1
|
Wang Y, Zhang X, Li X, Cheng M, Cui X. The vascular microenvironment and its stem cells regulate vascular homeostasis. Front Cell Dev Biol 2025; 13:1544129. [PMID: 40114970 PMCID: PMC11922910 DOI: 10.3389/fcell.2025.1544129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The vascular microenvironment comprises of anatomical structures, extracellular matrix components, and various cell populations, which play a crucial role in regulating vascular homeostasis and influencing vascular structure and function. Under physiological conditions, intrinsic regulation of the vascular microenvironment is required to sustain vascular homeostasis. In contrast, under pathological conditions, alterations to this microenvironment lead to vascular injury and pathological remodeling. According to the anatomy, the vascular microenvironment can be subdivided into three sections from the inside out. The vascular endothelial microenvironment, centered on vascular endothelial cells (VECs), includes the extracellular matrix and various vascular physicochemical factors. The VECs interact with vascular physicochemical factors to regulate the function of various parenchymal cells, including hepatocytes, neurons and tumor cells. The vascular wall microenvironment, comprising the vasa vasorum and their unique stem/progenitor cell niches, plays a pivotal role in vascular inflammation and pathological remodeling. Additionally, the perivascular microenvironment, which includes perivascular adipose tissue, consists of adipocytes and stem cells, which contribute to the pathological processes of atherosclerosis. It is anticipated that targeted regulation of the vascular microenvironment will emerge as a novel approach for the treatment of various diseases. Accordingly, this review will examine the structure of the vascular microenvironment, the regulation of vascular function by vascular cells and stem/progenitor cells, and the role of the vascular microenvironment in regulating cardiovascular diseases.
Collapse
Affiliation(s)
- Yanhui Wang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaoyun Zhang
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xin Li
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Min Cheng
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Xiaodong Cui
- Medical Physiology Laboratory, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Zhang J, Wang G, Liu J, Tang F, Wang S, Li Y. ITGA4 as a potential prognostic and immunotherapeutic biomarker in human cancer and its clinical significance in gastric cancer: an integrated analysis and validation. Front Oncol 2025; 15:1513622. [PMID: 40012546 PMCID: PMC11860100 DOI: 10.3389/fonc.2025.1513622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/27/2025] [Indexed: 02/28/2025] Open
Abstract
Background Integrin Subunit Alpha 4 (ITGA4), a member of the integrin protein family, is involved in the progression of malignant tumors. However, its role across different cancer types is not well understood. Methods Utilizing multi-omics data, we comprehensively evaluated ITGA4's expression, clinical relevance, diagnostic and prognostic value, functions, mutations, and methylation status, along with its impact on immunity, mismatch repair (MMR), heterogeneity, stemness, immunotherapy responsiveness, and drug resistance in pan-cancer, with partial validation in gastric cancer (GC) using transcriptomic analysis, single-cell data, western blot (WB), wound-healing assay, flow cytometry and immunohistochemistry (IHC). We further investigated its correlation with clinicopathology and serological markers on tissues from 80 GC patients. Results ITGA4 expression was generally low in normal tissues but varied significantly across tumor types, with higher levels in advanced stages and grades. It demonstrated diagnostic value in 20 cancer types and effectively predicted 1-, 3-, and 5-year survival rates as part of a prognostic model. ITGA4 played roles in cell adhesion, migration, immune regulation, and pathways like PI3K-Akt and TSC-mTOR. It showed alterations in 22 cancer types, with methylation at 9 sites inhibiting its expression. ITGA4 positively correlated with immune cell infiltration, immune regulatory genes, chemokines, and might reduce microsatellite instability (MSI) and tumor mutation burden (TMB) by promoting MMR gene expression. It could also predict immunotherapy efficacy and chemotherapy sensitivity. In GC, high ITGA4 expression was related to poor prognosis, promoted tumor proliferation and migration, and enhanced immune cell infiltration. ITGA4 expression was higher in GC cells and tissues than normal ones. Its downregulation inhibited GC cell migration and promoted apoptosis. Moreover, ITGA4 was correlated with N stage, pathological stage, neural and vascular invasion, serum levels of Ki-67, immune cells, CRP and CA125. Conclusion ITGA4 is a potential biomarker and therapeutic target to enhance cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Jiaxing Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Gang Wang
- School of Basic Medical Sciences of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jie Liu
- Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, The Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Futian Tang
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Song Wang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yumin Li
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Jiang H, Gao B, Meng Z, Wang Y, Jiao T, Li J, Li X, Cao Y, Zhang X, Li C, Lu S. Integrative multi-omics analysis reveals the role of tumor-associated endothelial cells and their signature in prognosis of intrahepatic cholangiocarcinoma. J Transl Med 2024; 22:948. [PMID: 39427165 PMCID: PMC11490089 DOI: 10.1186/s12967-024-05750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
This study aims to investigate the interplay between tumor-associated endothelial cells (TECs) and immune cells within the tumor microenvironment (TME) and its impact on tumor prognosis. We conducted single-cell RNA sequencing (scRNA-seq) of tumor, normal, and lymph node tissues obtained from intrahepatic cholangiocarcinoma (ICC) patients to reveal the role of TECs in tumor angiogenesis and their significant heterogeneity. Meanwhile, we identified genes highly expressed in TECs and constructed TEC signatures (TEC.Sig). Next, we calculated TEC scores of samples based on TEC.Sig. Patients with higher TEC scores exhibited a higher frequency of KRAS mutations, which was associated with increased infiltration of neutrophils and immature dendritic cells (iDCs), and decreased numbers of natural killer (NK), CD4 + T, and CD8 + T effector memory (Tem) cells, indicating an inflammation-dominated immunosuppressive phenotype. In contrast, BAP1 mutations and CXCL12 overexpression showed a contrasting trend. Spatial transcriptomics analysis and histological experiments further confirmed that TECs interacted with various tumor-killing immune cells through the CXCL12/CXCR4 axis. Multiple tumor immunotherapy datasets confirmed that the TEC.Sig could predict patient responses to immunotherapy. The TEC score is a promising and reliable biomarker for predicting genetic mutations and prognosis in ICC patients. Enhancing the regulation of the CXCL12/CXCR4 signaling pathway may represent a potential novel therapeutic target for ICC treatment.
Collapse
Affiliation(s)
- Hao Jiang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Biao Gao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zihe Meng
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
- College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yafei Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Tianyu Jiao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Junfeng Li
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xuerui Li
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yinbiao Cao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China
| | - Xianzhou Zhang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Chonghui Li
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China.
| | - Shichun Lu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Beijing, China.
| |
Collapse
|
4
|
Zhao X, Williamson T, Gong Y, Epstein JA, Fan Y. Immunomodulatory Therapy for Ischemic Heart Disease. Circulation 2024; 150:1050-1058. [PMID: 39325497 PMCID: PMC11521113 DOI: 10.1161/circulationaha.124.070368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 09/27/2024]
Abstract
Ischemic heart disease is a leading cause of death worldwide, manifested clinically as myocardial infarction (and ischemic cardiomyopathy. Presently, there exists a notable scarcity of efficient interventions to restore cardiac function after myocardial infarction. Cumulative evidence suggests that impaired tissue immunity within the ischemic microenvironment aggravates cardiac dysfunction, contributing to progressive heart failure. Recent research breakthroughs propose immunotherapy as a potential approach by leveraging immune and stroma cells to recalibrate the immune microenvironment, holding significant promise for the treatment of ischemic heart disease. In this Primer, we highlight three emerging strategies for immunomodulatory therapy in managing ischemic cardiomyopathy: targeting vascular endothelial cells to rewire tissue immunity, reprogramming myeloid cells to bolster their reparative function, and utilizing adoptive T cell therapy to ameliorate fibrosis. We anticipate that immunomodulatory therapy will offer exciting opportunities for ischemic heart disease treatment.
Collapse
Affiliation(s)
- Xinye Zhao
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Williamson
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A. Epstein
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Li J, Wang D, Tang F, Ling X, Zhang W, Zhang Z. Pan-cancer integrative analyses dissect the remodeling of endothelial cells in human cancers. Natl Sci Rev 2024; 11:nwae231. [PMID: 39345334 PMCID: PMC11429526 DOI: 10.1093/nsr/nwae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 10/01/2024] Open
Abstract
Therapeutics targeting tumor endothelial cells (TECs) have been explored for decades, with only suboptimal efficacy achieved, partly due to an insufficient understanding of the TEC heterogeneity across cancer patients. We integrated single-cell RNA-seq data of 575 cancer patients from 19 solid tumor types, comprehensively charting the TEC phenotypic diversities. Our analyses uncovered underappreciated compositional and functional heterogeneity in TECs from a pan-cancer perspective. Two subsets, CXCR4 + tip cells and SELE + veins, represented the prominent angiogenic and proinflammatory phenotypes of TECs, respectively. They exhibited distinct spatial organization patterns, and compared to adjacent non-tumor tissues, tumor tissue showed an increased prevalence of CXCR4 + tip cells, yet with SELE + veins depleted. Such functional and spatial characteristics underlie their differential associations with the response of anti-angiogenic therapies and immunotherapies. Our integrative resources and findings open new avenues to understand and clinically intervene in the tumor vasculature.
Collapse
Affiliation(s)
- Jinhu Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Tang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xinnan Ling
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Yang F, Lee G, Fan Y. Navigating tumor angiogenesis: therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024; 27:333-349. [PMID: 38580870 PMCID: PMC11303583 DOI: 10.1007/s10456-024-09913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Sustained angiogenesis stands as a hallmark of cancer. The intricate vascular tumor microenvironment fuels cancer progression and metastasis, fosters therapy resistance, and facilitates immune evasion. Therapeutic strategies targeting tumor vasculature have emerged as transformative for cancer treatment, encompassing anti-angiogenesis, vessel normalization, and endothelial reprogramming. Growing evidence suggests the dynamic regulation of tumor angiogenesis by infiltrating myeloid cells, such as macrophages, myeloid-derived suppressor cells (MDSCs), and neutrophils. Understanding these regulatory mechanisms is pivotal in paving the way for successful vasculature-targeted cancer treatments. Therapeutic interventions aimed to disrupt myeloid cell-mediated tumor angiogenesis may reshape tumor microenvironment and overcome tumor resistance to radio/chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Gloria Lee
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Gao ZJ, Fang H, Sun S, Liu SQ, Fang Z, Liu Z, Li B, Wang P, Sun SR, Meng XY, Wu Q, Chen CS. Single-cell analyses reveal evolution mimicry during the specification of breast cancer subtype. Theranostics 2024; 14:3104-3126. [PMID: 38855191 PMCID: PMC11155410 DOI: 10.7150/thno.96163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024] Open
Abstract
Background: The stem or progenitor antecedents confer developmental plasticity and unique cell identities to cancer cells via genetic and epigenetic programs. A comprehensive characterization and mapping of the cell-of-origin of breast cancer using novel technologies to unveil novel subtype-specific therapeutic targets is still absent. Methods: We integrated 195,144 high-quality cells from normal breast tissues and 406,501 high-quality cells from primary breast cancer samples to create a large-scale single-cell atlas of human normal and cancerous breasts. Potential heterogeneous origin of malignant cells was explored by contrasting cancer cells against reference normal epithelial cells. Multi-omics analyses and both in vitro and in vivo experiments were performed to screen and validate potential subtype-specific treatment targets. Novel biomarkers of identified immune and stromal cell subpopulations were validated by immunohistochemistry in our cohort. Results: Tumor stratification based on cancer cell-of-origin patterns correlated with clinical outcomes, genomic aberrations and diverse microenvironment constitutions. We found that the luminal progenitor (LP) subtype was robustly associated with poor prognosis, genomic instability and dysfunctional immune microenvironment. However, the LP subtype patients were sensitive to neoadjuvant chemotherapy (NAC), PARP inhibitors (PARPi) and immunotherapy. The LP subtype-specific target PLK1 was investigated by both in vitro and in vivo experiments. Besides, large-scale single-cell profiling of breast cancer inspired us to identify a range of clinically relevant immune and stromal cell subpopulations, including subsets of innate lymphoid cells (ILCs), macrophages and endothelial cells. Conclusion: The present single-cell study revealed the cellular repertoire and cell-of-origin patterns of breast cancer. Combining single-cell and bulk transcriptome data, we elucidated the evolution mimicry from normal to malignant subtypes and expounded the LP subtype with vital clinical implications. Novel immune and stromal cell subpopulations of breast cancer identified in our study could be potential therapeutic targets. Taken together, Our findings lay the foundation for the precise prognostic and therapeutic stratification of breast cancer.
Collapse
Affiliation(s)
- Zhi-Jie Gao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huan Fang
- Kunming Institute of Zoology, Chinese Academy of Sciences. Kunming, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhou Fang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhou Liu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bei Li
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei. China
| | - Ping Wang
- Medical College, Anhui University of Science and Technology, Huainan, AnHui. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang-Yu Meng
- Health Science Center, Hubei Minzu University, Enshi, Hubei, China
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ce-Shi Chen
- Kunming Institute of Zoology, Chinese Academy of Sciences. Kunming, Yunnan, China
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- The Third Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Meo C, de Nigris F. Clinical Potential of YY1-Hypoxia Axis for Vascular Normalization and to Improve Immunotherapy. Cancers (Basel) 2024; 16:491. [PMID: 38339244 PMCID: PMC10854702 DOI: 10.3390/cancers16030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal vasculature in solid tumors causes poor blood perfusion, hypoxia, low pH, and immune evasion. It also shapes the tumor microenvironment and affects response to immunotherapy. The combination of antiangiogenic therapy and immunotherapy has emerged as a promising approach to normalize vasculature and unlock the full potential of immunotherapy. However, the unpredictable and redundant mechanisms of vascularization and immune suppression triggered by tumor-specific hypoxic microenvironments indicate that such combination therapies need to be further evaluated to improve patient outcomes. Here, we provide an overview of the interplay between tumor angiogenesis and immune modulation and review the function and mechanism of the YY1-HIF axis that regulates the vascular and immune tumor microenvironment. Furthermore, we discuss the potential of targeting YY1 and other strategies, such as nanocarrier delivery systems and engineered immune cells (CAR-T), to normalize tumor vascularization and re-establish an immune-permissive microenvironment to enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|