1
|
Szabo C. Role of cystathionine-β-synthase and hydrogen sulfide in down syndrome. Neurotherapeutics 2025:e00584. [PMID: 40187942 DOI: 10.1016/j.neurot.2025.e00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
Down syndrome (DS) is a genetic condition where the person affected by it is born with an additional - full or partial - copy of chromosome 21. DS presents with characteristic morphological features and is associated with a wide range of biochemical alterations and maladaptations. Cystathionine-β-synthase (CBS) - one of the key mammalian enzymes responsible for the biogenesis of the gaseous transmitter hydrogen sulfide (H2S) - is located on chromosome 21, and people with DS exhibit a significant upregulation of this enzyme in their brain and other organs. Even though 3-mercaptopyruvate sulfurtransferase - another key mammalian enzyme responsible for the biogenesis of H2S and of reactive polysulfides - is not located on chromosome 21, there is also evidence for the upregulation of this enzyme in DS cells. The hypothesis that excess H2S in DS impairs mitochondrial function and cellular bioenergetics was first proposed in the 1990s and has been substantiated and expanded upon over the past 25 years. DS cells are in a state of metabolic suppression due to H2S-induced, reversible inhibition of mitochondrial Complex IV activity. The impairment of aerobic ATP generation in DS cells is partially compensated by an upregulation of glycolysis. The DS-associated metabolic impairment can be reversed by pharmacological CBS inhibition or CBS silencing. In rodent models of DS, CBS upregulation and H2S overproduction contribute to the development of cognitive dysfunction, alter brain electrical activity, and promote reactive gliosis: pharmacological inhibition or genetic correction of CBS overactivation reverses these alterations. CBS can be considered a preclinically validated drug target for the experimental therapy of DS.
Collapse
Affiliation(s)
- Csaba Szabo
- Section of Pharmacology, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Switzerland.
| |
Collapse
|
2
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. eLife 2025; 13:RP93373. [PMID: 40126547 PMCID: PMC11932693 DOI: 10.7554/elife.93373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Leandro M Velez
- Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcus M Seldin
- Center for Epigenetics and Metabolism, University of California, IrvineIrvineUnited States
- Department of Biological Chemistry, University of California, IrvineIrvineUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
3
|
Sherman KM, Silveira CJ, Yan M, Yu L, Leon A, Klages K, White LG, Smith HM, Wolff SM, Falck A, Muneoka K, Brunauer R, Gaddy D, Suva LJ, Dawson LA. Male Down syndrome Ts65Dn mice have impaired bone regeneration. Bone 2025; 192:117374. [PMID: 39675408 PMCID: PMC12051361 DOI: 10.1016/j.bone.2024.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Trisomy of human chromosome 21 (Ts21) individuals present with a spectrum of low bone mineral density (BMD) that predisposes this vulnerable group to skeletal injuries. To determine the bone regenerative capacity of Down syndrome (DS) mice, male and female Dp16 and Ts65Dn DS mice underwent amputation of the digit tip (the terminal phalanx (P3)). This is a well-established mammalian model of bone regeneration that restores the amputated skeletal segment and all associated soft tissues. P3 amputation was performed in 8-week-old male and female DS mice and WT controls and followed by in vivo μCT, histology and immunofluorescence. Following P3 amputation, the bone degradation phase was attenuated in both Dp16 and Ts65Dn males. In Dp16 males, P3 regeneration was delayed but complete by 63 days post amputation (DPA); however, male Ts65Dn exhibited attenuated regeneration by 63 DPA. In both Dp16 and Ts65Dn female DS mice, P3 regenerates were indistinguishable from WT by 42 DPA. In Ts65Dn males, osteoclasts and eroded bone surface were significantly reduced, and osteoblast number significantly decreased in the regenerating digit. In Ts65Dn females, no significant differences were observed in any osteoclast or osteoblast parameter. Like Ts21 individuals and DS mice with sex differences in bone mass, these data expand the characteristic sexually dimorphism to include bone resorption and regeneration in response to skeletal injury in Ts65Dn mice. These observations suggest that sex differences contribute to the poor bone healing of DS and compound the increased risk of bone injury in the Ts21 population.
Collapse
Affiliation(s)
- Kirby M Sherman
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Catrina J Silveira
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ling Yu
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Abigail Leon
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Kasey Klages
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lauren G White
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Hannah M Smith
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Sarah M Wolff
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Alyssa Falck
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Regina Brunauer
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America; LBG Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria.
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| |
Collapse
|
4
|
Tolu S, Hamzé R, Moreau M, Bertrand R, Janel N, Movassat J. Beta cell function and global glucose metabolism are impaired in Dp(16)1Yey mouse model of Down syndrome. Diabetes Obes Metab 2025; 27:1477-1487. [PMID: 39803786 DOI: 10.1111/dom.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/06/2024] [Accepted: 12/14/2024] [Indexed: 02/08/2025]
Abstract
AIMS Down syndrome (DS) or trisomy 21 is the most prevalent genetic disorder in the world. In addition to common symptoms such as intellectual disabilities and morphological abnormalities, several comorbidities are associated with DS, including metabolic dysfunction. Obesity and diabetes are more prevalent in people with DS compared with the general population. However, the mechanisms linking obesity/diabetes to DS remain poorly understood. Systematic investigation of metabolic disorders in animal models of DS is scarce. MATERIALS AND METHODS We used the Dp(16)1Yey mouse model of DS to evaluate the energy and glucose metabolism in both male and female Dp(16)1Yey mice at 3 and 6 months of age. We assessed the whole-body glucose metabolism by glucose and insulin tolerance tests, and investigated the pancreatic functions in terms of insulin synthesis, ß cell mass and the glucose-induced insulin secretion in vivo. RESULTS We show that Dp(16)1Yey mice do not present signs of obesity when they are fed with chow diet. However, these mice are glucose intolerant and insulin resistant, and exhibit dysfunctions of their endocrine pancreas, reflected by decreased insulin content and defective glucose-induced insulin secretion (GIIS) in vivo. The impairment of metabolic parameters is similar between males and females trisomic mice, indicating the absence of metabolic sexual dimorphism in this model. CONCLUSIONS Our study suggests that Dp(16)1Yey model is suitable for the assessment of metabolic disorders associated with DS.
Collapse
Affiliation(s)
- Stefania Tolu
- BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Université Paris Cité, Paris, France
| | - Rim Hamzé
- BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Université Paris Cité, Paris, France
| | - Manon Moreau
- BFA, UMR 8251, CNRS, Team « Processus dégénératifs, Stress et Vieillissement », Université Paris Cité, Paris, France
| | - Romane Bertrand
- BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Université Paris Cité, Paris, France
| | - Nathalie Janel
- BFA, UMR 8251, CNRS, Team « Processus dégénératifs, Stress et Vieillissement », Université Paris Cité, Paris, France
| | - Jamileh Movassat
- BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Université Paris Cité, Paris, France
| |
Collapse
|
5
|
Malbon AJ, Czopek A, Beekman AM, Goddard ZR, Boyle A, Ivy JR, Stewart K, Denham SG, Simpson JP, Homer NZ, Walker BR, Dhaun N, Bailey MA, Morgan RA. Carbonyl reductase 1: a novel regulator of blood pressure in Down syndrome. Biosci Rep 2025; 45:157-170. [PMID: 39869501 PMCID: PMC12096947 DOI: 10.1042/bsr20241636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
Approximately one in every 800 children is born with the severe aneuploid condition of Down syndrome (DS), a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype, therefore therapeutic interventions are limited. Carbonyl reductase 1 (CBR1) is an enzyme contributing to the metabolism of prostaglandins, glucocorticoids, reactive oxygen species and neurotransmitters, encoded by a gene (CBR1) positioned on chromosome 21 with the potential to affect blood pressure. Utilising telemetric blood pressure measurement of genetically modified mice, we tested the hypothesis that CBR1 influences blood pressure and that its overexpression contributes to hypotension in DS by evaluating possible contributing mechanisms in vitro. In a mouse model of DS (Ts65Dn), which exhibits hypotension, CBR1 activity was increased and pharmacological inhibition of CBR1 ed to increased blood pressure. Mice heterozygous null for Cbr1 had reduced CBR1 enzyme activity and elevated blood pressure. Further experiments indicate that the underlying mechanisms include alterations in both sympathetic tone and prostaglandin metabolism. We conclude that CBR1 activity contributes to blood pressure homeostasis and inhibition of CBR1 may present a novel therapeutic opportunity to correct symptomatic hypotension in DS.
Collapse
Affiliation(s)
- Alexandra J. Malbon
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush Campus, EH25 9RG, U.K.
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, EH25 9RG, U.K.
| | - Alicja Czopek
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Andrew M. Beekman
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, U.K.
| | - Zoë R. Goddard
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, U.K.
| | - Aileen Boyle
- Department of Animal and Veterinary Sciences, Scotland’s Rural College, Roslin Institute Building, Easter Bush Campus, EH25 9RG, U.K.
| | - Jessica R. Ivy
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Kevin Stewart
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Scott G. Denham
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, EH16 4TJ, U.K.
| | - Joanna P. Simpson
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, EH16 4TJ, U.K.
| | - Natalie Z. Homer
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, University of Edinburgh, EH16 4TJ, U.K.
| | - Brian R. Walker
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, U.K.
| | - Neeraj Dhaun
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Matthew A. Bailey
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Ruth A. Morgan
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, EH25 9RG, U.K.
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
- Department of Animal and Veterinary Sciences, Scotland’s Rural College, Roslin Institute Building, Easter Bush Campus, EH25 9RG, U.K.
| |
Collapse
|
6
|
Chen F, Sarver DC, Saqib M, Velez LM, Aja S, Seldin MM, Wong GW. Loss of CTRP10 results in female obesity with preserved metabolic health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.11.01.565163. [PMID: 37961647 PMCID: PMC10635050 DOI: 10.1101/2023.11.01.565163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologous in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Nandi S, Zhu Y, Gillenwater LA, Subirana-Granés M, Zhang H, Janani N, Greene C, Pividori M, Chikina M, Costello JC. A Pathway-Level Information ExtractoR (PLIER) framework to gain mechanistic insights into obesity in Down syndrome. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2025; 30:412-425. [PMID: 39670386 PMCID: PMC11649010 DOI: 10.1142/9789819807024_0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Down syndrome (DS), caused by the triplication of chromosome 21 (T21), is a prevalent genetic disorder with a higher incidence of obesity. Traditional approaches have struggled to differentiate T21-specific molecular dysregulation from general obesity-related processes. This study introduces the omni-PLIER framework, combining the Pathway-Level Information ExtractoR (PLIER) with the omnigenic model, to uncover molecular mechanisms underlying obesity in DS. The PLIER framework aligns gene expression data with biological pathways, facilitating the identification of relevant molecular patterns. Using RNA sequencing data from the Human Trisome Project, omni-PLIER identified latent variables (LVs) significantly associated with both T21 and body mass index (BMI). Elastic net regression and causal mediation analysis revealed LVs mediating the effect of karyotype on BMI. Notably, LVs involving glutathione peroxidase-1 (GPX1) and MCL1 apoptosis regulator, BCL2 family members emerged as crucial mediators. These findings provide insights into the molecular interplay between DS and obesity. The omni-PLIER model offers a robust methodological advancement for dissecting complex genetic disorders, with implications for understanding obesity-related processes in both DS and the general population.
Collapse
Affiliation(s)
- Sutanu Nandi
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuehua Zhu
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA, School of Medicine, Tsinghua University, Beijing, China
| | - Lucas A Gillenwater
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marc Subirana-Granés
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Haoyu Zhang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Negar Janani
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Casey Greene
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Milton Pividori
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA,
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,
| |
Collapse
|
8
|
Glass TJ, Chatwin BA, Fisher EH, Hang KK, Yang Q, Brutto R, Waghray R, Connor NP. Developmental deglutition and intrinsic tongue muscle maturation phenotypes in the Ts65Dn mouse model of Down syndrome. Front Neurol 2024; 15:1461682. [PMID: 39722691 PMCID: PMC11668655 DOI: 10.3389/fneur.2024.1461682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Down syndrome (DS) is associated with difficulties with feeding during infancy and childhood. Weaning, or transitioning from nursing to independent deglutition, requires developmental progression in tongue function. However, little is known about whether postnatal tongue muscle maturation is impacted in DS. This study tested the hypothesis that the Ts65Dn mouse model of DS has developmental delays in deglutition, comprised of differences in eating and drinking behaviors relative to euploid controls, coinciding with atypical measures of intrinsic tongue muscle microanatomy. Methods The Ts65Dn mouse model of DS and euploid controls were evaluated at 7 days of age (p7; nursing), p21 (weaning), and p35 (mature deglutition) (n = 13-18 mice per group). Eating behavior, drinking behavior, and body weight changes were quantified in p21 and p35 mice through the use of automated monitoring over 24 h. Intrinsic tongues of mice at all three ages were sectioned and stained to permit quantification of the sizes of the four major intrinsic tongue muscles. Transverse intrinsic tongue muscles were evaluated for myofiber size (average myofiber cross sectional area (CSA) of all fibers, MyHC2a fibers, MyHC 2b fibers, and minimum Feret fiber diameter), and percentage of MyHC isoforms (%MyHC2a + fibers, and %MyHC 2b + fibers) in anterior, middle, and posterior regions. Results Ts65Dn showed significant differences from euploid in deglutition measures. Compared to euploid, Ts65Dn also showed differences in intrinsic tongue muscle microanatomy and biology. Specifically, Ts65Dn intrinsic tongues had smaller transverse muscle myofiber size measures than control in the anterior and middle tongue, but not in the posterior tongue. Conclusion Differences in intrinsic tongue muscles coincide with feeding phenotypes in the Ts65Dn mouse model of DS.
Collapse
Affiliation(s)
- Tiffany J. Glass
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, United States
| | - Benjamin A. Chatwin
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, United States
| | - Erin H. Fisher
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, United States
| | - Kabao K. Hang
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, United States
| | - Qiuyu Yang
- Department of Surgery, Statistical Analysis and Research Programming Core, University of Wisconsin, Madison, WI, United States
| | - Riley Brutto
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, United States
| | - Rohan Waghray
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, United States
| | - Nadine P. Connor
- Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, United States
- Department of Communication Sciences and Disorders, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
9
|
Tallino S, Etebari R, McDonough I, Leon H, Sepulveda I, Winslow W, Bartholomew SK, Perez SE, Mufson EJ, Velazquez R. Assessing the Benefit of Dietary Choline Supplementation Throughout Adulthood in the Ts65Dn Mouse Model of Down Syndrome. Nutrients 2024; 16:4167. [PMID: 39683562 DOI: 10.3390/nu16234167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Down syndrome (DS) is the most common cause of early-onset Alzheimer's disease (AD). Dietary choline has been proposed as a modifiable factor to improve the cognitive and pathological outcomes of AD and DS, especially as many do not reach adequate daily intake levels of choline. While lower circulating choline levels correlate with worse pathological measures in AD patients, choline status and intake in DS is widely understudied. Perinatal choline supplementation (Ch+) in the Ts65Dn mouse model of DS protects offspring against AD-relevant pathology and improves cognition. Further, dietary Ch+ in adult AD models also ameliorates pathology and improves cognition. However, dietary Ch+ in adult Ts65Dn mice has not yet been explored; thus, this study aimed to supply Ch+ throughout adulthood to determine the effects on cognition and DS co-morbidities. METHODS We fed trisomic Ts65Dn mice and disomic littermate controls either a choline normal (ChN; 1.1 g/kg) or a Ch+ (5 g/kg) diet from 4.5 to 14 months of age. RESULTS We found that Ch+ in adulthood failed to improve genotype-specific deficits in spatial learning. However, in both genotypes of female mice, Ch+ significantly improved cognitive flexibility in a reverse place preference task in the IntelliCage behavioral phenotyping system. Further, Ch+ significantly reduced weight gain and peripheral inflammation in female mice of both genotypes, and significantly improved glucose metabolism in male mice of both genotypes. CONCLUSIONS Our findings suggest that adulthood choline supplementation benefits behavioral and biological factors important for general well-being in DS and related to AD risk.
Collapse
Affiliation(s)
- Savannah Tallino
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Rachel Etebari
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Ian McDonough
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hector Leon
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Isabella Sepulveda
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy Winslow
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Samantha K Bartholomew
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sylvia E Perez
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Elliott J Mufson
- Barrow Neurological Institute, Phoenix, AZ 85013, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| | - Ramon Velazquez
- Banner Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85014, USA
| |
Collapse
|
10
|
Villani ER, Onder G, Marzetti E, Coelho-Junior H, Calvani R, Di Paola A, Carfì A. Body composition parameters and sarcopenia in adults with Down syndrome: a case-control study. Aging Clin Exp Res 2024; 36:81. [PMID: 38551714 PMCID: PMC10980647 DOI: 10.1007/s40520-023-02680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND Individuals with Down syndrome (DS) experience premature aging. Whether accelerated aging involves changes in body composition parameters and is associated with early development of sarcopenia is unclear. AIMS To compare parameters of body composition and the prevalence of sarcopenia between adults with DS and the general population. METHODS Body composition was assessed by whole-body dual-energy X-ray absorptiometry (DXA). Fat mass (FMI) and skeletal mass indices (SMI) were calculated as the ratio between total body fat mass and appendicular lean mass and the square of height, respectively. Fat mass distribution was assessed by the android/gynoid fat ratio (A/G). Sarcopenia was defined according to the criteria and cut-points recommended by the European Working Group on Sarcopenia in Older People 2 (EWGSOP2). Data on age- and sex-matched non-DS controls were retrieved from the 2001-2002 National Health and Nutrition Examination Survey (NHANES) population. RESULTS Sixty-four DS adults (mean age 37.2 ± 12.0 years, 20.3% women) were enrolled and compared with age- and sex-matched NHANES participants (n = 256), in a 1:4 ratio. FMI (7.96 ± 3.18 kg/m2 vs. 8.92 ± 4.83 kg/m2, p = 0.135), SMI (7.38 ± 1.01 kg/m2 vs. 7.46 ± 2.77 kg/m2, p = 0.825) and A/G (0.98 ± 0.17 vs. 1.01 ± 0.22, p = 0.115) were not significantly different between DS and control participants. When the sample was stratified by sex, women with DS had a higher FMI compared with their NHANES controls (10.16 ± 4.35 kg/m2 vs. 8.11 ± 4.29 kg/m2, p < 0.001), while men with DS had lower A/G ratio (1.04 ± 0.16 vs. 1.11 ± 0.22, p = 0.002). Sarcopenia was more frequent in individuals with DS than in controls (35.6% vs. 19.9%, p = 0.007). This association was stronger in men 40 years and older. CONCLUSIONS Adults with DS have a higher prevalence of sarcopenia compared with the general population. This finding suggests that DS is associated with early muscle aging and calls for the design of interventions targeting the skeletal muscle to prevent or treat sarcopenia.
Collapse
Affiliation(s)
- Emanuele Rocco Villani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Graziano Onder
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Helio Coelho-Junior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Antonella Di Paola
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Angelo Carfì
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
11
|
Brandauer J, Receno CN, Anyaoku C, Cooke LE, Schwarzer HM, DeRuisseau KC, Cunningham CM, DeRuisseau LR. Senescent hearts from male Ts65Dn mice exhibit preserved function but altered size and nicotinamide adenine dinucleotide pathway signaling. Am J Physiol Regul Integr Comp Physiol 2024; 326:R176-R183. [PMID: 38047317 PMCID: PMC11283890 DOI: 10.1152/ajpregu.00164.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Down syndrome (DS) is associated with congenital heart defects at birth, but cardiac function has not been assessed at older ages. We used the Ts65Dn mouse, a model of DS, to quantify heart structure and function with echocardiography in 18-mo male Ts65Dn and wild-type (WT) mice. Heart weight, nicotinamide adenine dinucleotide (NAD) signaling, and mitochondrial (citrate synthase) activity were investigated, as these pathways may be implicated in the cardiac pathology of DS. The left ventricle was smaller in Ts65Dn versus WT, as well as the anterior wall thickness of the left ventricle during both diastole (LVAW_d; mm) and systole (LVAW_s; mm) as assessed by echocardiography. Other functional metrics were similar between groups including left ventricular area end systole (mm2), left ventricular area end diastole (mm2), left ventricular diameter end systole (mm), left ventricular diameter end diastole (mm), isovolumetric relaxation time (ms), mitral valve atrial peak velocity (mm/s), mitral valve early peak velocity (mm/s), ratio of atrial and early peak velocities (E/A), heart rate (beats/min), ejection fraction (%), and fractional shortening (%). Nicotinamide phosphoribosyltransferase (NAMPT) protein expression, NAD concentration, and tissue weight were lower in the left ventricle of Ts65Dn versus WT mice. Sirtuin 3 (SIRT3) protein expression and citrate synthase activity were not different between groups. Although cardiac function was generally preserved in male Ts65Dn, the altered heart size and bioenergetic disturbances may contribute to differences in aging for DS.
Collapse
Affiliation(s)
- Josef Brandauer
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Candace N Receno
- Department of Exercise Science and Athletic Training, Ithaca College, Ithaca, New York, United States
| | - Cynthia Anyaoku
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Lauren E Cooke
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Hannalyn M Schwarzer
- Health Sciences Department, Gettysburg College, Gettysburg, Pennsylvania, United States
| | - Keith C DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, United States
| | - Caitlin M Cunningham
- Department of Computer Science, Mathematics, and Statistics, Le Moyne College, Syracuse, New York, United States
| | - Lara R DeRuisseau
- Department of Basic Sciences, University of Health Sciences and Pharmacy, St. Louis, Missouri, United States
| |
Collapse
|
12
|
Valenti D, Vacca RA. Brain Mitochondrial Bioenergetics in Genetic Neurodevelopmental Disorders: Focus on Down, Rett and Fragile X Syndromes. Int J Mol Sci 2023; 24:12488. [PMID: 37569863 PMCID: PMC10419900 DOI: 10.3390/ijms241512488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria, far beyond their prominent role as cellular powerhouses, are complex cellular organelles active as central metabolic hubs that are capable of integrating and controlling several signaling pathways essential for neurological processes, including neurogenesis and neuroplasticity. On the other hand, mitochondria are themselves regulated from a series of signaling proteins to achieve the best efficiency in producing energy, in establishing a network and in performing their own de novo synthesis or clearance. Dysfunctions in signaling processes that control mitochondrial biogenesis, dynamics and bioenergetics are increasingly associated with impairment in brain development and involved in a wide variety of neurodevelopmental disorders. Here, we review recent evidence proving the emerging role of mitochondria as master regulators of brain bioenergetics, highlighting their control skills in brain neurodevelopment and cognition. We analyze, from a mechanistic point of view, mitochondrial bioenergetic dysfunction as causally interrelated to the origins of typical genetic intellectual disability-related neurodevelopmental disorders, such as Down, Rett and Fragile X syndromes. Finally, we discuss whether mitochondria can become therapeutic targets to improve brain development and function from a holistic perspective.
Collapse
Affiliation(s)
- Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via G. Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
13
|
Rusu B, Kukreja B, Wu T, Dan SJ, Feng MY, Kalish BT. Single-Nucleus Profiling Identifies Accelerated Oligodendrocyte Precursor Cell Senescence in a Mouse Model of Down Syndrome. eNeuro 2023; 10:ENEURO.0147-23.2023. [PMID: 37491366 PMCID: PMC10449487 DOI: 10.1523/eneuro.0147-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023] Open
Abstract
Down syndrome (DS), the most common genetic cause of intellectual disability, is associated with lifelong cognitive deficits. However, the mechanisms by which triplication of chromosome 21 genes drive neuroinflammation and cognitive dysfunction are poorly understood. Here, using the Ts65Dn mouse model of DS, we performed an integrated single-nucleus ATAC and RNA-sequencing (snATAC-seq and snRNA-seq) analysis of the adult cortex. We identified cell type-specific transcriptional and chromatin-associated changes in the Ts65Dn cortex, including regulators of neuroinflammation, transcription and translation, myelination, and mitochondrial function. We discovered enrichment of a senescence-associated transcriptional signature in Ts65Dn oligodendrocyte (OL) precursor cells (OPCs) and epigenetic changes consistent with a loss of heterochromatin. We found that senescence is restricted to a subset of OPCs concentrated in deep cortical layers. Treatment of Ts65Dn mice with a senescence-reducing flavonoid rescued cortical OPC proliferation, restored microglial homeostasis, and improved contextual fear memory. Together, these findings suggest that cortical OPC senescence may be an important driver of neuropathology in DS.
Collapse
Affiliation(s)
- Bianca Rusu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Bharti Kukreja
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Taiyi Wu
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Sophie J Dan
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Min Yi Feng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
| | - Brian T Kalish
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario M5G 1L7, Canada
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
14
|
Sarver DC, Xu C, Rodriguez S, Aja S, Jaffe AE, Gao FJ, Delannoy M, Periasamy M, Kazuki Y, Oshimura M, Reeves RH, Wong GW. Hypermetabolism in mice carrying a near-complete human chromosome 21. eLife 2023; 12:e86023. [PMID: 37249575 PMCID: PMC10229126 DOI: 10.7554/elife.86023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/07/2023] [Indexed: 05/31/2023] Open
Abstract
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Mental Health, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
- The Lieber Institute for Brain DevelopmentBaltimoreUnited States
- Center for Computational Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Feng J Gao
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State UniversityColumbusUnited States
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlandoUnited States
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori UniversityTottoriJapan
- Chromosome Engineering Research Center, Tottori UniversityTottoriJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori UniversityTottoriJapan
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
- Center for Metabolism and Obesity Research, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
15
|
Sarver DC, Xu C, Rodriguez S, Aja S, Jaffe AE, Gao FJ, Delannoy M, Periasamy M, Kazuki Y, Oshimura M, Reeves RH, Wong GW. Hypermetabolism in mice carrying a near complete human chromosome 21. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526183. [PMID: 36778465 PMCID: PMC9915508 DOI: 10.1101/2023.01.30.526183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are due to sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E. Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,The Lieber Institute for Brain Development, Baltimore, MD, USA.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Feng J. Gao
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Delannoy
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.,Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan,Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Correspondence:
| |
Collapse
|