1
|
Lu T, Li G, Zhang L, Yuan X, Wu T, Ye J. Optimizing silicon doping levels for enhanced osteogenic and angiogenic properties of 3D-printed biphasic calcium phosphate scaffolds: An in vitro screening and in vivo validation study. Mater Today Bio 2024; 28:101203. [PMID: 39221203 PMCID: PMC11364896 DOI: 10.1016/j.mtbio.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Biphasic calcium phosphate (BCP) ceramics are valued for their osteoconductive properties but have limited osteogenic and angiogenic activities, which restricts their clinical utility in bone defect repair. Silicon doping has emerged as an effective strategy to enhance these biological functions of BCP. However, the biological impact of BCP is influenced by the level of silicon doping, necessitating determination of the optimal concentration to maximize efficacy in bone repair. This study investigated the effects of silicon doping on both the physicochemical and biological properties of BCP, with a specific focus on osteogenic and angiogenic potentials. Results indicated that silicon doping exceeding 4 mol.% led to the formation of α-TCP, accelerating BCP degradation, enhancing silicon ion release, and promoting mineralization product formation. Simultaneously, silicon doping increased the porosity of BCP scaffolds, which typically reduces their compressive strength. Nevertheless, scaffolds doped with ≤4 mol.% silicon maintained compressive strengths exceeding 2 MPa. In vitro biological experiments indicated that higher levels of silicon doping (≥6 mol.%) partially inhibited the successful differentiation of stem cells and the vascularization of endothelial cells. Optimal conditions for promoting osteogenic differentiation and angiogenesis were identified between 2 and 4 mol.% silicon doping, with an optimal level of approximately 4 mol.%. Subsequent in vivo experiments confirmed that BCP scaffolds doped with 4 mol.% silicon effectively promoted vascularization and new bone formation, highlighting their potential for clinical bone defect repair.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, PR China
| | - Guohao Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, PR China
- Zhoukou Center Hospital, Zhoukou, Henan, 466000, PR China
| | - Luhui Zhang
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, 510641, PR China
| | - Xinyuan Yuan
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, 510641, PR China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, PR China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou, 510641, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
Lu X, Xu Z, Shu F, Wang Y, Han Y, Yang X, Shi P, Fan C, Wang L, Yu F, Sun Q, Cheng F, Chen H. Reactive Oxygen Species Responsive Multifunctional Fusion Extracellular Nanovesicles: Prospective Treatments for Acute Heart Transplant Rejection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406758. [PMID: 38949397 DOI: 10.1002/adma.202406758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Heart transplantation offers life-saving treatment for patients with end-stage heart failure; however, ischemia-reperfusion injury (IRI) and subsequent immune responses remain significant challenges. Current therapies primarily target adaptive immunity, with limited options available for addressing IRI and innate immune activation. Although plant-derived vesicle-like nanoparticles show promise in managing diseases, their application in organ transplantation complications is unexplored. Here, this work develops a novel reactive oxygen species (ROS)-responsive multifunctional fusion extracellular nanovesicles carrying rapamycin (FNVs@RAPA) to address early IRI and Ly6C+Ly6G- inflammatory macrophage-mediated rejection in heart transplantation. The FNVs comprise Exocarpium Citri grandis-derived extracellular nanovesicles with anti-inflammatory and antioxidant properties, and mesenchymal stem cell membrane-derived nanovesicles expressing calreticulin with macrophage-targeting ability. A novel ROS-responsive bio-orthogonal chemistry approach facilitates the active targeting delivery of FNVs@RAPA to the heart graft site, effectively alleviating IRI and promoting the polarization of Ly6C+Ly6G- inflammatory macrophages toward an anti-inflammatory phenotype. Hence, FNVs@RAPA represents a promising therapeutic approach for mitigating early transplantation complications and immune rejection. The fusion-targeted delivery strategy offers superior heart graft site enrichment and macrophage-specific targeting, promising improved transplant outcomes.
Collapse
Affiliation(s)
- Xingyu Lu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yidan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuhang Han
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinrui Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Peilin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Chuanqiang Fan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Linglu Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Fei Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qipeng Sun
- Department of Kidney Transplantation, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
3
|
Sousa AR, Gonçalves DC, Neves BG, Santos‐Coquillat A, Oliveira MB, Mano JF. Encapsulated Mesenchymal Stromal Cells as Cyclic Providers of Immunomodulatory Secretomes: A Living on-Demand Delivery System. Adv Healthc Mater 2024; 13:e2304012. [PMID: 38545848 PMCID: PMC11468815 DOI: 10.1002/adhm.202304012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2024] [Indexed: 04/09/2024]
Abstract
The stimulation of mesenchymal stromal cells (MSCs) with inflammatory molecules is often used to boost their therapeutic effect. Prolonged exposure to inflammatory molecules has been explored to improve their action because MSCs therapies seem to be improved transiently with such stimuli. However, the possibility of cyclically stimulating MSCs to recover their optimized therapeutic potential is still to be elucidated, although the efficacy of cell-based therapies may be dependent on the ability to readapt to the relapse pathological conditions. Here, the response of MSCs, encapsulated in alginate hydrogels and cultured for 22 d, is explored using three different regimes: single, continuous, and intermittent stimulation with IFNγ. Exposure to IFNγ leads to a decrease in the secretion of IL-10, which is cyclically countered by IFNγ weaning. Conditioned media collected at different stages of pulsatile stimulation show an immunomodulatory potential toward macrophages, which directly correlates with IL-10 concentration in media. To understand whether the correlation between cyclic stimulation of MSCs and other biological actions can be observed, the effect on endothelial cells is studied, showcasing an overall modest influence on tube formation. Overall, the results describe the response of encapsulated MSCs to unusual pulsatile simulation regimens, exploring encapsulated MSCs as a living on-demand release system of tailored secretomes with recoverable immunomodulatory action.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Diana C. Gonçalves
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Beatriz Guapo Neves
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Ana Santos‐Coquillat
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - Mariana B. Oliveira
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroAveiro3810‐193Portugal
| |
Collapse
|
4
|
Sousa AR, Cunha AF, Santos-Coquillat A, Estrada BH, Spiller KL, Barão M, Rodrigues AF, Simões S, Vilaça A, Ferreira L, Oliveira MB, Mano JF. Shape-Versatile Fixed Cellular Materials for Multiple Target Immunomodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405367. [PMID: 38739450 PMCID: PMC11272431 DOI: 10.1002/adma.202405367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Therapeutic cells are usually administered as living agents, despite the risks of undesired cell migration and acquisition of unpredictable phenotypes. Additionally, most cell-based therapies rely on the administration of single cells, often associated with rapid in vivo clearance. 3D cellular materials may be useful to prolong the effect of cellular therapies and offer the possibility of creating structural volumetric constructs. Here, the manufacturing of shape-versatile fixed cell-based materials with immunomodulatory properties is reported. Living cell aggregates with different shapes (spheres and centimeter-long fibers) are fixed using a method compatible with maintenance of structural integrity, robustness, and flexibility of 3D constructs. The biological properties of living cells can be modulated before fixation, rendering an in vitro anti-inflammatory effect toward human macrophages, in line with a decreased activation of the nuclear factor kappa B (NF-κB) pathway that preponderantly correlated with the surface area of the materials. These findings are further corroborated in vivo in mouse skin wounds. Contact with fixed materials also reduces the proliferation of activated primary T lymphocytes, while promoting regulatory populations. The fixation of cellular constructs is proposed as a versatile phenotypic stabilization method that can be easily implemented to prepare immunomodulatory materials with therapeutic potential.
Collapse
Affiliation(s)
- Ana Rita Sousa
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana F Cunha
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ana Santos-Coquillat
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Beatriz Hernaez Estrada
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Marta Barão
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Artur Filipe Rodrigues
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Susana Simões
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Andreia Vilaça
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Lino Ferreira
- CNC-Center for Neurosciences and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-517, Portugal
- FMUC-Faculty of Medicine, University of Coimbra, Coimbra, 3004-517, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
5
|
Xu Z, Mao X, Lu X, Shi P, Ye J, Yang X, Fu Q, He C, Su D, Nie Y, Liu L, Wang C, Zhou B, Luo W, Cheng F, Chen H. Dual-Targeting Nanovesicles Carrying CSF1/CD47 Identified from Single-Cell Transcriptomics of Innate Immune Cells in Heart Transplant for Alleviating Acute Rejection. Adv Healthc Mater 2024; 13:e2302443. [PMID: 37962054 DOI: 10.1002/adhm.202302443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Although immunosuppressive drugs for targeting T cells are the standard of care in acute transplantation rejection, the role of innate immune cells should not be ignored. Here, single-cell RNA sequencing (scRNA-seq) and flow cytometry are performed to reveal the dynamic changes of innate immune cells within the acute rejection time and find a significantly-increased presence of Ly6G- Ly6C+ inflammatory macrophages and decreased presence of neutrophils among all types of immune cells. Next, to further explore potential targets regulating Ly6G- Ly6C+ inflammatory macrophages, scRNA-seq is used to analyze the reciprocal signaling of both neutrophils and macrophages, along with the surface genes of macrophages. It is found that activating colony-stimulating factor 1/ colony-stimulating factor 1 receptor (CSF1/CSF1R) andcluster of differentiation 47/signal regulatory protein α (CD47/SIRPα) signaling may serve as a strategy to relieve Ly6G- Ly6C+ inflammatory macrophage-mediated early graft rejection. To investigate this hypothesis, CSF1/CD47 dual-targeting nanovesicles (NVs) derived from IFN-γ-stimulated induced pluripotent stem cell-derived mesenchymal stem cells ( iPSC-MSCs )are designed and constructed. It is confirmed that CSF1/CD47 NVs synergistically induce the differentiation of Ly6G- Ly6C- M2 inhibitory macrophages by the CSF1/CSF1R pathway, and inhibit the phagocytosis of inflammatory macrophages and inflammatory response by the CD47/SIRPα pathway, ultimately relieving immune rejection. This study highlights the power of dual-targeting CSF1/CD47 NVs as an immunosuppressant against early innate immune responses with the potential for broad clinical applications.
Collapse
Affiliation(s)
- Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaofan Mao
- Clinical Research Institute, The First People's Hospital of Foshan, NO. 81 North of Lingnan Avenue, Foshan, Guangdong, 528000, China
| | - Xingyu Lu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Peilin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Jingping Ye
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Xinrui Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Qingling Fu
- Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Chao He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Dandan Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, NO. 81 North of Lingnan Avenue, Foshan, Guangdong, 528000, China
| | - Longshan Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Changxi Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, NO. 81 North of Lingnan Avenue, Foshan, Guangdong, 528000, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
6
|
Vafadar A, Vosough P, Jahromi HK, Tajbakhsh A, Savardshtaki A, Butler AE, Sahebkar A. The role of efferocytosis and transplant rejection: Strategies in promoting transplantation tolerance using apoptotic cell therapy and/or synthetic particles. Cell Biochem Funct 2023; 41:959-977. [PMID: 37787641 DOI: 10.1002/cbf.3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|