1
|
Kalamara V, Garinis GA. The epitranscriptome: reshaping the DNA damage response. Trends Cell Biol 2025; 35:294-304. [PMID: 39048401 DOI: 10.1016/j.tcb.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Genomic instability poses a formidable threat to cellular vitality and wellbeing, prompting cells to deploy an intricate DNA damage response (DDR) mechanism. Recent evidence has suggested that RNA is intricately linked to the DDR by serving as template, scaffold, or regulator during the repair of DNA damage. Additionally, RNA molecules undergo modifications, contributing to the epitranscriptome, a dynamic regulatory layer influencing cellular responses to genotoxic stress. The intricate interplay between RNA and the DDR sheds new light on how the RNA epigenome contributes to the maintenance of genomic integrity and ultimately shapes the fate of damaged cells.
Collapse
Affiliation(s)
- Vivian Kalamara
- Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013, Heraklion, Crete, Greece
| | - George A Garinis
- Department of Biology, University of Crete, Heraklion, Crete, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013, Heraklion, Crete, Greece.
| |
Collapse
|
2
|
Trastus LA, d'Adda di Fagagna F. The complex interplay between aging and cancer. NATURE AGING 2025; 5:350-365. [PMID: 40038418 DOI: 10.1038/s43587-025-00827-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025]
Abstract
Cancer is an age-related disease, but the interplay between cancer and aging is complex and their shared molecular drivers are deeply intertwined. This Review provides an overview of how different biological pathways affect cancer and aging, leveraging evidence mainly derived from animal studies. We discuss how genome maintenance and accumulation of DNA mutations affect tumorigenesis and tissue homeostasis during aging. We describe how age-related telomere dysfunction and cellular senescence intricately modulate tumor development through mechanisms involving genomic instability and inflammation. We examine how an aged immune system and chronic inflammation shape tumor immunosurveillance, fueling DNA damage and cellular senescence. Finally, as animal models are important to untangling the relative contributions of these aging-modulated pathways to cancer progression and to test interventions, we discuss some of the limitations of physiological and accelerated aging models, aiming to improve experimental designs and enhance translation.
Collapse
Affiliation(s)
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS-the AIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
3
|
Frey Y, Haj M, Ziv Y, Elkon R, Shiloh Y. Broad repression of DNA repair genes in senescent cells identified by integration of transcriptomic data. Nucleic Acids Res 2025; 53:gkae1257. [PMID: 39739833 PMCID: PMC11724277 DOI: 10.1093/nar/gkae1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
Cellular senescence plays a significant role in tissue aging. Senescent cells, which resist apoptosis while remaining metabolically active, generate endogenous DNA-damaging agents, primarily reactive oxygen species. Efficient DNA repair is therefore crucial in these cells, especially when they undergo senescence escape, resuming DNA replication and cellular proliferation. To investigate whether senescent cell transcriptomes reflect adequate DNA repair capacity, we conducted a comprehensive meta-analysis of 60 transcriptomic datasets comparing senescent to proliferating cells. Our analysis revealed a striking downregulation of genes encoding essential components across DNA repair pathways in senescent cells. This includes pathways active in different cell cycle phases such as nucleotide excision repair, base excision repair, nonhomologous end joining and homologous recombination repair of double-strand breaks, mismatch repair and interstrand crosslink repair. The downregulation observed suggests a significant accumulation of DNA lesions. Experimental monitoring of DNA repair readouts in cells that underwent radiation-induced senescence supported this conclusion. This phenomenon was consistent across various senescence triggers and was also observed in primary cell lines from aging individuals. These findings highlight the potential of senescent cells as 'ticking bombs' in aging-related diseases and tumors recurring following therapy-induced senescence.
Collapse
Affiliation(s)
- Yann Frey
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Majd Haj
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Ziv
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yosef Shiloh
- The David and Inez Myers Laboratory for Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
Ramadhin AR, Lee SH, Zhou D, Salmazo A, Gonzalo-Hansen C, van Sluis M, Blom CMA, Janssens RC, Raams A, Dekkers D, Bezstarosti K, Slade D, Vermeulen W, Pines A, Demmers JAA, Bernecky C, Sixma TK, Marteijn JA. STK19 drives transcription-coupled repair by stimulating repair complex stability, RNA Pol II ubiquitylation, and TFIIH recruitment. Mol Cell 2024; 84:4740-4757.e12. [PMID: 39547223 DOI: 10.1016/j.molcel.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024]
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) efficiently eliminates DNA damage that impedes gene transcription by RNA polymerase II (RNA Pol II). TC-NER is initiated by the recognition of lesion-stalled RNA Pol II by CSB, which recruits the CRL4CSA ubiquitin ligase and UVSSA. RNA Pol II ubiquitylation at RPB1-K1268 by CRL4CSA serves as a critical TC-NER checkpoint, governing RNA Pol II stability and initiating DNA damage excision by TFIIH recruitment. However, the precise regulatory mechanisms of CRL4CSA activity and TFIIH recruitment remain elusive. Here, we reveal human serine/threonine-protein kinase 19 (STK19) as a TC-NER factor, which is essential for correct DNA damage removal and subsequent transcription restart. Cryogenic electron microscopy (cryo-EM) studies demonstrate that STK19 is an integral part of the RNA Pol II-TC-NER complex, bridging CSA, UVSSA, RNA Pol II, and downstream DNA. STK19 stimulates TC-NER complex stability and CRL4CSA activity, resulting in efficient RNA Pol II ubiquitylation and correct UVSSA and TFIIH binding. These findings underscore the crucial role of STK19 as a core TC-NER component.
Collapse
Affiliation(s)
- Anisha R Ramadhin
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Shun-Hsiao Lee
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands
| | - Di Zhou
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anita Salmazo
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Camila Gonzalo-Hansen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Marjolein van Sluis
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Cindy M A Blom
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Dea Slade
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, 1030 Vienna, Austria
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands
| | - Carrie Bernecky
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, 1066 CX Amsterdam, the Netherlands.
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
5
|
Laumann M, Palombo P, Fieres J, Thomas M, Saretzki G, Bürkle A, Moreno-Villanueva M. Senescence-like Phenotype After Chronic Exposure to Isoproterenol in Primary Quiescent Immune Cells. Biomolecules 2024; 14:1528. [PMID: 39766235 PMCID: PMC11673961 DOI: 10.3390/biom14121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic stress is associated with a higher risk for carcinogenesis as well as age-related diseases and immune dysfunction. There is evidence showing that psychological stress can contribute to premature immunosenescence. Therefore, the question arose whether chronic exposure to catecholamine could drive immune cells into senescence. Peripheral blood mononuclear cells were isolated from whole blood. After repeated ex vivo treatment with isoproterenol, an epinephrine analog, well-established senescence biomarkers were assessed. We found (i) DNA double-strand break induction, (ii) telomere shortening, (iii) failure to proliferate, (iv) higher senescence-associated β-galactosidase activity, (v) decreases in caspases 3 and 7 activity, and (vi) strong upregulation of the proteoglycan versican accompanied by increased cellular adhesion suggesting the induction of a senescence-like phenotype. These results emphasize the complexity of the effect of isoproterenol on multiple cellular processes and provide insights into the molecular mechanisms of stress leading to immunosenescence.
Collapse
Affiliation(s)
- Michael Laumann
- Electron Microscopy Center, University of Konstanz, 78457 Konstanz, Germany;
| | - Philipp Palombo
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Judy Fieres
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Mara Thomas
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Gabriele Saretzki
- Biosciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
| | - Maria Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (P.P.); (J.F.); (M.T.); (A.B.)
- Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
6
|
Yang D, Lai A, Davies A, Janssen AF, Ellis MO, Larrieu D. A novel role for CSA in the regulation of nuclear envelope integrity: uncovering a non-canonical function. Life Sci Alliance 2024; 7:e202402745. [PMID: 39209536 PMCID: PMC11361374 DOI: 10.26508/lsa.202402745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Cockayne syndrome (CS) is a premature ageing condition characterized by microcephaly, growth failure, and neurodegeneration. It is caused by mutations in ERCC6 or ERCC8 encoding for Cockayne syndrome B (CSB) and A (CSA) proteins, respectively. CSA and CSB have well-characterized roles in transcription-coupled nucleotide excision repair, responsible for removing bulky DNA lesions, including those caused by UV irradiation. Here, we report that CSA dysfunction causes defects in the nuclear envelope (NE) integrity. NE dysfunction is characteristic of progeroid disorders caused by a mutation in NE proteins, such as Hutchinson-Gilford progeria syndrome. However, it has never been reported in Cockayne syndrome. We observed CSA dysfunction affected LEMD2 incorporation at the NE and increased actin stress fibers that contributed to enhanced mechanical stress to the NE. Altogether, these led to NE abnormalities associated with the activation of the cGAS/STING pathway. Targeting the linker of the nucleoskeleton and cytoskeleton complex was sufficient to rescue these phenotypes. This work reveals NE dysfunction in a progeroid syndrome caused by mutations in a DNA damage repair protein, reinforcing the connection between NE deregulation and ageing.
Collapse
Affiliation(s)
- Denny Yang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, Island Research Building, Cambridge, UK
| | - Austin Lai
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| | - Amelie Davies
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Anne Fj Janssen
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| | - Matthew O Ellis
- UK Dementia Research Institute, Island Research Building, Cambridge, UK
| | - Delphine Larrieu
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge, UK
| |
Collapse
|
7
|
Jeayeng S, Thongsroy J, Chuaijit S. Caenorhabditis elegans as a Model to Study Aging and Photoaging. Biomolecules 2024; 14:1235. [PMID: 39456168 PMCID: PMC11505728 DOI: 10.3390/biom14101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Caenorhabditis elegans (C. elegans) has emerged as an outstanding model organism for investigating the aging process due to its shortened lifespan, well-defined genome, and accessibility of potent genetic tools. This review presents the current findings on chronological aging and photoaging in C. elegans, exploring the elaborate molecular pathways that control these processes. The progression of chronological aging is characterized by a gradual deterioration of physiological functions and is influenced by an interaction of genetic and environmental factors, including the insulin/insulin-like signaling (IIS) pathway. In contrast, photoaging is characterized by increased oxidative stress, DNA damage, and activation of stress response pathways induced by UV exposure. Although the genetic mechanisms of chronological aging in C. elegans have been characterized by extensive research, the pathways regulating photoaging are comparatively less well-studied. Here, we provide an overview of the current understanding of aging research, including the crucial genes and genetic pathways involved in the aging and photoaging processes of C. elegans. Understanding the complex interactions between these factors will provide invaluable insights into the molecular mechanisms underlying chronological aging and photoaging and may lead to novel therapeutic approaches and further studies for promoting healthy aging in humans.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Jirapan Thongsroy
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sirithip Chuaijit
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
8
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
9
|
Ropert B, Gallrein C, Schumacher B. DNA repair deficiencies and neurodegeneration. DNA Repair (Amst) 2024; 138:103679. [PMID: 38640601 DOI: 10.1016/j.dnarep.2024.103679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer's Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson's Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes - diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.
Collapse
Affiliation(s)
- Baptiste Ropert
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany
| | - Christian Gallrein
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, Jena 07745, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, Cologne 50931, Germany.
| |
Collapse
|
10
|
Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM. Replication stress as a driver of cellular senescence and aging. Commun Biol 2024; 7:616. [PMID: 38777831 PMCID: PMC11111458 DOI: 10.1038/s42003-024-06263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Replication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response. Additionally, recent studies have revealed cellular pathways and phenotypes elicited by replication stress that align with designated hallmarks of aging. Here we review recent advances demonstrating the role of replication stress as an ultimate driver of cellular senescence and aging. We discuss clinical implications of the intriguing links between cellular senescence and aging including application of senotherapeutic approaches in the context of replication stress.
Collapse
Affiliation(s)
- Lauren M Herr
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ethan D Schaffer
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
11
|
Przyklenk M, Karmacharya S, Bonasera D, Pasanen-Zentz AL, Kmoch S, Paulsson M, Wagener R, Liccardi G, Schiavinato A. ANTXR1 deficiency promotes fibroblast senescence: implications for GAPO syndrome as a progeroid disorder. Sci Rep 2024; 14:9321. [PMID: 38653789 PMCID: PMC11039612 DOI: 10.1038/s41598-024-59901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.
Collapse
Affiliation(s)
- Matthias Przyklenk
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Shreya Karmacharya
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Debora Bonasera
- Genetic Instability, Cell Death and Inflammation Laboratory, Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Arthur-Lauri Pasanen-Zentz
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Stanislav Kmoch
- Research Unit of Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Gianmaria Liccardi
- Genetic Instability, Cell Death and Inflammation Laboratory, Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Arvanitaki ES, Goulielmaki E, Gkirtzimanaki K, Niotis G, Tsakani E, Nenedaki E, Rouska I, Kefalogianni M, Xydias D, Kalafatakis I, Psilodimitrakopoulos S, Karagogeos D, Schumacher B, Stratakis E, Garinis GA. Microglia-derived extracellular vesicles trigger age-related neurodegeneration upon DNA damage. Proc Natl Acad Sci U S A 2024; 121:e2317402121. [PMID: 38635632 PMCID: PMC11047102 DOI: 10.1073/pnas.2317402121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
DNA damage and neurodegenerative disorders are intimately linked but the underlying mechanism remains elusive. Here, we show that persistent DNA lesions in tissue-resident macrophages carrying an XPF-ERCC1 DNA repair defect trigger neuroinflammation and neuronal cell death in mice. We find that microglia accumulate dsDNAs and chromatin fragments in the cytosol, which are sensed thereby stimulating a viral-like immune response in Er1Cx/- and naturally aged murine brain. Cytosolic DNAs are packaged into extracellular vesicles (EVs) that are released from microglia and discharge their dsDNA cargo into IFN-responsive neurons triggering cell death. To remove cytosolic dsDNAs and prevent inflammation, we developed targeting EVs to deliver recombinant DNase I to Er1Cx/- brain microglia in vivo. We show that EV-mediated elimination of cytosolic dsDNAs is sufficient to prevent neuroinflammation, reduce neuronal apoptosis, and delay the onset of neurodegenerative symptoms in Er1Cx/- mice. Together, our findings unveil a causal mechanism leading to neuroinflammation and provide a rationalized therapeutic strategy against age-related neurodegeneration.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Katerina Gkirtzimanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - George Niotis
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Edisona Tsakani
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Electra Nenedaki
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Iliana Rouska
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| | - Mary Kefalogianni
- Department of Physics, University of Crete, HeraklionGR71003, Crete, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - Dionysios Xydias
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
- Materials Science and Technology Department, University of Crete, HeraklionGR70013, Crete, Greece
| | - Ilias Kalafatakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
- Medical School, Division of Basic Sciences, University of Crete, HeraklionGR71003, Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - Domna Karagogeos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
- Medical School, Division of Basic Sciences, University of Crete, HeraklionGR71003, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne50931, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne50931, Germany
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, HeraklionGR71110, Crete, Greece
| | - George A. Garinis
- Department of Biology, University of Crete, HeraklionGR71409, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, HeraklionGR70013, Crete, Greece
| |
Collapse
|
13
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 PMCID: PMC10969416 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (M.I.); (A.K.); (A.A.); (R.B.)
| |
Collapse
|
14
|
Panier S, Wang S, Schumacher B. Genome Instability and DNA Repair in Somatic and Reproductive Aging. ANNUAL REVIEW OF PATHOLOGY 2024; 19:261-290. [PMID: 37832947 DOI: 10.1146/annurev-pathmechdis-051122-093128] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Genetic material is constantly subjected to genotoxic insults and is critically dependent on DNA repair. Genome maintenance mechanisms differ in somatic and germ cells as the soma only requires maintenance during an individual's lifespan, while the germline indefinitely perpetuates its genetic information. DNA lesions are recognized and repaired by mechanistically highly diverse repair machineries. The DNA damage response impinges on a vast array of homeostatic processes and can ultimately result in cell fate changes such as apoptosis or cellular senescence. DNA damage causally contributes to the aging process and aging-associated diseases, most prominently cancer. By causing mutations, DNA damage in germ cells can lead to genetic diseases and impact the evolutionary trajectory of a species. The mechanisms ensuring tight control of germline DNA repair could be highly instructive in defining strategies for improved somatic DNA repair. They may provide future interventions to maintain health and prevent disease during aging.
Collapse
Affiliation(s)
- Stephanie Panier
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Siyao Wang
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease and Cluster of Excellence: Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne and University Hospital of Cologne, Cologne, Germany;
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Sawada D, Kato H, Kaneko H, Kinoshita D, Funayama S, Minamizuka T, Takasaki A, Igarashi K, Koshizaka M, Takada-Watanabe A, Nakamura R, Aono K, Yamaguchi A, Teramoto N, Maeda Y, Ohno T, Hayashi A, Ide K, Ide S, Shoji M, Kitamoto T, Endo Y, Ogata H, Kubota Y, Mitsukawa N, Iwama A, Ouchi Y, Takayama N, Eto K, Fujii K, Takatani T, Shiohama T, Hamada H, Maezawa Y, Yokote K. Senescence-associated inflammation and inhibition of adipogenesis in subcutaneous fat in Werner syndrome. Aging (Albany NY) 2023; 15:9948-9964. [PMID: 37793000 PMCID: PMC10599740 DOI: 10.18632/aging.205078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
Werner syndrome (WS) is a hereditary premature aging disorder characterized by visceral fat accumulation and subcutaneous lipoatrophy, resulting in severe insulin resistance. However, its underlying mechanism remains unclear. In this study, we show that senescence-associated inflammation and suppressed adipogenesis play a role in subcutaneous adipose tissue reduction and dysfunction in WS. Clinical data from four Japanese patients with WS revealed significant associations between the decrease of areas of subcutaneous fat and increased insulin resistance measured by the glucose clamp. Adipose-derived stem cells from the stromal vascular fraction derived from WS subcutaneous adipose tissues (WSVF) showed early replicative senescence and a significant increase in the expression of senescence-associated secretory phenotype (SASP) markers. Additionally, adipogenesis and insulin signaling were suppressed in WSVF, and the expression of adipogenesis suppressor genes and SASP-related genes was increased. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), alleviated premature cellular senescence, rescued the decrease in insulin signaling, and extended the lifespan of WS model of C. elegans. To the best of our knowledge, this study is the first to reveal the critical role of cellular senescence in subcutaneous lipoatrophy and severe insulin resistance in WS, highlighting the therapeutic potential of rapamycin for this disease.
Collapse
Affiliation(s)
- Daisuke Sawada
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hisaya Kato
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Hiyori Kaneko
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Daisuke Kinoshita
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shinichiro Funayama
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takuya Minamizuka
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Atsushi Takasaki
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Katsushi Igarashi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Masaya Koshizaka
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Aki Takada-Watanabe
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Rito Nakamura
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kazuto Aono
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Ayano Yamaguchi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Naoya Teramoto
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Yukari Maeda
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Tomohiro Ohno
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Aiko Hayashi
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Kana Ide
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Shintaro Ide
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Mayumi Shoji
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Takumi Kitamoto
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Yusuke Endo
- Laboratory of Medical Omics Research, Kazusa DNA Research Institute, Kisarazu, Japan
- Department of Omics Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideyuki Ogata
- Department of Plastic, Reconstructive, And Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshitaka Kubota
- Department of Plastic, Reconstructive, And Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic, Reconstructive, And Aesthetic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuo Ouchi
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naoya Takayama
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Koji Eto
- Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Katsunori Fujii
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Pediatrics, International University of Welfare and Health School of Medicine, Narita, Japan
| | - Tomozumi Takatani
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
16
|
Crochemore C, Chica C, Garagnani P, Lattanzi G, Horvath S, Sarasin A, Franceschi C, Bacalini MG, Ricchetti M. Epigenomic signature of accelerated ageing in progeroid Cockayne syndrome. Aging Cell 2023; 22:e13959. [PMID: 37688320 PMCID: PMC10577576 DOI: 10.1111/acel.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/16/2023] [Accepted: 07/31/2023] [Indexed: 09/10/2023] Open
Abstract
Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS) are rare genetic disorders caused by mutation of the DNA repair and multifunctional CSA or CSB protein, but only CS patients display a progeroid and neurodegenerative phenotype, providing a unique conceptual and experimental paradigm. As DNA methylation (DNAm) remodelling is a major ageing marker, we performed genome-wide analysis of DNAm of fibroblasts from healthy, UVSS and CS individuals. Differential analysis highlighted a CS-specific epigenomic signature (progeroid-related; not present in UVSS) enriched in three categories: developmental transcription factors, ion/neurotransmitter membrane transporters and synaptic neuro-developmental genes. A large fraction of CS-specific DNAm changes were associated with expression changes in CS samples, including in previously reported post-mortem cerebella. The progeroid phenotype of CS was further supported by epigenomic hallmarks of ageing: the prediction of DNAm of repetitive elements suggested an hypomethylation of Alu sequences in CS, and the epigenetic clock returned a marked increase in CS biological age respect to healthy and UVSS cells. The epigenomic remodelling of accelerated ageing in CS displayed both commonalities and differences with other progeroid diseases and regular ageing. CS shared DNAm changes with normal ageing more than other progeroid diseases do, and included genes functionally validated for regular ageing. Collectively, our results support the existence of an epigenomic basis of accelerated ageing in CS and unveil new genes and pathways that are potentially associated with the progeroid/degenerative phenotype.
Collapse
Affiliation(s)
- Clément Crochemore
- Institut Pasteur, Université Paris Cité, Molecular Mechanisms of Pathological and Physiological Ageing Unit, UMR3738 CNRSParisFrance
- Institut Pasteur, Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR3738 CNRSParisFrance
- Sup'BiotechVillejuifFrance
| | - Claudia Chica
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Paolo Garagnani
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
- Department of Medical and Surgical Sciences (DIMEC)University of BolognaBolognaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”, Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
- Department of Biostatistics Fielding School of Public HealthUniversity of CaliforniaLos AngelesUSA
| | - Alain Sarasin
- Laboratory of Genetic Stability and Oncogenesis, Institut de Cancérologie Gustave RoussyUniversity Paris‐SudVillejuifFrance
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and MechanicsLobachevsky UniversityNizhniy NovgorodRussia
| | | | - Miria Ricchetti
- Institut Pasteur, Université Paris Cité, Molecular Mechanisms of Pathological and Physiological Ageing Unit, UMR3738 CNRSParisFrance
- Institut Pasteur, Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR3738 CNRSParisFrance
| |
Collapse
|
17
|
Sharma A, Swarnkar B, Sethuraman G. Hutchinson-Gilford progeria. BMJ Case Rep 2023; 16:e256203. [PMID: 37723091 PMCID: PMC10510932 DOI: 10.1136/bcr-2023-256203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Affiliation(s)
- Ananya Sharma
- Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Bhavya Swarnkar
- Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Gomathy Sethuraman
- Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Ibañez-Solé O, Barrio I, Izeta A. Age or lifestyle-induced accumulation of genotoxicity is associated with a length-dependent decrease in gene expression. iScience 2023; 26:106368. [PMID: 37013186 PMCID: PMC10066539 DOI: 10.1016/j.isci.2023.106368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
DNA damage has long been advocated as a molecular driver of aging. DNA damage occurs in a stochastic manner, and is therefore more likely to accumulate in longer genes. The length-dependent accumulation of transcription-blocking damage, unlike that of somatic mutations, should be reflected in gene expression datasets of aging. We analyzed gene expression as a function of gene length in several single-cell RNA sequencing datasets of mouse and human aging. We found a pervasive age-associated length-dependent underexpression of genes across species, tissues, and cell types. Furthermore, we observed length-dependent underexpression associated with UV-radiation and smoke exposure, and in progeroid diseases, Cockayne syndrome, and trichothiodystrophy. Finally, we studied published gene sets showing global age-related changes. Genes underexpressed with aging were significantly longer than overexpressed genes. These data highlight a previously undetected hallmark of aging and show that accumulation of genotoxicity in long genes could lead to reduced RNA polymerase II processivity.
Collapse
Affiliation(s)
- Olga Ibañez-Solé
- Tissue Engineering Group; Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain
| | - Irantzu Barrio
- Department of Mathematics, University of the basque Country UPV/EHU, 48940 Leioa, Spain
- Basque Center for Applied Mathematics, BCAM, 48009 Bilbao, Spain
| | - Ander Izeta
- Tissue Engineering Group; Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain
- Tecnun-University of Navarra, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
19
|
Datta A, Sommers JA, Jhujh SS, Harel T, Stewart GS, Brosh RM. Discovery of a new hereditary RECQ helicase disorder RECON syndrome positions the replication stress response and genome homeostasis as centrally important processes in aging and age-related disease. Ageing Res Rev 2023; 86:101887. [PMID: 36805074 PMCID: PMC10018417 DOI: 10.1016/j.arr.2023.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Characterizing the molecular deficiencies underlying human aging has been a formidable challenge as it is clear that a complex myriad of factors including genetic mutations, environmental influences, and lifestyle choices influence the deterioration responsible for human pathologies. In addition, the common denominators of human aging, exemplified by the newly updated hallmarks of aging (López-Otín et al., 2023), suggest multiple avenues and layers of crosstalk between pathways important for genome and cellular homeostasis, both of which are major determinants of both good health and lifespan. In this regard, we postulate that hereditary disorders characterized by chromosomal instability offer a unique window of insight into aging and age-related disease processes. Recently, we discovered a new RECQ helicase disorder, designated RECON syndrome attributed to bi-allelic mutations in the RECQL1 gene (Abu-Libdeh et al., 2022). Cells deficient in RECQL1 exhibit genomic instability and a compromised response to replication stress, providing further evidence for the significance of genome homeostasis to suppress disease phenotypes. Here we provide a perspective on the pathology of RECON syndrome to inform the reader as to how molecular defects in the RECQL1 gene contribute to underlying deficiencies in nucleic acid metabolism often seen in certain aging or age-related diseases.
Collapse
Affiliation(s)
- Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Satpal S Jhujh
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA.
| |
Collapse
|
20
|
Errazquin R, Carrasco E, Del Marro S, Suñol A, Peral J, Ortiz J, Rubio JC, Segrelles C, Dueñas M, Garrido-Aranda A, Alvarez M, Belendez C, Balmaña J, Garcia-Escudero R. Early Diagnosis of Oral Cancer and Lesions in Fanconi Anemia Patients: A Prospective and Longitudinal Study Using Saliva and Plasma. Cancers (Basel) 2023; 15:cancers15061871. [PMID: 36980757 PMCID: PMC10046988 DOI: 10.3390/cancers15061871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Fanconi anemia (FA) patients display an exacerbated risk of oral squamous cell carcinoma (OSCC) and oral potentially malignant lesions (OPMLs) at early ages. As patients have defects in their DNA repair mechanisms, standard-of-care treatments for OSCC such as radiotherapy and chemotherapy, give rise to severe toxicities. New methods for early diagnosis are urgently needed to allow for treatment in early disease stages and achieve better clinical outcomes. We conducted a prospective, longitudinal study wherein liquid biopsies from sixteen patients with no clinical diagnoses of OPML and/or OSCC were analyzed for the presence of mutations in cancer genes. The DNA from saliva and plasma were sequentially collected and deep-sequenced, and the clinical evaluation followed over a median time of approximately 2 years. In 9/16 FA patients, we detected mutations in cancer genes (mainly TP53) with minor allele frequencies (MAF) of down to 0.07%. Importantly, all patients that had mutations and clinical follow-up data after mutation detection (n = 6) developed oral precursor lesions or OSCC. The lead-time between mutation detection and tumor diagnosis ranged from 23 to 630 days. Strikingly, FA patients without mutations displayed a significantly lower risk of developing precursor lesions or OSCCs. Therefore, our diagnostic approach could help to stratify FA patients into risk groups, which would allow for closer surveillance for OSCCs or precursor lesions.
Collapse
Affiliation(s)
- Ricardo Errazquin
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Estela Carrasco
- Hereditary Cancer Genetics Group, Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Sonia Del Marro
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Anna Suñol
- Hereditary Cancer Genetics Group, Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Jorge Peral
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Jessica Ortiz
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
| | - Juan Carlos Rubio
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Segrelles
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Dueñas
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Martina Alvarez
- Centro de Investigaciones Médico-Sanitarias (CIMES), 29071 Malaga, Spain
| | - Cristina Belendez
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Sección de Hematología y Oncología Pediátricas, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Ramon Garcia-Escudero
- Research Institute Hospital 12 de Octubre (Imas12), University Hospital 12 de Octubre, Av Cordoba s/n, 28041 Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas), Avenida Complutense 40, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
21
|
Teefy BB, Benayoun BA. Putting aging on ICE. Cell Metab 2023; 35:383-385. [PMID: 36889279 PMCID: PMC10592682 DOI: 10.1016/j.cmet.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
A recent report by Yang et al. in Cell demonstrates that faithful DNA double-strand breaks and repair cycles phenocopy many aspects of aging in mice. Whether this progeroid phenotype is caused by a loss of epigenetic information remains to be conclusively determined.
Collapse
Affiliation(s)
- Bryan B Teefy
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA; Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA; USC Stem Cell Initiative, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Rivera-Mulia JC, Trevilla-Garcia C, Martinez-Cifuentes S. Optimized Repli-seq: improved DNA replication timing analysis by next-generation sequencing. Chromosome Res 2022; 30:401-414. [PMID: 35781769 PMCID: PMC10124313 DOI: 10.1007/s10577-022-09703-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
The human genome is divided into functional units that replicate at specific times during S-phase. This temporal program is known as replication timing (RT) and is coordinated with the spatial organization of the genome and transcriptional activity. RT is also cell type-specific, dynamically regulated during development, and alterations in RT are observed in multiple diseases. Thus, the precise measure of RT is critical to understand the role of RT in gene function regulation. Distinct methods for assaying the RT program exist; however, conventional methods require thousands of cells as input, prohibiting its applicability to samples with limited cell numbers such as those from disease patients or from early developing embryos. Although single-cell RT analyses have been developed, these methods are low throughput, require generation of numerous libraries, increased sequencing costs, and produce low resolution data. Here, we developed an improved method to measure RT genome-wide that enables high-resolution analysis of low input samples. This method incorporates direct cell sorting into lysis buffer, as well as DNA fragmentation and library preparation in a single tube, resulting in higher yields, increased quality, and reproducibility with decreased costs. We also performed a systematic data processing analysis to provide standardized parameters for RT measurement. This optimized method facilitates RT analysis and will enable its application to a broad range of studies investigating the role of RT in gene expression, nuclear architecture, and disease.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA.
- Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Claudia Trevilla-Garcia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Santiago Martinez-Cifuentes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
23
|
Arvanitaki ES, Stratigi K, Garinis GA. DNA damage, inflammation and aging: Insights from mice. FRONTIERS IN AGING 2022; 3:973781. [PMID: 36160606 PMCID: PMC9490123 DOI: 10.3389/fragi.2022.973781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Persistent DNA lesions build up with aging triggering inflammation, the body’s first line of immune defense strategy against foreign pathogens and irritants. Once established, DNA damage-driven inflammation takes on a momentum of its own, due to the amplification and feedback loops of the immune system leading to cellular malfunction, tissue degenerative changes and metabolic complications. Here, we discuss the use of murine models with inborn defects in genome maintenance and the DNA damage response for understanding how irreparable DNA lesions are functionally linked to innate immune signaling highlighting their relevance for developing novel therapeutic strategies against the premature onset of aging-associated diseases.
Collapse
Affiliation(s)
- Ermioni S. Arvanitaki
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | | | - George A. Garinis
- Department of Biology, University of Crete, Heraklion, Greece
- Foundation for Research and Technology-Hellas, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
- *Correspondence: George A. Garinis,
| |
Collapse
|
24
|
Naranjo-Galindo FJ, Ai R, Fang EF, Nilsen HL, SenGupta T. C. elegans as an Animal Model to Study the Intersection of DNA Repair, Aging and Neurodegeneration. FRONTIERS IN AGING 2022; 3:916118. [PMID: 35821838 PMCID: PMC9261396 DOI: 10.3389/fragi.2022.916118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022]
Abstract
Since its introduction as a genetic model organism, Caenorhabditis elegans has yielded insights into the causes of aging. In addition, it has provided a molecular understanding of mechanisms of neurodegeneration, one of the devastating effects of aging. However, C. elegans has been less popular as an animal model to investigate DNA repair and genomic instability, which is a major hallmark of aging and also a cause of many rare neurological disorders. This article provides an overview of DNA repair pathways in C. elegans and the impact of DNA repair on aging hallmarks, such as mitochondrial dysfunction, telomere maintenance, and autophagy. In addition, we discuss how the combination of biological characteristics, new technical tools, and the potential of following precise phenotypic assays through a natural life-course make C. elegans an ideal model organism to study how DNA repair impact neurodegeneration in models of common age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco José Naranjo-Galindo
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - Ruixue Ai
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Evandro Fei Fang
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
25
|
Ebert T, Tran N, Schurgers L, Stenvinkel P, Shiels PG. Ageing - Oxidative stress, PTMs and disease. Mol Aspects Med 2022; 86:101099. [PMID: 35689974 DOI: 10.1016/j.mam.2022.101099] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022]
Abstract
Post-translational modifications (PTMs) have been proposed as a link between the oxidative stress-inflammation-ageing trinity, thereby affecting several hallmarks of ageing. Phosphorylation, acetylation, and ubiquitination cover >90% of all the reported PTMs. Several of the main PTMs are involved in normal "healthy" ageing and in different age-related diseases, for instance neurodegenerative, metabolic, cardiovascular, and bone diseases, as well as cancer and chronic kidney disease. Ultimately, data from human rare progeroid syndromes, but also from long-living animal species, imply that PTMs are critical regulators of the ageing process. Mechanistically, PTMs target epigenetic and non-epigenetic pathways during ageing. In particular, epigenetic histone modification has critical implications for the ageing process and can modulate lifespan. Therefore, PTM-based therapeutics appear to be attractive pharmaceutical candidates to reduce the burden of ageing-related diseases. Several phosphorylation and acetylation inhibitors have already been FDA-approved for the treatment of other diseases and offer a unique potential to investigate both beneficial effects and possible side-effects. As an example, the most well-studied senolytic compounds dasatinib and quercetin, which have already been tested in Phase 1 pilot studies, also act as kinase inhibitors, targeting cellular senescence and increasing lifespan. Future studies need to carefully determine the best PTM-based candidates for the treatment of the "diseasome of ageing".
Collapse
Affiliation(s)
- Thomas Ebert
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Stockholm, Sweden; University of Leipzig Medical Center, Medical Department III - Endocrinology, Nephrology, Rheumatology, Leipzig, Germany.
| | - Ngoc Tran
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow, UK
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research School Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Stockholm, Sweden
| | - Paul G Shiels
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow, UK
| |
Collapse
|
26
|
Cao W. IFN-Aging: Coupling Aging With Interferon Response. FRONTIERS IN AGING 2022; 3:870489. [PMID: 35821859 PMCID: PMC9261325 DOI: 10.3389/fragi.2022.870489] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
Chronic inflammation affects many diseases and conditions, including aging. Interferons are a part of the immune defense against viral infections. Paradoxically, various aging tissues and organs from mammalian hosts perpetually accumulate changes brought by interferon pathway activation. Herein, we connote the mechanisms behind this phenomenon and discuss its implications in age-related pathology.
Collapse
Affiliation(s)
- Wei Cao
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
27
|
Franco I, Revêchon G, Eriksson M. Challenges of proving a causal role of somatic mutations in the aging process. Aging Cell 2022; 21:e13613. [PMID: 35435316 PMCID: PMC9124308 DOI: 10.1111/acel.13613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/21/2022] Open
Abstract
Aging is accompanied by the progressive accumulation of permanent changes to the genomic sequence, termed somatic mutations. Small mutations, including single‐base substitutions and insertions/deletions, are key determinants of the malignant transformations leading to cancer, but their role as initiators of other age‐related phenotypes is controversial. Here, we present recent advances in the study of somatic mutagenesis in aging tissues and posit that the current uncertainty about its causal effects in the aging process is due to technological and methodological weaknesses. We highlight classical and novel experimental systems, including premature aging syndromes, that could be used to model the increase of somatic mutation burden and understand its functional role. It is important that studies are designed to take into account the biological context and peculiarities of each tissue and that the downstream impact of somatic mutation accumulation is measured by methods able to resolve subtle cellular changes.
Collapse
Affiliation(s)
- Irene Franco
- Cystic Kidney Disorders Unit Division of Genetics and Cell Biology IRCCS Ospedale San Raffaele Milan Italy
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition Center for Innovative Medicine Karolinska Institutet Huddinge Sweden
| |
Collapse
|
28
|
Murdocca M, Spitalieri P, Cappello A, Colasuonno F, Moreno S, Candi E, D'Apice MR, Novelli G, Sangiuolo F. Mitochondrial dysfunction in mandibular hypoplasia, deafness and progeroid features with concomitant lipodystrophy (MDPL) patients. Aging (Albany NY) 2022; 14:1651-1664. [PMID: 35196257 PMCID: PMC8908938 DOI: 10.18632/aging.203910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
Mandibular hypoplasia, Deafness and Progeroid features with concomitant Lipodystrophy is a rare, genetic, premature aging disease named MDPL Syndrome, due to almost always a de novo variant in POLD1 gene, encoding the DNA polymerase δ. In previous in vitro studies, we have already described several hallmarks of aging, including genetic damage, telomere shortening, cell senescence and proliferation defects. Since a clear connection has been reported between telomere shortening and mitochondria malfunction to initiate the aging process, we explored the role that mitochondrial metabolism and activity play in pathogenesis of MDPL Syndrome, an aspect that has not been addressed yet. We thus evaluated mtDNA copy number, assessing a significant decrease in mutated cells. The expression level of genes related to mitochondrial biogenesis and activity also revealed a significant reduction, highlighting a mitochondrial dysfunction in MDPL cells. Even the expression levels of mitochondrial marker SOD2, as assessed by immunofluorescence, were reduced. The decrease in this antioxidant enzyme correlated with increased production of mitochondrial ROS in MDPL cells, compared to WT. Consistent with these data, Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) analysis revealed in MDPL cells fewer mitochondria, which also displayed morphological abnormalities. Accordingly, we detected autophagic vacuoles containing partially digested mitochondria. Overall, our results demonstrate a dramatic impairment of mitochondrial biogenesis and activity in MDPL Syndrome. Administration of Metformin, though unable to restore mitochondrial impairment, proved efficient in rescuing nuclear abnormalities, suggesting its use to specifically ameliorate the premature aging phenotype.
Collapse
Affiliation(s)
- Michela Murdocca
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Paola Spitalieri
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Angela Cappello
- Department of Experimental Medicine, Tor Vergata University, Rome 00133, and IDI-IRCCS, Rome 00166, Italy
| | | | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome 00146, Italy.,IRCCS Fondazione Santa Lucia, Rome 00179, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Tor Vergata University, Rome 00133, and IDI-IRCCS, Rome 00166, Italy
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University, Rome 00133, Italy
| |
Collapse
|
29
|
Fan X, Fan Z, Yang Z, Huang T, Tong Y, Yang D, Mao X, Yang M. Flavonoids-Natural Gifts to Promote Health and Longevity. Int J Mol Sci 2022; 23:ijms23042176. [PMID: 35216290 PMCID: PMC8879655 DOI: 10.3390/ijms23042176] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
The aging of mammals is accompanied by the progressive atrophy of tissues and organs and the accumulation of random damage to macromolecular DNA, protein, and lipids. Flavonoids have excellent antioxidant, anti-inflammatory, and neuroprotective effects. Recent studies have shown that flavonoids can delay aging and prolong a healthy lifespan by eliminating senescent cells, inhibiting senescence-related secretion phenotypes (SASPs), and maintaining metabolic homeostasis. However, only a few systematic studies have described flavonoids in clinical treatment for anti-aging, which needs to be explored further. This review first highlights the association between aging and macromolecular damage. Then, we discuss advances in the role of flavonoid molecules in prolonging the health span and lifespan of organisms. This study may provide crucial information for drug design and developmental and clinical applications based on flavonoids.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziqiang Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Ziyue Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Tiantian Huang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Yingdong Tong
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xueping Mao
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.F.); (Z.F.); (Z.Y.); (T.H.); (Y.T.); (D.Y.); (X.M.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
30
|
Chatzidoukaki O, Stratigi K, Goulielmaki E, Niotis G, Akalestou-Clocher A, Gkirtzimanaki K, Zafeiropoulos A, Altmüller J, Topalis P, Garinis GA. R-loops trigger the release of cytoplasmic ssDNAs leading to chronic inflammation upon DNA damage. SCIENCE ADVANCES 2021; 7:eabj5769. [PMID: 34797720 PMCID: PMC8604417 DOI: 10.1126/sciadv.abj5769] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
How DNA damage leads to chronic inflammation and tissue degeneration with aging remains to be fully resolved. Here, we show that DNA damage leads to cellular senescence, fibrosis, loss-of-tissue architecture, and chronic pancreatitis in mice with an inborn defect in the excision repair cross complementation group 1 (Ercc1) gene. We find that DNA damage-driven R-loops causally contribute to the active release and buildup of single-stranded DNAs (ssDNAs) in the cytoplasm of cells triggering a viral-like immune response in progeroid and naturally aged pancreata. To reduce the proinflammatory load, we developed an extracellular vesicle (EV)-based strategy to deliver recombinant S1 or ribonuclease H nucleases in inflamed Ercc1−/− pancreatic cells. Treatment of Ercc1−/− animals with the EV-delivered nuclease cargo eliminates DNA damage-induced R-loops and cytoplasmic ssDNAs alleviating chronic inflammation. Thus, DNA damage-driven ssDNAs causally contribute to tissue degeneration, Ercc1−/− paving the way for novel rationalized intervention strategies against age-related chronic inflammation.
Collapse
Affiliation(s)
- Ourania Chatzidoukaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - George Niotis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Alexia Akalestou-Clocher
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Katerina Gkirtzimanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | | | - Janine Altmüller
- Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
| | - George A. Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013 Heraklion, Crete, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Corresponding author.
| |
Collapse
|