1
|
Zhang P, Lv J, Ge C, Yu B, Qiu Y, Qin A, Ai Z, Wu Z, Nie L, Xiang Z. Quantitative evaluation of microenvironmental changes and efficacy of cupping therapy under different pressures based on photoacoustic imaging. PHOTOACOUSTICS 2024; 40:100661. [PMID: 39649138 PMCID: PMC11624499 DOI: 10.1016/j.pacs.2024.100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 12/10/2024]
Abstract
Cupping therapy, a traditional Chinese medicinal practice, has been subjected to scientific scrutiny to validate its effects on local tissue microenvironments. This study provides a quantitative assessment of cupping therapy at different negative pressures using photoacoustic imaging. Low-pressure cupping (-20 kPa) significantly improved local blood circulation, evidenced by increased hemoglobin oxygen saturation and vessel dilation that normalized within two hours. In contrast, high-pressure cupping (-30 kPa) led to capillary rupture, bleeding, and tissue edema, similar to the clinical presentation of cupping bruises. Additionally, our research unveiled that -20 kPa cupping expedited the clearance of indocyanine green dye, suggesting enhanced lymphatic drainage, which was further supported by fluorescence imaging. This indicates a potential mechanism for cupping's pain relief effects. Moreover, cupping showed promising results in improving sepsis outcomes in mice, potentially due to its anti-inflammatory properties. This study establishes a foundation for the objective evaluation of cupping therapy, demonstrating that low-pressure cupping is effective in promoting blood and lymphatic flow while minimizing tissue damage, thereby offering a safer therapeutic approach.
Collapse
Affiliation(s)
- Ping Zhang
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 510000, China
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Jing Lv
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Cuihong Ge
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 510000, China
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Bo Yu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, Harbin 150081, China
| | - Yang Qiu
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Aoji Qin
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Zhu Ai
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Zhehao Wu
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 510000, China
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Zhiming Xiang
- Postgraduate cultivation base of Guangzhou University of Chinese Medicine, Panyu Central Hospital, Guangzhou 510000, China
- Department of Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 510000, China
| |
Collapse
|
2
|
Danne T, Heinemann L, Pieber TR. New Insulins, Biosimilars, and Insulin Therapy. Diabetes Technol Ther 2024; 26:S45-S67. [PMID: 38441455 DOI: 10.1089/dia.2024.2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Affiliation(s)
- Thomas Danne
- Diabetes-Zentrum für Kinder and Jugendliche, Kinder- und Jugendkrankenhaus "AUF DER BULT," Hannover, Germany
| | - Lutz Heinemann
- Science Consulting in Diabetes GmbH, Düsseldorf, Germany
| | - Thomas R Pieber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| |
Collapse
|
3
|
Khadria A, Paavola CD, Maslov K, Brown-Augsburger PL, Grealish PF, Lozano E, Blankenship RL, Cao R, Shi J, Beals JM, Oladipupo SS, Wang LV. Photoacoustic imaging of the dynamics of a dye-labeled IgG4 monoclonal antibody in subcutaneous tissue reveals a transient decrease in murine blood oxygenation under anesthesia. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:116002. [PMID: 38078154 PMCID: PMC10704085 DOI: 10.1117/1.jbo.28.11.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Significance Over 100 monoclonal antibodies have been approved by the U.S. Food and Drug Administration (FDA) for clinical use; however, a paucity of knowledge exists regarding the injection site behavior of these formulated therapeutics, particularly the effect of antibody, formulation, and tissue at the injection site. A deeper understanding of antibody behavior at the injection site, especially on blood oxygenation through imaging, will help design improved versions of the therapeutics for a wide range of diseases. Aim The aim of this research is to understand the dynamics of monoclonal antibodies at the injection site as well as how the antibody itself affects the functional characteristics of the injection site [e.g., blood oxygen saturation (sO 2 )]. Approach We employed triple-wavelength equipped functional photoacoustic imaging to study the dynamics of dye-labeled and unlabeled monoclonal antibodies at the site of injection in a mouse ear. We injected a near-infrared dye-labeled (and unlabeled) human IgG4 isotype control antibody into the subcutaneous space in mouse ears to analyze the injection site dynamics and quantify molecular movement, as well as its effect on local hemodynamics. Results We performed pharmacokinetic studies of the antibody in different regions of the mouse body to show that dye labeling does not alter the pharmacokinetic characteristics of the antibody and that mouse ear is a viable model for these initial studies. We explored the movement of the antibody in the interstitial space to show that the bolus area grows by ∼ 300 % over 24 h. We discovered that injection of the antibody transiently reduces the local sO 2 levels in mice after prolonged anesthesia without affecting the total hemoglobin content and oxygen extraction fraction. Conclusions This finding on local oxygen saturation opens a new avenue of study on the functional effects of monoclonal antibody injections. We also show the suitability of the mouse ear model to study antibody dynamics through high-resolution imaging techniques. We quantified the movement of antibodies at the injection site caused by the interstitial fluid, which could be helpful for designing antibodies with tailored absorption speeds in the future.
Collapse
Affiliation(s)
- Anjul Khadria
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Chad D. Paavola
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Konstantin Maslov
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Patricia L. Brown-Augsburger
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Patrick F. Grealish
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Emmanuel Lozano
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Ross L. Blankenship
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Rui Cao
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - Junhui Shi
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
| | - John M. Beals
- Eli Lilly and Company, Lilly Biotechnology Center, Lilly Research Laboratories, San Diego, California, United States
| | - Sunday S. Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Lilly Research Laboratories, Indianapolis, Indiana, United States
| | - Lihong V. Wang
- California Institute of Technology, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Pasadena, California, United States
- California Institute of Technology, Caltech Optical Imaging Laboratory, Department of Electrical Engineering, Pasadena, California, United States
| |
Collapse
|
4
|
Christie LB, Zheng W, Johnson W, Marecki EK, Heidrich J, Xia J, Oh KW. Review of imaging test phantoms. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:080903. [PMID: 37614568 PMCID: PMC10442662 DOI: 10.1117/1.jbo.28.8.080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023]
Abstract
Significance Photoacoustic tomography has emerged as a prominent medical imaging technique that leverages its hybrid nature to provide deep penetration, high resolution, and exceptional optical contrast with notable applications in early cancer detection, functional brain imaging, drug delivery monitoring, and guiding interventional procedures. Test phantoms are pivotal in accelerating technology development and commercialization, specifically in photoacoustic (PA) imaging, and can be optimized to achieve significant advancements in PA imaging capabilities. Aim The analysis of material properties, structural characteristics, and manufacturing methodologies of test phantoms from existing imaging technologies provides valuable insights into their applicability to PA imaging. This investigation enables a deeper understanding of how phantoms can be effectively employed in the context of PA imaging. Approach Three primary categories of test phantoms (simple, intermediate, and advanced) have been developed to differentiate complexity and manufacturing requirements. In addition, four sub-categories (tube/channel, block, test target, and naturally occurring phantoms) have been identified to encompass the structural variations within these categories, resulting in a comprehensive classification system for test phantoms. Results Based on a thorough examination of literature and studies on phantoms in various imaging modalities, proposals have been put forth for the development of multiple PA-capable phantoms, encompassing considerations related to the material composition, structural design, and specific applications within each sub-category. Conclusions The advancement of novel and sophisticated test phantoms within each sub-category is poised to foster substantial progress in both the commercialization and development of PA imaging. Moreover, the continued refinement of test phantoms will enable the exploration of new applications and use cases for PA imaging.
Collapse
Affiliation(s)
- Liam B. Christie
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| | - Wenhan Zheng
- State University of New York at Buffalo, Optical and Ultrasonic Imaging Laboratory, Biomedical Engineering, Buffalo, New York, United States
| | - William Johnson
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| | - Eric K. Marecki
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| | - James Heidrich
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| | - Jun Xia
- State University of New York at Buffalo, Optical and Ultrasonic Imaging Laboratory, Biomedical Engineering, Buffalo, New York, United States
| | - Kwang W. Oh
- State University of New York at Buffalo, Sensors and MicroActuators Learning Lab, Electrical Engineering, Buffalo, New York, United States
| |
Collapse
|
5
|
Yan Z, Zou J. Integration of microlenses on surface-micromachined optical ultrasound transducer array to improve detection sensitivity for parallel data readout. OPTICS LETTERS 2023; 48:652-655. [PMID: 36723555 DOI: 10.1364/ol.476774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
This Letter reports the integration of microlenses (MLs) on a surface-micromachined optical ultrasound transducer (SMOUT) array to enable parallel ultrasound data readout from a multiplicity of elements. The MLs are fabricated by photoresist patterning and reflow, and their focal lengths are optimized with parametric studies. Experiments are conducted to characterize the acoustic responsivity and its uniformity of the SMOUT-ML elements under different conditions. The temporal stability of SMOUT-ML elements immersed in water is assessed by monitoring their acoustic response continuously for 1 week. Parallel ultrasound signal readout is simulated with a small group of SMOUT-ML elements. Experimental results show that high acoustic sensitivity and excellent long-term stability can be achieved by the ML-integrated SMOUT array, which could provide a promising approach for enabling parallel ultrasound data acquisition for improving the imaging speed of 3D acoustic tomography.
Collapse
|
6
|
Danne T, Heinemann L, Pieber TR. New Insulins, Biosimilars, and Insulin Therapy. Diabetes Technol Ther 2023; 25:S44-S69. [PMID: 36802184 DOI: 10.1089/dia.2023.2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Thomas Danne
- Diabetes-Zentrum für Kinder and Jugendliche, Kinder- und Jugendkrankenhaus "AUF DER BULT", Hannover, Germany
| | | | - Thomas R Pieber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Jain AK. New Injection Site Dynamics of Insulin Lispro Discovered Through Photoacoustic Imaging. J Diabetes Sci Technol 2023; 17:250-251. [PMID: 36239384 PMCID: PMC9846391 DOI: 10.1177/19322968221131297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Shi M, Vercauteren T, Xia W. Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with a low-energy excitation light source. BIOMEDICAL OPTICS EXPRESS 2022; 13:6416-6430. [PMID: 36589568 PMCID: PMC9774869 DOI: 10.1364/boe.471198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/12/2023]
Abstract
Photoacoustic (PA) imaging is an emerging hybrid imaging modality that combines rich optical spectroscopic contrast and high ultrasonic resolution, and thus holds tremendous promise for a wide range of pre-clinical and clinical applications. Compact and affordable light sources such as light-emitting diodes (LEDs) and laser diodes (LDs) are promising alternatives to bulky and expensive solid-state laser systems that are commonly used as PA light sources. These could accelerate the clinical translation of PA technology. However, PA signals generated with these light sources are readily degraded by noise due to the low optical fluence, leading to decreased signal-to-noise ratio (SNR) in PA images. In this work, a spatiotemporal singular value decomposition (SVD) based PA denoising method was investigated for these light sources that usually have low fluence and high repetition rates. The proposed method leverages both spatial and temporal correlations between radiofrequency (RF) data frames. Validation was performed on simulations and in vivo PA data acquired from human fingers (2D) and forearm (3D) using a LED-based system. Spatiotemporal SVD greatly enhanced the PA signals of blood vessels corrupted by noise while preserving a high temporal resolution to slow motions, improving the SNR of in vivo PA images by 90.3%, 56.0%, and 187.4% compared to single frame-based wavelet denoising, averaging across 200 frames, and single frame without denoising, respectively. With a fast processing time of SVD (∼50 µs per frame), the proposed method is well suited to PA imaging systems with low-energy excitation light sources for real-time in vivo applications.
Collapse
|
9
|
Lengert L, Lohmann H, Johannsmeier S, Ripken T, Maier H, Heisterkamp A, Kalies S. Optoacoustic tones generated by nanosecond laser pulses can cover the entire human hearing range. JOURNAL OF BIOPHOTONICS 2022; 15:e202200161. [PMID: 36328060 DOI: 10.1002/jbio.202200161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work is to generate defined tones that cover the human hearing range in aqueous media for a later application in middle or inner ear implants. In our experiments, we investigated the characteristics of single laser pulses and pulse trains with different laser repetition rates of nanosecond laser pulses that were focused into aqueous media in a small volume. The frequency of the generated tones was limited by the spectral properties of the single acoustic pulses, which depended on the medium. Tones with fundamental frequencies above 8 kHz were generated using laser pulses focused into water. By replacing water with gel, tones between 500 Hz and 20 kHz could be produced. The generation of tones in the low-frequency range was only possible when laser pulse trains with pulse density modulated pulse patterns were applied in gel. This enabled the generation of tones between 20 Hz and 2 kHz. Consequently, the combination of different pulse patterns for the different frequency ranges allows generating optoacoustic tones between 20 Hz and 20 kHz in gel. Thus, we can cover the complete range of human hearing through optoacoustically generated tones.
Collapse
Affiliation(s)
- Liza Lengert
- Industrial and Biomedical Optics, Laser Zentrum Hannover e.V., Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover and Oldenburg, Hannover, Germany
| | - Hinnerk Lohmann
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Sonja Johannsmeier
- Industrial and Biomedical Optics, Laser Zentrum Hannover e.V., Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Tammo Ripken
- Industrial and Biomedical Optics, Laser Zentrum Hannover e.V., Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover and Oldenburg, Hannover, Germany
| | - Hannes Maier
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover and Oldenburg, Hannover, Germany
- Department of Otorhinolaryngology, Hannover Medical School MHH, Hannover, Germany
| | - Alexander Heisterkamp
- Industrial and Biomedical Optics, Laser Zentrum Hannover e.V., Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover and Oldenburg, Hannover, Germany
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| | - Stefan Kalies
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover and Oldenburg, Hannover, Germany
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
10
|
Khadria A, Paavola CD, Zhang Y, Davis SPX, Grealish PF, Maslov K, Shi J, Beals JM, Oladipupo SS, Wang LV. Long-Duration and Non-Invasive Photoacoustic Imaging of Multiple Anatomical Structures in a Live Mouse Using a Single Contrast Agent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202907. [PMID: 35975459 PMCID: PMC9534965 DOI: 10.1002/advs.202202907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Long-duration in vivo simultaneous imaging of multiple anatomical structures is useful for understanding physiological aspects of diseases, informative for molecular optimization in preclinical models, and has potential applications in surgical settings to improve clinical outcomes. Previous studies involving simultaneous imaging of multiple anatomical structures, for example, blood and lymphatic vessels as well as peripheral nerves and sebaceous glands, have used genetically engineered mice, which require expensive and time-consuming methods. Here, an IgG4 isotype control antibody is labeled with a near-infrared dye and injected into a mouse ear to enable simultaneous visualization of blood and lymphatic vessels, peripheral nerves, and sebaceous glands for up to 3 h using photoacoustic microscopy. For multiple anatomical structure imaging, peripheral nerves and sebaceous glands are imaged inside the injected dye-labeled antibody mass while the lymphatic vessels are visualized outside the mass. The efficacy of the contrast agent to label and localize deep medial lymphatic vessels and lymph nodes using photoacoustic computed tomography is demonstrated. The capability of a single injectable contrast agent to image multiple structures for several hours will potentially improve preclinical therapeutic optimization, shorten discovery timelines, and enable clinical treatments.
Collapse
Affiliation(s)
- Anjul Khadria
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Chad D. Paavola
- Lilly Research LaboratoriesEli Lilly and CompanyLilly Corporate CenterIndianapolisIN46285USA
| | - Yang Zhang
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Samuel P. X. Davis
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Patrick F. Grealish
- Lilly Research LaboratoriesEli Lilly and CompanyLilly Corporate CenterIndianapolisIN46285USA
| | - Konstantin Maslov
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - Junhui Shi
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| | - John M. Beals
- Lilly Research LaboratoriesEli Lilly and CompanyLilly Biotechnology CenterSan DiegoCA92121USA
| | - Sunday S. Oladipupo
- Lilly Research LaboratoriesEli Lilly and CompanyLilly Corporate CenterIndianapolisIN46285USA
| | - Lihong V. Wang
- Caltech Optical Imaging LaboratoryAndrew and Peggy Cherng Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
- Caltech Optical Imaging LaboratoryDepartment of Electrical EngineeringCalifornia Institute of TechnologyPasadenaCA91125USA
| |
Collapse
|
11
|
Li Z, He P, Xu Y, Deng Y, Gao Y, Chen SL. In vivo evaluation of a lipopolysaccharide-induced ear vascular leakage model in mice using photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4802-4816. [PMID: 36187238 PMCID: PMC9484413 DOI: 10.1364/boe.471079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Sepsis is caused by dysregulated host inflammatory response to infection. During sepsis, early identification and monitoring of vascular leakage are pivotal for improved diagnosis, treatment, and prognosis. However, there is a lack of research on noninvasive observation of inflammation-related vascular leakage. Here, we investigate the use of photoacoustic microscopy (PAM) for in vivo visualization of lipopolysaccharide (LPS)-induced ear vascular leakage in mice using Evans blue (EB) as an indicator. A model combining needle pricking on the mouse ear, topical smearing of LPS on the mouse ear, and intravenous tail injection of EB is developed. Topical application of LPS is expected to induce local vascular leakage in skin. Inflammatory response is first validated by ex vivo histology and enzyme-linked immunosorbent assay. Then, local ear vascular leakage is confirmed by ex vivo measurement of swelling, thickening, and EB leakage. Finally, PAM for in vivo identification and evaluation of early vascular leakage using the model is demonstrated. For PAM, common excitation wavelength of 532 nm is used, and an algorithm is developed to extract quantitative metrics for EB leakage. The results show potential of PAM for noninvasive longitudinal monitoring of peripheral skin vascular leakage, which holds promise for clinical sepsis diagnosis and management.
Collapse
Affiliation(s)
- Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- These authors contributed equally to this work
| | - Pengbo He
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sung-Liang Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai 200030, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Zhang D, Li R, Lou X, Luo J. Hessian filter-assisted full diameter at half maximum (FDHM) segmentation and quantification method for optical-resolution photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4606-4620. [PMID: 36187248 PMCID: PMC9484426 DOI: 10.1364/boe.468685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Optical-resolution photoacoustic microscopy has been validated as an ideal tool for angiographic studies. Quantitative vascular analysis reveals critical information where vessel segmentation plays the key step. The comm-only used Hessian filter method suffers from varying accuracy due to the multi-kernel strategy. In this work, we developed a Hessian filter-assisted, adaptive thresholding vessel segmentation algorithm. Its performance is validated by a digital phantom and in vivo images which demonstrates a superior and consistent accuracy of 0.987 regardless of kernel selection. Subtle vessel change detection is further tested in two longitudinal studies on blood pressure agents. In the antihypotensive case, the proposed method detected a twice larger vasoconstriction over the Hessian filter method. In the antihypertensive case, the proposed method detected a vasodilation of 21.2%, while the Hessian filter method failed in change detection. The proposed algorithm may further push the limit of quantitative imaging on angiographic applications.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Department of Radiology,
Chinese PLA General Hospital, Beijing
100853, China
| | - Ran Li
- School of Basic Medical Sciences,
North China University of Science and
Technology, Tangshan, Hebei 063210, China
| | - Xin Lou
- Department of Radiology,
Chinese PLA General Hospital, Beijing
100853, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Khadria A. Tools to measure membrane potential of neurons. Biomed J 2022; 45:749-762. [DOI: 10.1016/j.bj.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/08/2022] [Accepted: 05/29/2022] [Indexed: 12/31/2022] Open
|