1
|
Dóra F, Hajdu T, Renner É, Paál K, Alpár A, Palkovits M, Chinopoulos C, Dobolyi A. Reverse phase protein array-based investigation of mitochondrial genes reveals alteration of glutaminolysis in the parahippocampal cortex of people who died by suicide. Transl Psychiatry 2024; 14:479. [PMID: 39604371 PMCID: PMC11603240 DOI: 10.1038/s41398-024-03137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 11/29/2024] Open
Abstract
A moderating hub between resting state networks (RSNs) and the medial temporal lobe (MTL) is the parahippocampal cortex (PHC). Abnormal activity has been reported in depressed patients and suicide attempters in this region. Alterations in neuronal mitochondrial function may contribute to depression and suicidal behavior. However, little is known about the underlying molecular level changes in relevant structures. Specifically, expressional changes related to suicide have not been reported in the PHC. In this study, we compared the protein expression levels of genes encoding tricarboxylic acid (TCA) cycle enzymes in the PHC of adult individuals who died by suicide by reverse phase protein array (RPPA), which was corroborated by qRT-PCR at the mRNA level. Postmortem human brain samples were collected from 12 control and 10 suicidal individuals. The entorhinal cortex, which is topographically anterior to the PHC in the parahippocampal gyrus, and some other cortical brain regions were utilized for comparison. The results of the RPPA analysis revealed that the protein levels of DLD, OGDH, SDHB, SUCLA2, and SUCLG2 subunits were significantly elevated in the PHC but not in other cortical brain regions. In accordance with these findings, the mRNA levels of the respective subunits were also increased in the PHC. The subunits with altered levels are implicated in enzyme complexes involved in the oxidative decarboxylation branch of glutamine catabolism. These data suggest a potential role of glutaminolysis in the pathophysiology of suicidal behavior in the PHC.
Collapse
Affiliation(s)
- Fanni Dóra
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tamara Hajdu
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Éva Renner
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
| | - Krisztina Paál
- Department of Biochemistry and Molecular Biology, Semmelweis University, Budapest, 1094, Hungary
| | - Alán Alpár
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank, Semmelweis University, Budapest, 1094, Hungary
| | - Christos Chinopoulos
- Department of Biochemistry and Molecular Biology, Semmelweis University, Budapest, 1094, Hungary.
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary.
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Choi ES, Hnath B, Sha CM, Dokholyan NV. Unveiling the double-edged sword: SOD1 trimers possess tissue-selective toxicity and bind septin-7 in motor neuron-like cells. Structure 2024; 32:1776-1792.e5. [PMID: 39208794 PMCID: PMC11455619 DOI: 10.1016/j.str.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Misfolded species of superoxide dismutase 1 (SOD1) are associated with increased death in amyotrophic lateral sclerosis (ALS) models compared to insoluble protein aggregates. The mechanism by which structurally independent SOD1 trimers cause cellular toxicity is unknown but may drive disease pathology. Here, we uncovered the SOD1 trimer interactome-a map of potential tissue-selective protein-binding partners in the brain, spinal cord, and skeletal muscle. We identified binding partners and key pathways associated with SOD1 trimers and found that trimers may affect normal cellular functions such as dendritic spine morphogenesis and synaptic function in the central nervous system and cellular metabolism in skeletal muscle. We discovered SOD1 trimer-selective enrichment of genes. We performed detailed computational and biochemical characterization of SOD1 trimer protein binding for septin-7. Our investigation highlights key proteins and pathways within distinct tissues, revealing a plausible intersection of genetic and pathophysiological mechanisms in ALS through interactions involving SOD1 trimers.
Collapse
Affiliation(s)
- Esther Sue Choi
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Brianna Hnath
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA; Department of Biomedical Engineering, Penn State University, University Park, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA; Department of Chemistry, Penn State University, University Park, PA, USA.
| |
Collapse
|
4
|
Ponomareva D, Ivanov A, Bregestovski P. Analysis of the Effects of Pentose Phosphate Pathway Inhibition on the Generation of Reactive Oxygen Species and Epileptiform Activity in Hippocampal Slices. Int J Mol Sci 2024; 25:1934. [PMID: 38339211 PMCID: PMC10856462 DOI: 10.3390/ijms25031934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The pentose phosphate pathway (PPP) is one of three major pathways involved in glucose metabolism, which is regulated by glucose-6-phosphate dehydrogenase (G6PD) controls NADPH formation. NADPH, in turn, regulates the balance of oxidative stress and reactive oxygen species (ROS) levels. G6PD dysfunction, affecting the PPP, is implicated in neurological disorders, including epilepsy. However, PPP's role in epileptogenesis and ROS production during epileptic activity remains unclear. To clarify these points, we conducted electrophysiological and imaging analyses on mouse hippocampal brain slices. Using the specific G6PD inhibitor G6PDi-1, we assessed its effects on mouse hippocampal slices, examining intracellular ROS, glucose/oxygen consumption, the NAD(P)H level and ROS production during synaptic stimulation and in the 4AP epilepsy model. G6PDi-1 increased basal intracellular ROS levels and reduced synaptically induced glucose consumption but had no impact on baselevel of NAD(P)H and ROS production from synaptic stimulation. In the 4AP model, G6PDi-1 did not significantly alter spontaneous seizure frequency or H2O2 release amplitude but increased the frequency and peak amplitude of interictal events. These findings suggest that short-term PPP inhibition has a minimal impact on synaptic circuit activity.
Collapse
Affiliation(s)
- Daria Ponomareva
- Department of Physiology, Kazan State Medical University, 420012 Kazan, Russia;
- Institute of Neuroscience, Kazan State Medical University, 420012 Kazan, Russia
- INSERM, Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, 13005 Marseille, France;
| | - Anton Ivanov
- INSERM, Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, 13005 Marseille, France;
| | - Piotr Bregestovski
- Department of Physiology, Kazan State Medical University, 420012 Kazan, Russia;
- Institute of Neuroscience, Kazan State Medical University, 420012 Kazan, Russia
- INSERM, Institut de Neurosciences des Systèmes (INS), UMR1106, Aix-Marseille Université, 13005 Marseille, France;
| |
Collapse
|
5
|
Watermann P, Arend C, Dringen R. G6PDi-1 is a Potent Inhibitor of G6PDH and of Pentose Phosphate pathway-dependent Metabolic Processes in Cultured Primary Astrocytes. Neurochem Res 2023; 48:3177-3189. [PMID: 37394677 PMCID: PMC10471714 DOI: 10.1007/s11064-023-03964-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) catalyses the rate limiting first step of the oxidative part of the pentose phosphate pathway (PPP), which has a crucial function in providing NADPH for antioxidative defence and reductive biosyntheses. To explore the potential of the new G6PDH inhibitor G6PDi-1 to affect astrocytic metabolism, we investigated the consequences of an application of G6PDi-1 to cultured primary rat astrocytes. G6PDi-1 efficiently inhibited G6PDH activity in lysates of astrocyte cultures. Half-maximal inhibition was observed for 100 nM G6PDi-1, while presence of almost 10 µM of the frequently used G6PDH inhibitor dehydroepiandrosterone was needed to inhibit G6PDH in cell lysates by 50%. Application of G6PDi-1 in concentrations of up to 100 µM to astrocytes in culture for up to 6 h did not affect cell viability nor cellular glucose consumption, lactate production, basal glutathione (GSH) export or the high basal cellular ratio of GSH to glutathione disulfide (GSSG). In contrast, G6PDi-1 drastically affected astrocytic pathways that depend on the PPP-mediated supply of NADPH, such as the NAD(P)H quinone oxidoreductase (NQO1)-mediated WST1 reduction and the glutathione reductase-mediated regeneration of GSH from GSSG. These metabolic pathways were lowered by G6PDi-1 in a concentration-dependent manner in viable astrocytes with half-maximal effects observed for concentrations between 3 and 6 µM. The data presented demonstrate that G6PDi-1 efficiently inhibits the activity of astrocytic G6PDH and impairs specifically those metabolic processes that depend on the PPP-mediated regeneration of NADPH in cultured astrocytes.
Collapse
Affiliation(s)
- Patrick Watermann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
6
|
Barone C, Qi X. Altered Metabolism in Motor Neuron Diseases: Mechanism and Potential Therapeutic Target. Cells 2023; 12:1536. [PMID: 37296656 PMCID: PMC10252517 DOI: 10.3390/cells12111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Motor Neuron Diseases (MND) are neurological disorders characterized by a loss of varying motor neurons resulting in decreased physical capabilities. Current research is focused on hindering disease progression by determining causes of motor neuron death. Metabolic malfunction has been proposed as a promising topic when targeting motor neuron loss. Alterations in metabolism have also been noted at the neuromuscular junction (NMJ) and skeletal muscle tissue, emphasizing the importance of a cohesive system. Finding metabolism changes consistent throughout both neurons and skeletal muscle tissue could pose as a target for therapeutic intervention. This review will focus on metabolic deficits reported in MNDs and propose potential therapeutic targets for future intervention.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, School of Medicine Case Western Reserve University, Cleveland, OH 44106-4970, USA;
| |
Collapse
|
7
|
Zimyanin VL, Pielka AM, Glaß H, Japtok J, Großmann D, Martin M, Deussen A, Szewczyk B, Deppmann C, Zunder E, Andersen PM, Boeckers TM, Sterneckert J, Redemann S, Storch A, Hermann A. Live Cell Imaging of ATP Levels Reveals Metabolic Compartmentalization within Motoneurons and Early Metabolic Changes in FUS ALS Motoneurons. Cells 2023; 12:1352. [PMID: 37408187 PMCID: PMC10216752 DOI: 10.3390/cells12101352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 07/07/2023] Open
Abstract
Motoneurons are one of the most energy-demanding cell types and a primary target in Amyotrophic lateral sclerosis (ALS), a debilitating and lethal neurodegenerative disorder without currently available effective treatments. Disruption of mitochondrial ultrastructure, transport, and metabolism is a commonly reported phenotype in ALS models and can critically affect survival and the proper function of motor neurons. However, how changes in metabolic rates contribute to ALS progression is not fully understood yet. Here, we utilize hiPCS-derived motoneuron cultures and live imaging quantitative techniques to evaluate metabolic rates in fused in sarcoma (FUS)-ALS model cells. We show that differentiation and maturation of motoneurons are accompanied by an overall upregulation of mitochondrial components and a significant increase in metabolic rates that correspond to their high energy-demanding state. Detailed compartment-specific live measurements using a fluorescent ATP sensor and FLIM imaging show significantly lower levels of ATP in the somas of cells carrying FUS-ALS mutations. These changes lead to the increased vulnerability of diseased motoneurons to further metabolic challenges with mitochondrial inhibitors and could be due to the disruption of mitochondrial inner membrane integrity and an increase in its proton leakage. Furthermore, our measurements demonstrate heterogeneity between axonal and somatic compartments, with lower relative levels of ATP in axons. Our observations strongly support the hypothesis that mutated FUS impacts the metabolic states of motoneurons and makes them more susceptible to further neurodegenerative mechanisms.
Collapse
Affiliation(s)
- Vitaly L Zimyanin
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna-Maria Pielka
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Hannes Glaß
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Julia Japtok
- Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Dajana Großmann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Melanie Martin
- Institute of Physiology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Andreas Deussen
- Institute of Physiology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Barbara Szewczyk
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Chris Deppmann
- Department of Biology, Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22902, USA
| | - Eli Zunder
- Department of Biomedical Engineering, School of Medicine, University of Virginia, Charlottesville, VA 22902, USA
| | - Peter M Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Tobias M Boeckers
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm Site, 89081 Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Jared Sterneckert
- Centre for Regenerative Therapie, Technische Universität Dresden, 01307 Dresden, Germany
- Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA 22902, USA
| | - Alexander Storch
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Centre, University of Rostock, 18147 Rostock, Germany
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section, "Albrecht Kossel", Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Centre, University of Rostock, 18147 Rostock, Germany
| |
Collapse
|
8
|
Chen J, Huang L, Yang Y, Xu W, Qin Q, Qin R, Liang X, Lai X, Huang X, Xie M, Chen L. Somatic Cell Reprogramming for Nervous System Diseases: Techniques, Mechanisms, Potential Applications, and Challenges. Brain Sci 2023; 13:brainsci13030524. [PMID: 36979334 PMCID: PMC10046178 DOI: 10.3390/brainsci13030524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Nervous system diseases present significant challenges to the neuroscience community due to ethical and practical constraints that limit access to appropriate research materials. Somatic cell reprogramming has been proposed as a novel way to obtain neurons. Various emerging techniques have been used to reprogram mature and differentiated cells into neurons. This review provides an overview of somatic cell reprogramming for neurological research and therapy, focusing on neural reprogramming and generating different neural cell types. We examine the mechanisms involved in reprogramming and the challenges that arise. We herein summarize cell reprogramming strategies to generate neurons, including transcription factors, small molecules, and microRNAs, with a focus on different types of cells.. While reprogramming somatic cells into neurons holds the potential for understanding neurological diseases and developing therapeutic applications, its limitations and risks must be carefully considered. Here, we highlight the potential benefits of somatic cell reprogramming for neurological disease research and therapy. This review contributes to the field by providing a comprehensive overview of the various techniques used to generate neurons by cellular reprogramming and discussing their potential applications.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yue Yang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinyu Lai
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Nanning 530021, China
| |
Collapse
|