1
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024; 61:1339-1361. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
3
|
Allard C, Miralpeix C, López-Gambero AJ, Cota D. mTORC1 in energy expenditure: consequences for obesity. Nat Rev Endocrinol 2024; 20:239-251. [PMID: 38225400 DOI: 10.1038/s41574-023-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
In eukaryotic cells, the mammalian target of rapamycin complex 1 (sometimes referred to as the mechanistic target of rapamycin complex 1; mTORC1) orchestrates cellular metabolism in response to environmental energy availability. As a result, at the organismal level, mTORC1 signalling regulates the intake, storage and use of energy by acting as a hub for the actions of nutrients and hormones, such as leptin and insulin, in different cell types. It is therefore unsurprising that deregulated mTORC1 signalling is associated with obesity. Strategies that increase energy expenditure offer therapeutic promise for the treatment of obesity. Here we review current evidence illustrating the critical role of mTORC1 signalling in the regulation of energy expenditure and adaptive thermogenesis through its various effects in neuronal circuits, adipose tissue and skeletal muscle. Understanding how mTORC1 signalling in one organ and cell type affects responses in other organs and cell types could be key to developing better, safer treatments targeting this pathway in obesity.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | | | | | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France.
| |
Collapse
|
4
|
Coate KC, Ramnanan CJ, Smith M, Winnick JJ, Kraft G, Irimia-Dominguez J, Farmer B, Donahue EP, Roach PJ, Cherrington AD, Edgerton DS. Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog. Am J Physiol Endocrinol Metab 2024; 326:E428-E442. [PMID: 38324258 PMCID: PMC11193521 DOI: 10.1152/ajpendo.00316.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024]
Abstract
Glucagon rapidly and profoundly stimulates hepatic glucose production (HGP), but for reasons that are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course of glucagon-mediated molecular events and their relevance to metabolic flux in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a sixfold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group, glucose remained at basal, whereas in the other, glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) and largely sustained increase in hepatic cAMP over 4 h, a continued elevation in glucose-6-phosphate (G6P), and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis increased rapidly, peaking at 15 min due to activation of the cAMP/PKA pathway, then slowly returned to baseline over the next 3 h in line with allosteric inhibition by glucose and G6P. Glucagon's stimulatory effect on HGP was sustained relative to the hyperglycemic control group due to continued PKA activation. Hepatic gluconeogenic flux did not increase due to the lack of glucagon's effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, as well as downregulation of genes involved in extracellular matrix assembly and development.NEW & NOTEWORTHY Glucagon rapidly stimulates hepatic glucose production, but these effects are transient. This study links the molecular and metabolic flux changes that occur in the liver over time in response to a rise in glucagon, demonstrating the strength of the dog as a translational model to couple findings in small animals and humans. In addition, this study clarifies why the rapid effects of glucagon on liver glycogen metabolism are not sustained.
Collapse
Affiliation(s)
- Katie C Coate
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Christopher J Ramnanan
- Department of Innovation in Medical Education, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Marta Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jason J Winnick
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Jose Irimia-Dominguez
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute, Duarte, California, United States
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - E Patrick Donahue
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Dale S Edgerton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Kurose S, Onishi K, Miyauchi T, Takahashi K, Kimura Y. Serum Follistatin Levels are Independently Associated with Exercise Tolerance in Patients with Obesity. Endocr Res 2023; 48:120-128. [PMID: 37668496 DOI: 10.1080/07435800.2023.2253452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVE Follistatin (FST)/myostatin (MST) myokine-signaling axis is important for muscle metabolism and pathogenesis of obesity. FST, mainly secreted by skeletal muscle and liver, inhibits MST and affects skeletal muscle synthesis. This study aimed to identify the characteristics of myokines and independent predictors of serum FST levels in patients with obesity. METHODS In this retrospective cross-sectional study, 226 patients (mean age, 46.6 years; men, 35.4%) with obesity who initially visited an outpatient clinic between June 2014 and September 2020, were included and classified into obesity (25.0 ≤ body mass index (BMI) < 35.0 kg/m2) and severe obesity (BMI ≥35 kg/m2) groups based on the guidelines of the Japan Society for the Study of Obesity. Body composition was measured using bioelectrical impedance analysis and computed tomography. Muscle strength, exercise tolerance, metabolic parameters, and myokines were measured, including serum levels of FST, MST, irisin, and brain-derived neurotrophic factor. RESULTS Serum FST levels were significantly higher in the severe obesity group than in the obesity group (median: 768.4 vs. 895.1 pg/mL, P = 0.020). However, the levels of other myokines showed no significant differences between the groups. In Model 1, which included factors that significantly correlated with FST levels, stepwise multivariate regression analysis revealed peak oxygen uptake (VO2) as an independent predictor of FST levels based on the significance of the univariate analysis. Additionally, Model 2 was analyzed by adding myokine level to Model 1, revealing that peak VO2, MST, and irisin levels were independent predictors of FST levels. CONCLUSION Serum FST levels were higher in patients in the severe obesity group compared to those in the obesity group. There was an independent association between low exercise tolerance and elevated serum FST levels.
Collapse
Affiliation(s)
- Satoshi Kurose
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Katsuko Onishi
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Takumi Miyauchi
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| | - Kazuhisa Takahashi
- Department of Medicine II, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yutaka Kimura
- Health Science Center, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
6
|
Coate KC, Ramnanan CJ, Smith M, Winnick JJ, Kraft G, Irimia JM, Farmer B, Donahue P, Roach PJ, Cherrington AD, Edgerton DS. Integration of metabolic flux with hepatic glucagon signaling and gene expression profiles in the conscious dog. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559999. [PMID: 37808670 PMCID: PMC10557670 DOI: 10.1101/2023.09.28.559999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Glucagon rapidly and profoundly simulates hepatic glucose production (HGP), but for reasons which are unclear, this effect normally wanes after a few hours, despite sustained plasma glucagon levels. This study characterized the time course and relevance (to metabolic flux) of glucagon mediated molecular events in the livers of conscious dogs. Glucagon was either infused into the hepato-portal vein at a 6-fold basal rate in the presence of somatostatin and basal insulin, or it was maintained at a basal level in control studies. In one control group glucose remained at basal while in the other glucose was infused to match the hyperglycemia that occurred in the hyperglucagonemic group. Elevated glucagon caused a rapid (30 min) but only partially sustained increase in hepatic cAMP over 4h, a continued elevation in G6P, and activation and deactivation of glycogen phosphorylase and synthase activities, respectively. Net hepatic glycogenolysis and HGP increased rapidly, peaking at 30 min, then returned to baseline over the next 3h (although glucagons stimulatory effect on HGP was sustained relative to the hyperglycemic control group). Hepatic gluconeogenic flux did not increase due to lack of glucagon effect on substrate supply to the liver. Global gene expression profiling highlighted glucagon-regulated activation of genes involved in cellular respiration, metabolic processes, and signaling, and downregulation of genes involved in extracellular matrix assembly and development.
Collapse
|