: 34119347 DOI: 10.1016/j.vaccine.2021.05.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 01/17/2023]
Abstract
Buruli ulcer, caused by Mycobacterium ulcerans, is a neglected tropical disease endemic to over 30 countries, with increasing incidence in temperate, coastal Victoria, Australia. Strategies to control transmission are urgently required. This study systematically reviews the literature to identify and describe candidate prophylactic Buruli ulcer vaccines. This review highlights that Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine is the only vaccine studied in randomised controlled trials and confirms its importance as a benchmark for comparison against putative vaccines in pre-clinical studies. Nevertheless, BCG alone is unable to offer long-term protection in humans. A number of experimental vaccines that exceed the protection provided by BCG in mice have emerged, particularly those utilising recombinant BCG expressing immunogenic M. ulcerans proteins. Although progress is promising, there remain key questions about the optimal approach to characterising the immunological correlates of protection in humans and strategies to investigate the safety and efficacy of such vaccines in humans.
Collapse
Affiliation(s)
- Stephen Muhi
- Victorian Infectious Diseases Service at the Royal Melbourne Hospital, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute at the University of Melbourne, Melbourne, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute at the University of Melbourne, Melbourne, Australia.
| |
Collapse
|
6
|
A genomic analysis of Mycobacterium immunogenum strain CD11_6 and its potential role in the activation of T cells against Mycobacterium tuberculosis. BMC Microbiol 2019; 19:64. [PMID: 30894125 PMCID: PMC6425668 DOI: 10.1186/s12866-019-1421-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) is an etiological agent of tuberculosis (TB). Tuberculosis is a mounting problem worldwide. The only available vaccine BCG protects the childhood but not adulthood form of TB. Therefore, efforts are made continuously to improve the efficacy of BCG by supplementing it with other therapies. Consequently, we explored the possibility of employing Mycobacterium immunogenum (Mi) to improve BCG potential to protect against Mtb. Results We report here the genome mining, comparative genomics, immunological and protection studies employing strain CD11_6 of Mi. Mycobacterium immunogenum was isolated from duodenal mucosa of a celiac disease patient. The strain was whole genome sequenced and annotated for identification of virulent genes and other traits that may make it suitable as a potential vaccine candidate. Virulence profile of Mi was mapped and compared with two other reference genomes i.e. virulent Mtb strain H37Rv and vaccine strain Mycobacterium bovis (Mb) AFF2122/97. This comparative analysis revealed that Mi is less virulent, as compared to Mb and Mtb, and contains comparable number of genes encoding for the antigenic proteins that predict it as a probable vaccine candidate. Interestingly, the animals vaccinated with Mi showed significant augmentation in the generation of memory T cells and reduction in the Mtb burden. Conclusion The study signifies that Mi has a potential to protect against Mtb and therefore can be a future vaccine candidate against TB.
Collapse
|
7
|
Rai PK, Chodisetti SB, Maurya SK, Nadeem S, Zeng W, Janmeja AK, Jackson DC, Agrewala JN. A lipidated bi-epitope vaccine comprising of MHC-I and MHC-II binder peptides elicits protective CD4 T cell and CD8 T cell immunity against Mycobacterium tuberculosis. J Transl Med 2018; 16:279. [PMID: 30305097 PMCID: PMC6180631 DOI: 10.1186/s12967-018-1653-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Background The clinical trials conducted at Chingleput India suggest that BCG fails to protect against tuberculosis (TB) in TB-endemic population. Recent studies advocate that non-tuberculous mycobacteria and latent Mycobacterium tuberculosis (Mtb) infection interferes in the antigen processing and presentation of BCG in inducing protective immunity against Mtb. Thereby, indicating that any vaccine that require extensive antigen processing may not be efficacious in TB-endemic zones. Recently, we have demonstrated that the vaccine candidate L91, which is composed of lipidated promiscuous MHC-II binder epitope, derived from latency associated Acr1 antigen of Mtb is immunogenic in the murine and Guinea pig models of TB and conferred better protection than BCG against Mtb. Methods In this study, we have used a multi-stage based bi-epitope vaccine, namely L4.8, comprising of MHC-I and MHC-II binding peptides of active (TB10.4) and latent (Acr1) stages of Mtb antigens, respectively. These peptides were conjugated to the TLR-2 agonist Pam2Cys. Results L4.8 significantly elicited both CD8 T cells and CD4 T cells immunity, as evidenced by increase in the enduring polyfunctional CD8 T cells and CD4 T cells. L4.8 efficiently declined Mtb-burden and protected animals better than BCG and L91, even at the late stage of Mtb infection. Conclusions The BCG-L4.8 prime boost strategy imparts a better protection against TB than the BCG alone. This study emphatically denotes that L4.8 can be a promising future vaccine candidate for controlling active and latent TB. Electronic supplementary material The online version of this article (10.1186/s12967-018-1653-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pradeep K Rai
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sathi Babu Chodisetti
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | | | - Sajid Nadeem
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Weiguang Zeng
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ashok K Janmeja
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Javed N Agrewala
- CSIR-Institute of Microbial Technology, Chandigarh, India. .,Indian Institute of Technology, Rupnagar, 140001, India.
| |
Collapse
|
8
|
Pahari S, Kaur G, Negi S, Aqdas M, Das DK, Bashir H, Singh S, Nagare M, Khan J, Agrewala JN. Reinforcing the Functionality of Mononuclear Phagocyte System to Control Tuberculosis. Front Immunol 2018; 9:193. [PMID: 29479353 PMCID: PMC5811511 DOI: 10.3389/fimmu.2018.00193] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
The mononuclear phagocyte system (MPS) constitutes dendritic cells, monocytes, and macrophages. This system contributes to various functions that are essential for maintaining homeostasis, activation of innate immunity, and bridging it with the adaptive immunity. Consequently, MPS is highly important in bolstering immunity against the pathogens. However, MPS is the frontline cells in destroying Mycobacterium tuberculosis (Mtb), yet the bacterium prefers to reside in the hostile environment of macrophages. Therefore, it may be very interesting to study the struggle between Mtb and MPS to understand the outcome of the disease. In an event when MPS predominates Mtb, the host remains protected. By contrast, the situation becomes devastating when the pathogen tames and tunes the host MPS, which ultimately culminates into tuberculosis (TB). Hence, it becomes extremely crucial to reinvigorate MPS functionality to overwhelm Mtb and eliminate it. In this article, we discuss the strategies to bolster the function of MPS by exploiting the molecules associated with the innate immunity and highlight the mechanisms involved to overcome the Mtb-induced suppression of host immunity. In future, such approaches may provide an insight to develop immunotherapeutics to treat TB.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepjyoti K Das
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mukta Nagare
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Junaid Khan
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
9
|
Rai PK, Chodisetti SB, Zeng W, Nadeem S, Maurya SK, Pahari S, Janmeja AK, Jackson DC, Agrewala JN. A lipidated peptide of Mycobacterium tuberculosis resuscitates the protective efficacy of BCG vaccine by evoking memory T cell immunity. J Transl Med 2017; 15:201. [PMID: 28985739 PMCID: PMC6389088 DOI: 10.1186/s12967-017-1301-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The current BCG vaccine induces only short-term protection against Mycobacterium tuberculosis (Mtb), suggesting its failure to generate long-lasting memory T cells. Previously, we have demonstrated that a self-adjuvanting peptide of Mtb (L91), successfully generated enduring memory Th1 cells. Consequently, we investigated if L91 was able to recuperate BCG potency in perpetuating the generation of memory T cells and protection against Mtb infected mice. METHODS In the present study, we evaluated the potency of a self adjuvanting Mtb peptide vaccine L91 in invigorating BCG immune response against Mtb in mice. Female BALB/c mice were immunized with BCG. Later, they were boosted twice with L91 or an antigenically irrelevant lipidated influenza virus hemagglutinin peptide (LH). Further, PBMCs obtained from BCG vaccinated healthy subjects were cultured in vitro with L91. T cell responses were determined by surface markers and intracellular cytokine staining. Secretion of cytokines was estimated in the culture supernatants (SNs) by ELISA. RESULTS Compared to the BCG-vaccinated controls, L91 booster significantly enhanced the percentage of memory Th1 cells and Th17 cells and reduced the mycobacterial burden in BCG primed and L91-boosted (BCG-L91) group, even after 229 days of BCG vaccination. Further, substantial augmentation in the central (CD44hiCD62LhiCD127hi) and effector memory (CD44hiCD62LloCD127lo) CD4 T cells was detected. Furthermore, greater frequency of polyfunctional Th1 cells (IFN-γ+TNF-α+) and Th17 cells (IFN-γ+IL-17A+) was observed. Importantly, BCG-L91 successfully prevented CD4 T cells from exhaustion by decreasing the expression of PD-1 and Tim-3. Additionally, augmentation in the frequency of Th1 cells, Th17 cells and memory CD4 T cells was observed in the PBMCs of the BCG-vaccinated healthy individuals following in vitro stimulation with L91. CONCLUSIONS Our study demonstrated that L91 robustly reinvigorate BCG potency to invoke enduring protection against Mtb. This novel vaccination stratagem involving BCG-priming followed by L91-boosting can be a future prophylactic measure to control TB.
Collapse
Affiliation(s)
- Pradeep K Rai
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sathi Babu Chodisetti
- CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Weiguang Zeng
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Sajid Nadeem
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | - Susanta Pahari
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ashok K Janmeja
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - David C Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | |
Collapse
|
10
|
Pahari S, Kaur G, Aqdas M, Negi S, Chatterjee D, Bashir H, Singh S, Agrewala JN. Bolstering Immunity through Pattern Recognition Receptors: A Unique Approach to Control Tuberculosis. Front Immunol 2017; 8:906. [PMID: 28824632 PMCID: PMC5539433 DOI: 10.3389/fimmu.2017.00906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
The global control of tuberculosis (TB) presents a continuous health challenge to mankind. Despite having effective drugs, TB still has a devastating impact on human health. Contributing reasons include the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), the AIDS-pandemic, and the absence of effective vaccines against the disease. Indeed, alternative and effective methods of TB treatment and control are urgently needed. One such approach may be to more effectively engage the immune system; particularly the frontline pattern recognition receptor (PRR) systems of the host, which sense pathogen-associated molecular patterns (PAMPs) of Mtb. It is well known that 95% of individuals infected with Mtb in latent form remain healthy throughout their life. Therefore, we propose that clues can be found to control the remainder by successfully manipulating the innate immune mechanisms, particularly of nasal and mucosal cavities. This article highlights the importance of signaling through PRRs in restricting Mtb entry and subsequently preventing its infection. Furthermore, we discuss whether this unique therapy employing PRRs in combination with drugs can help in reducing the dose and duration of current TB regimen.
Collapse
Affiliation(s)
- Susanta Pahari
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gurpreet Kaur
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Mohammad Aqdas
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shikha Negi
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Deepyan Chatterjee
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Hilal Bashir
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sanpreet Singh
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Javed N Agrewala
- Immunology Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
11
|
Faridgohar M, Nikoueinejad H. New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog Glob Health 2017; 111:256-264. [PMID: 28715935 DOI: 10.1080/20477724.2017.1351080] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), an important issue in the present age, affects millions of people each year. The infectious agent of TB, Mycobacterium tuberculosis (Mtb), interacts with the immune system which prevents the development of this bacterium as much as possible. In fact, the receptors on the surface of immune cells identify the bacteria, one of which is Toll-like receptors (TLRs). Different TLRs including 2, 4, 9 and 8 play critical roles in tuberculosis infection. In this paper, we focused on the role of TLRs which interact with different components of Mtb and, consequently, prevent the entrance and influence of bacteria on the body.
Collapse
Affiliation(s)
- Majid Faridgohar
- a Molecular Biology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Hassan Nikoueinejad
- b Nephrology and Urology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Liu SD, Zhang SM, Wang H, He JC, Yang XF, Du XL, Ma L. Identification of HLA-DRB1*09:01-restrictedMycobacterium tuberculosisCD4+T-cell epitopes. FEBS Lett 2016; 590:4541-4549. [DOI: 10.1002/1873-3468.12478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/30/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Su-Dong Liu
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Shi-Meng Zhang
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Hui Wang
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Jian-Chun He
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Xiao-Fan Yang
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Xia-Lin Du
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
| | - Li Ma
- Institute of Molecular Immunology; School of Laboratory Medicine and Biotechnology; Southern Medical University; Guangzhou China
- Guangdong Provincial Key Laboratory of Tropical Disease Research; School of Public Health; Southern Medical University; Guangzhou China
| |
Collapse
|
13
|
Novel lipopeptides of ESAT-6 induce strong protective immunity against Mycobacterium tuberculosis: Routes of immunization and TLR agonists critically impact vaccine's efficacy. Vaccine 2016; 34:5677-5688. [PMID: 27693020 DOI: 10.1016/j.vaccine.2016.08.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the bacterial cause of tuberculosis, is a leading infectious agent worldwide. The development of a new vaccine against Mtb is essential to control global spread of tuberculosis, since the current vaccine BCG is not very effective and antibiotic resistance is a serious, burgeoning problem. ESAT-6 is a secreted protein of Mtb, which is absent in BCG but has been implicated in inducing protective immunity against Mtb. Peptide based subunit vaccines are attractive due to their safety and high specificity in eliciting immune responses, but small synthetic peptides are usually not very immunogenic. We have designed a novel subunit vaccine for Mtb by using simple lipid (palmitic acid) modified derivatives of peptides from ESAT-6 protein corresponding to dominant human T cell epitopes and examined their ability to stimulate protective immunity against Mtb by intranasal and subcutaneous immunization in mice. We also investigated how individual TLR agonists as adjuvants (PolyI:C, MPL and GDQ) contribute to enhancing the induced immune responses and resulting protective efficacy of our vaccine. We observed that single C-terminal palmitoyl-lysine modified lipopeptides derived from ESAT-6 induce significant cellular immune responses on their own upon mucosal and subcutaneous immunizations. Intriguingly, a combination of immunogenic lipopeptides of ESAT-6 antigen exhibited local (pulmonary) and systemic immune responses along with efficient protective efficacy when administered intranasally or subcutaneously. Surprisingly, combination of ESAT-6 derived lipopeptides with a TLR-4 agonist (MPL) enhanced protection, whereas TLR-3 (Poly I:C) and TLR-7/8 agonists (gardiquimod, GDQ) led to reduced protection associated with specific local and systemic immune modulation. Our studies demonstrate the potential of ESAT-6 derived lipopeptides as a promising vaccine candidate against Mtb, and emphasize that selection of adjuvant is critical for the success of vaccines. These findings demonstrate the promise of synthetic lipopeptides as the basis of a subunit vaccine for TB.
Collapse
|
14
|
Current perspective in tuberculosis vaccine development for high TB endemic regions. Tuberculosis (Edinb) 2016; 98:149-58. [PMID: 27156631 DOI: 10.1016/j.tube.2016.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/10/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022]
Abstract
Tuberculosis (TB) continues to be a global epidemic, despite of the availability of Bacillus Calmette Guerin (BCG) vaccine for more than six decades. In an effort to eradicate TB, vaccinologist around the world have made considerable efforts to develop improved vaccine candidates, based on the understanding of BCG failure in developing world and immune response thought to be protective against TB. The present review represents a current perspective on TB vaccination research, including additional research strategies needed for increasing the efficacy of BCG, and for the development of new effective vaccines for high TB endemic regions.
Collapse
|
15
|
Khan N, Vidyarthi A, Javed S, Agrewala JN. Innate Immunity Holding the Flanks until Reinforced by Adaptive Immunity against Mycobacterium tuberculosis Infection. Front Microbiol 2016; 7:328. [PMID: 27014247 PMCID: PMC4789502 DOI: 10.3389/fmicb.2016.00328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
T cells play a cardinal role in imparting protection against Mycobacterium tuberculosis (Mtb). However, ample time is required before T-cells are able to evoke efficient effector responses in the lung, where the mycobacterium inflicts disease. This delay in T cells priming, which is termed as lag phase, provides sufficient time for Mtb to replicate and establish itself within the host. In contrast, innate immunity efficiently curb the growth of Mtb during initial phase of infection through several mechanisms. Pathogen recognition by innate cells rapidly triggers a cascade of events, such as apoptosis, autophagy, inflammasome formation and nitric oxide production to kill intracellular pathogens. Furthermore, bactericidal mechanisms such as autophagy and apoptosis, augment the antigen processing and presentation, thereby contributing substantially to the induction of adaptive immunity. This manuscript highlights the role of innate immune mechanisms in restricting the survival of Mtb during lag phase. Finally, this article provides new insight for designing immuno-therapies by targeting innate immune mechanisms to achieve optimum immune response to cure TB.
Collapse
Affiliation(s)
- Nargis Khan
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| | - Aurobind Vidyarthi
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| | - Shifa Javed
- Department of Cytology and Gynecologic Pathology, Postgraduate Institute of Medical Education and Research Chandigarh, India
| | - Javed N Agrewala
- Council of Scientific and Industrial Research - Institute of Microbial Technology Chandigarh, India
| |
Collapse
|
16
|
Husain AA, Daginawla HF, Singh L, Kashyap RS. Assessment of immunological markers and booster effects of Ag85B peptides, Ag85B, and BCG in blood of BCG vaccinated children: a preliminary report. Clin Exp Vaccine Res 2016; 5:31-40. [PMID: 26866022 PMCID: PMC4742597 DOI: 10.7774/cevr.2016.5.1.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/22/2015] [Accepted: 09/27/2015] [Indexed: 11/26/2022] Open
Abstract
Purpose In the present study, the protective immunological markers in serum and peripheral blood mononuclear cells (PBMCs) of bacillus Calmette–Guérin (BCG) vaccinated and unvaccinated children were evaluated after vaccination. Further, PBMCs of children with low protective levels were boosted with BCG, Ag85B, and Ag85B peptides to study their booster effects to increase waning BCG induced immunity. Materials and Methods Fifty children from 1 month to 18 years of age were randomized for the study. Blood samples were collected from 27 participants with/without BCG vaccination. Immunological markers (anti-BCG, interferon γ [IFN-γ], and adenosine deaminase activity) were assessed in both serum and PBMCs of children. Children with low levels of protective immunological markers were further recruited and their PBMCs were boosted with BCG, Ag85B, and Ag85B peptides. Results Children in age group of 4-6 years were associated with significantly (p<0.05) higher BCG-specific IgG and IFN-γ levels compared to those in age group greater than 10 years. Vaccinated children had greater repertoire of immunological memory which on in vitro stimulation with BCG showed increase in BCG-specific response compared to unvaccinated controls. Assessment of booster effects of BCG, Ag85B, and Ag85B peptides in PBMCs of children revealed greater potential of peptides to boost BCG induced immunity compared to BCG and Ag85B. Conclusion To conclude, children within age 4-6 years are associated with high immunological markers which eventually diminish with age thereby suggesting need for booster dose in later years. Mycobacterium tuberculosis peptides along with BCG may be used as attractive candidates to boost such waning BCG induced immunity in children.
Collapse
Affiliation(s)
- Aliabbas A Husain
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Hatim F Daginawla
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Lokendra Singh
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Rajpal S Kashyap
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| |
Collapse
|
17
|
Heterologous Prime Boost Regimes with N-terminal Peptides of Ag85B Induces Better Protection than Ag85B and BCG in Murine Model of Tuberculosis. Int J Pept Res Ther 2015. [DOI: 10.1007/s10989-015-9490-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Husain AA, Warke SR, Kalorey DR, Daginawala HF, Taori GM, Kashyap RS. Comparative evaluation of booster efficacies of BCG, Ag85B, and Ag85B peptides based vaccines to boost BCG induced immunity in BALB/c mice: a pilot study. Clin Exp Vaccine Res 2015; 4:83-7. [PMID: 25649326 PMCID: PMC4313113 DOI: 10.7774/cevr.2015.4.1.83] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 11/15/2022] Open
Abstract
Purpose In the present study booster efficacies of Ag85 B, Bacillus Calmette-Guerin (BCG), and Ag85B peptides were evaluated using prime boost regimes in BALB/c mice. Materials and Methods Mice were primed with BCG vaccine and subsequently boosted with Ag85B, BCG and cocktail of Ag85B peptides. Results Based on analysis of immune response it was observed mice boosted with Ag85B peptides showed significant (p < 0.001) cytokines levels (interferon γ, interleukin 12) and BCG specific antibodies (anti-BCG and anti-purified protein derivative titre) compared to booster dose of BCG, Ag85B and BCG alone. Conclusion Our pilot results suggest that prime boost regimes with Ag85B peptides can boost waning BCG induced immunity and may improve immunogenicity of BCG vaccine. However, lot of work is further needed using experimental model of tuberculosis infection to justify the result.
Collapse
Affiliation(s)
- Aliabbas A Husain
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Shubhangi R Warke
- Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College, Nagpur, India
| | - Dewanand R Kalorey
- Department of Veterinary Microbiology and Animal Biotechnology, Nagpur Veterinary College, Nagpur, India
| | - Hatim F Daginawala
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Girdhar M Taori
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| | - Rajpal S Kashyap
- Biochemistry Research Laboratory, Central India Institute of Medical Sciences, Nagpur, India
| |
Collapse
|
19
|
Gowthaman U, Mushtaq K, Tan AC, Rai PK, Jackson DC, Agrewala JN. Challenges and solutions for a rational vaccine design for TB-endemic regions. Crit Rev Microbiol 2015; 41:389-98. [PMID: 24495096 DOI: 10.3109/1040841x.2013.859125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vaccines have been successful for global eradication or control of dreaded diseases such as smallpox, diphtheria, tetanus, yellow fever, whooping cough, polio, and measles. Unfortunately, this success has not been achieved for controlling tuberculosis (TB) worldwide. Bacillus Calmette Guérin (BCG) is the only available vaccine against TB. Paradoxically, BCG has deciphered success in the Western world but has failed in TB-endemic areas. In this article, we highlight and discuss the aspects of immunity responsible for controlling Mycobacterium tuberculosis infection and factors responsible for the failure of BCG in TB-endemic countries. In addition, we also suggest strategies that contribute toward the development of successful vaccine in protecting populations where BCG has failed.
Collapse
|
20
|
Nair SK, Tomaras GD, Sales AP, Boczkowski D, Chan C, Plonk K, Cai Y, Dannull J, Kepler TB, Pruitt SK, Weinhold KJ. High-throughput identification and dendritic cell-based functional validation of MHC class I-restricted Mycobacterium tuberculosis epitopes. Sci Rep 2014; 4:4632. [PMID: 24755960 PMCID: PMC4894389 DOI: 10.1038/srep04632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/24/2014] [Indexed: 11/12/2022] Open
Abstract
Emergence of drug-resistant strains of the pathogen Mycobacterium tuberculosis (Mtb) and the ineffectiveness of BCG in curtailing Mtb infection makes vaccine development for tuberculosis an important objective. Identifying immunogenic CD8+ T cell peptide epitopes is necessary for peptide-based vaccine strategies. We present a three-tiered strategy for identifying and validating immunogenic peptides: first, identify peptides that form stable complexes with class I MHC molecules; second, determine whether cytotoxic T lymphocytes (CTLs) raised against the whole protein antigen recognize and lyse target cells pulsed with peptides that passed step 1; third, determine whether peptides that passed step 2, when administered in vivo as a vaccine in HLA-A2 transgenic mice, elicit CTLs that lyse target cells expressing the whole protein antigen. Our innovative approach uses dendritic cells transfected with Mtb antigen-encoding mRNA to drive antigen expression. Using this strategy, we have identified five novel peptide epitopes from the Mtb proteins Apa, Mtb8.4 and Mtb19.
Collapse
Affiliation(s)
- Smita K Nair
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Georgia D Tomaras
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Ana Paula Sales
- 1] Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 [2]
| | - David Boczkowski
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Cliburn Chan
- Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710
| | - Kelly Plonk
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Yongting Cai
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Jens Dannull
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Thomas B Kepler
- 1] Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 [2]
| | - Scott K Pruitt
- 1] Departments of Surgery, Duke University Medical Center, Durham, NC 27710 [2]
| | - Kent J Weinhold
- Departments of Surgery, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
21
|
Brülle JK, Tschumi A, Sander P. Lipoproteins of slow-growing Mycobacteria carry three fatty acids and are N-acylated by apolipoprotein N-acyltransferase BCG_2070c. BMC Microbiol 2013; 13:223. [PMID: 24093492 PMCID: PMC3850990 DOI: 10.1186/1471-2180-13-223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/30/2013] [Indexed: 12/20/2022] Open
Abstract
Background Lipoproteins are virulence factors of Mycobacterium tuberculosis. Bacterial lipoproteins are modified by the consecutive action of preprolipoprotein diacylglyceryl transferase (Lgt), prolipoprotein signal peptidase (LspA) and apolipoprotein N- acyltransferase (Lnt) leading to the formation of mature triacylated lipoproteins. Lnt homologues are found in Gram-negative and high GC-rich Gram-positive, but not in low GC-rich Gram-positive bacteria, although N-acylation is observed. In fast-growing Mycobacterium smegmatis, the molecular structure of the lipid modification of lipoproteins was resolved recently as a diacylglyceryl residue carrying ester-bound palmitic acid and ester-bound tuberculostearic acid and an additional amide-bound palmitic acid. Results We exploit the vaccine strain Mycobacterium bovis BCG as model organism to investigate lipoprotein modifications in slow-growing mycobacteria. Using Escherichia coli Lnt as a query in BLASTp search, we identified BCG_2070c and BCG_2279c as putative lnt genes in M. bovis BCG. Lipoproteins LprF, LpqH, LpqL and LppX were expressed in M. bovis BCG and BCG_2070c lnt knock-out mutant and lipid modifications were analyzed at molecular level by matrix-assisted laser desorption ionization time-of-flight/time-of-flight analysis. Lipoprotein N-acylation was observed in wildtype but not in BCG_2070c mutants. Lipoprotein N- acylation with palmitoyl and tuberculostearyl residues was observed. Conclusions Lipoproteins are triacylated in slow-growing mycobacteria. BCG_2070c encodes a functional Lnt in M. bovis BCG. We identified mycobacteria-specific tuberculostearic acid as further substrate for N-acylation in slow-growing mycobacteria.
Collapse
Affiliation(s)
- Juliane K Brülle
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30/32, CH-8006, Zurich, Switzerland.
| | | | | |
Collapse
|