1
|
Guijarro-Hernández A, Vizmanos JL. Transcriptomic comparison of bone marrow CD34 + cells and peripheral blood neutrophils from ET patients with JAK2 or CALR mutations. BMC Genom Data 2023; 24:40. [PMID: 37550636 PMCID: PMC10408115 DOI: 10.1186/s12863-023-01142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Essential thrombocythemia (ET) is one of the most common types of Ph-negative myeloproliferative neoplasms, an infrequent group of blood cancers that arise from a CD34 + hematopoietic stem cell (HSC) in the bone marrow (BM) primarily due to driver mutations in JAK2, CALR or MPL. These aberrations result in an overproduction of mature myeloid cells in peripheral blood (PB). To date, no targeted therapies have been approved for ET patients, so the study of the molecular mechanisms behind the disease and the identification of new therapeutic targets may be of interest. For this reason, in this study, we have compared the transcriptomic profile of undifferentiated CD34 + cells and mature myeloid cells from ET patients (CALR and JAK2-mutated) and healthy donors deposited in publicly available databases. The study of the similarities and differences between these samples might help to better understand the molecular mechanisms behind the disease according to the degree of maturation of the malignant clone and the type of mutation and ultimately help identify new therapeutic targets for these patients. RESULTS The results show that most of the altered hallmarks in neutrophils were also found in CD34 + cells. However, only a few genes showed a similar aberrant expression pattern in both types of cells. We have identified a signature of six genes common to patients with CALR and JAK2 mutations (BPI, CRISP3, LTF, MMP8, and PTGS1 upregulated, and PBXIP1 downregulated), a different signature of seven genes for patients with CALR mutations (BMP6, CEACAM8, ITK, LCN2, and PRG2 upregulated, and MAN1A1 and MME downregulated) and a signature of 13 genes for patients with JAK2 mutations (ARG1, CAST, CD177, CLEC5A, DAPP1, EPS15, IL18RAP, OLFM4, OLR1, RIOK3, SELP, and THBS1 upregulated, and IGHM downregulated). CONCLUSIONS Our results highlight transcriptomic similarities and differences in ET patients according to the degree of maturation of the malignant clone and the type of mutation. The genes and processes altered in both CD34 + cells and mature neutrophils may reveal altered sustained processes that could be studied as future therapeutic targets for ET patients.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| |
Collapse
|
2
|
Novel nitrogen mustard-artemisinin hybrids with potent anti-leukemia action through DNA damage and activation of GPx. Eur J Med Chem 2022; 244:114783. [DOI: 10.1016/j.ejmech.2022.114783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022]
|
3
|
Chen F, Yang Y, Fu S. Clinical profile in KMT2A-SEPT6-positive acute myeloid leukemia: Does it often co-occur with NRAS mutations? Front Med (Lausanne) 2022; 9:890959. [PMID: 36213638 PMCID: PMC9532577 DOI: 10.3389/fmed.2022.890959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background The KMT2A-SEPT6 fusion gene is a relatively rare genetic event in leukemia. Its clinical characteristics and prognosis, especially the profile of co-occurring gene mutations remain unclear. Methods We retrospectively analyzed the characteristics of four cases carrying KMT2A-SEPT6 in our hospital, and provided a literature review. Results All the four patients were diagnosed with acute myeloid leukemia (AML) and harbored X chromosome and 11 chromosome rearrangements, they all manifested high levels of D-dimer. Three of four patients had NRAS mutations while one patient with congenital AML did not. Of the four cases, one developed drug resistance, one suffered relapse after bone marrow transplantation (BMT) and two died. Combined with other cases reported in the literature, we found that of all patients diagnosed with AML, 90.9% were children (≤9 years old). Patients with white blood cells ≥20.0 × 109/L or diagnosed with M4 had a shorter overall survival (P < 0.05). Age, whether to receive BMT, and the chromosome rearrangement patterns had no significant effect on overall survival (P > 0.05). Conclusions KMT2A-SEPT6 was more commonly observed in pediatric AML patients, some of which may co-occur with NRAS mutations. The prognosis was related to the white blood cell levels and the leukemia subtype, but was not related to age or BMT. More cases need to be accumulated to better understand the profile in KMT2A-SEPT6-positive AML.
Collapse
Affiliation(s)
- Fang Chen
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Yang
- Division of Hematology, Department of Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Fu
- Department of Hematology Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Shuang Fu
| |
Collapse
|
4
|
Chebly A, Djambas Khayat C, Yammine T, Korban R, Semaan W, Bou Zeid J, Farra C. Pediatric M5 acute myeloid leukemia with MLL-SEPT6 fusion and a favorable outcome. Leuk Res Rep 2021; 16:100277. [PMID: 34760618 PMCID: PMC8566899 DOI: 10.1016/j.lrr.2021.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with MLL-SEPT6 fusion represent a small subset of AML. The uncommon MLL-SEPT6 rearrangement results from t(X;11) or other variants like ins(X;11), and it is usually associated with complex cytogenetic abnormalities. We herein report a case of AML-M5-infant with ins(X;11)(q24;q23q13) and MLL-SEPT6. The one-year-old boy presented with leukocytosis, anemia and thrombocytopenia. He had a favorable response to chemotherapy according to ELAM02protocol and is currently in complete remission. We here, highlight the occurrence of MLL-SEPT6 as the sole abnormality in a pediatric-AML-M5 case, discuss the prognostic implication of this genetic variant, while reviewing previously reported AML-MLL-SEPT6 cases.
Collapse
Affiliation(s)
- Alain Chebly
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | | | - Tony Yammine
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Rima Korban
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Warde Semaan
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jessica Bou Zeid
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Chantal Farra
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Genetics, Hotel Dieu de France Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Panagopoulos I, Andersen K, Eilert-Olsen M, Rognlien AG, Munthe-Kaas MC, Micci F, Heim S. Rare KMT2A-ELL and Novel ZNF56-KMT2A Fusion Genes in Pediatric T-cell Acute Lymphoblastic Leukemia. Cancer Genomics Proteomics 2021; 18:121-131. [PMID: 33608309 DOI: 10.21873/cgp.20247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND/AIM Previous reports have associated the KMT2A-ELL fusion gene, generated by t(11;19)(q23;p13.1), with acute myeloid leukemia (AML). We herein report a KMT2A-ELL and a novel ZNF56-KMT2A fusion genes in a pediatric T-lineage acute lymphoblastic leukemia (T-ALL). MATERIALS AND METHODS Genetic investigations were performed on bone marrow of a 13-year-old boy diagnosed with T-ALL. RESULTS A KMT2A-ELL and a novel ZNF56-KMT2A fusion genes were generated on der(11)t(11;19)(q23;p13.1) and der(19)t(11;19)(q23;p13.1), respectively. Exon 20 of KMT2A fused to exon 2 of ELL in KMT2A-ELL chimeric transcript whereas exon 1 of ZNF56 fused to exon 21 of KMT2A in ZNF56-KMT2A transcript. A literature search revealed four more T-ALL patients carrying a KMT2A-ELL fusion. All of them were males aged 11, 11, 17, and 20 years. CONCLUSION KMT2A-ELL fusion is a rare recurrent genetic event in T-ALL with uncertain prognostic implications. The frequency and impact of ZNF56-KMT2A in T-ALL are unknown.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Martine Eilert-Olsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anne Gro Rognlien
- Department of Pediatric Hematology and Oncology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric Hematology and Oncology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Yamamoto K, Yakushijin K, Mizutani Y, Okuni-Watanabe M, Goto H, Higashime A, Miyata Y, Kitao A, Matsumoto H, Saegusa J, Matsuoka H, Minami H. Expression of a novel type of KMT2A/EPS15 fusion transcript in FLT3 mutation-positive B-lymphoblastic leukemia with t(1;11)(p32;q23). Cancer Genet 2021; 254-255:92-97. [PMID: 33647817 DOI: 10.1016/j.cancergen.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/07/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
The t(1;11)(p32;q23) translocation is a rare but recurrent cytogenetic aberration in acute myeloid leukemia (AML) and B-cell acute lymphoblastic leukemia (B-ALL). This translocation was initially shown to form a fusion gene between KMT2A exon 8 at 11q23 and EPS15 exon 2 at 1p32 in AML. Activating mutations of FLT3 are frequently found in AML but are very rare in ALL. Here, we describe a 75-year-old woman who was diagnosed with B-ALL since her bone marrow was made up of 98.2% lymphoblasts. These blasts were positive for CD19, CD22, CD79a, CD13, and CD33 but negative for CD10 and myeloperoxidase. The karyotype by G-banding and spectral karyotyping was 46,XX,t(1;11)(p32;q23). Expression of KMT2A/EPS15 and reciprocal EPS15/KMT2A fusion transcripts were shown: KMT2A exon 8 was in-frame fused to EPS15 exon 12, indicating that this fusion transcript was a novel type. Considering three reported B-ALL cases, EPS15 breakpoints were markedly different between AML (exon 2) and B-ALL (exons 10-12). Furthermore, an uncommon type of FLT3 mutation in the juxtamembrane domain was detected: in-frame 4-bp deletion and 10-bp insertion. Accordingly, our results indicate that the novel type of KMT2A/EPS15 fusion transcript and FLT3 mutation may cooperate in the pathogenesis of adult B-ALL as class II and class I mutations, respectively.
Collapse
Affiliation(s)
- Katsuya Yamamoto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yu Mizutani
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Marika Okuni-Watanabe
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hideaki Goto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ako Higashime
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiharu Miyata
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Akihito Kitao
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hisayuki Matsumoto
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Jun Saegusa
- Department of Clinical Laboratory, Kobe University Hospital, Kobe, Japan
| | - Hiroshi Matsuoka
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
7
|
Panagopoulos I, Andersen K, Eilert-Olsen M, Zeller B, Munthe-Kaas MC, Buechner J, Osnes LTN, Micci F, Heim S. Therapy-induced Deletion in 11q23 Leading to Fusion of KMT2A With ARHGEF12 and Development of B Lineage Acute Lymphoplastic Leukemia in a Child Treated for Acute Myeloid Leukemia Caused by t(9;11)(p21;q23)/ KMT2A-MLLT3. Cancer Genomics Proteomics 2021; 18:67-81. [PMID: 33419897 DOI: 10.21873/cgp.20242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Fusion of histone-lysine N-methyltransferase 2A gene (KMT2A) with the Rho guanine nucleotide exchange factor 12 gene (ARHGEF12), both located in 11q23, was reported in some leukemic patients. We report a KMT2A-ARHGEF12 fusion occurring during treatment of a pediatric acute myeloid leukemia (AML) with topoisomerase II inhibitors leading to a secondary acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS Multiple genetic analyses were performed on bone marrow cells of a girl initially diagnosed with AML. RESULTS At the time of diagnosis with AML, the t(9;11)(p21;q23)/KMT2A-MLLT3 genetic abnormality was found. After chemotherapy resulting in AML clinical remission, a 2 Mb deletion in 11q23 was found generating a KMT2A-ARHGEF12 fusion gene. When the patient later developed B lineage ALL, a t(14;19)(q32;q13), loss of one chromosome 9, and KMT2A-ARHGEF12 were detected. CONCLUSION The patient sequentially developed AML and ALL with three leukemia-specific genomic abnormalities in her bone marrow cells, two of which were KMT2A-rearrangements.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Martine Eilert-Olsen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Bernward Zeller
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Liv T N Osnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Yang H, Cao T, Gao L, Wang L, Zhu C, Xu Y, Jing Y, Zhu H, Lv N, Yu L. The incidence and distribution characteristics of MLL rearrangements in Chinese acute myeloid leukemia patients by multiplex nested RT-PCR. Technol Health Care 2018; 25:259. [PMID: 28582914 DOI: 10.3233/thc-171329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Occurrence of MLL (Mixed Lineage Leukemia) gene rearrangements indicates poor prognosis in acute myeloid leukemia (AML) patients. This is the first study to report the positive rate and distribution characteristics of MLL rearrangements in AML patients in north China. We used multiplex nested real time PCR (RT-PCR) to screen for incidence of 11 MLL rearrangements in 433 AML patients. Eleven MLL rearrangements included (MLL-PTD, MLL-AF9, MLL-ELL, MLL-AF10, MLL-AF17, MLL-AF6, MLL-ENL, MLL-AF1Q, MLL-CBP, MLL-AF1P, MLL-AFX1). There were 68 AML patients with MLL rearrangements, and the positive rate was 15.7%. MLL-PTD (4.84%) was detected in 21 patients, MLL-AF9 in 15, (3.46%), MLL-ELL in 10 (2.31%), MLL-AF10 in 8 (1.85%), MLL-AF1Q in 2 (0.46%), 3 cases each of MLL-AF17, MLL-AF6, MLL-ENL (0.69% each), a and single case each of MLL-CBP, MLL-AF1P, and MLL-AFX1 (0.23% each). The highest rate of MLL rearrangements was found in 24 patients with M5 subtype AML, occurring in 24 cases (35.3%). MLL rearrangements occurred in 21 patients with M2 subtype AML (30.9%), and in 10 patients with M4 subtype AML (14.7%). Screening fusion genes by multiplex nested RT-PCR is a convenient, fast, economical, and accurate method for diagnosis and predicting prognosis of AML.
Collapse
Affiliation(s)
- Hua Yang
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| | - Tingting Cao
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| | - Li Gao
- Department of Hematology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lili Wang
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| | - Chengying Zhu
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| | - Yuanyuan Xu
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Jing
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| | - Haiyan Zhu
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| | - Na Lv
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| | - Li Yu
- Department of Hematology, The Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
9
|
Ling T, Lang W, Feng X, Das S, Maier J, Jeffries C, Shelat A, Rivas F. Novel vitexin-inspired scaffold against leukemia. Eur J Med Chem 2018; 146:501-510. [PMID: 29407975 DOI: 10.1016/j.ejmech.2018.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/04/2017] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in children. Up to a quarter of ALL patients relapse and face poor prognosis. To identify new compound leads, we conducted a phenotypic screen using terrestrial natural product (NP) fractions against immortalized ALL cellular models. We identified vitexin, a flavonoid, as a promising hit with biological activity (EC50 = 30 μM) in pre-B cell ALL models with no toxicity against normal human tissue (BJ cells) at the tested concentrations. To develop more potent compounds against ALL and elucidate its potential mode of action, a vitexin-inspired compound library was synthesized. Thus, we developed an improved and scalable protocol for the direct synthesis of 4-quinolone core heterocycles containing an N-sulfonamide using a one-pot condensation reaction protocol. The newly generated compounds represent a novel molecular scaffold against ALL as exemplified by compounds 13 and 15, which demonstrated EC50 values in the low micromolar range (0.3-10 μM) with little to no toxicity in normal cellular models. Computational studies support the hypothesis that these compounds are potential CDK inhibitors. The compounds induced apoptosis, caused cell arrest at G0/G1 and G2/M, and induced ROS in cancer cells.
Collapse
Affiliation(s)
- Taotao Ling
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Walter Lang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Xiang Feng
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Sourav Das
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Julie Maier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Cynthia Jeffries
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Anang Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Fatima Rivas
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
10
|
Ney Garcia DR, de Souza MT, de Figueiredo AF, Othman MAK, Rittscher K, Abdelhay E, Capela de Matos RR, Meyer C, Marschalek R, Land MGP, Liehr T, Ribeiro RC, Silva MLM. Molecular characterization of KMT2A fusion partner genes in 13 cases of pediatric leukemia with complex or cryptic karyotypes. Hematol Oncol 2016; 35:760-768. [PMID: 27282883 DOI: 10.1002/hon.2299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 01/31/2023]
Abstract
In pediatric acute leukemias, reciprocal chromosomal translocations frequently cause gene fusions involving the lysine (K)-specific methyltransferase 2A gene (KMT2A, also known as MLL). Specific KMT2A fusion partners are associated with the disease phenotype (lymphoblastic vs. myeloid), and the type of KMT2A rearrangement also has prognostic implications. However, the KMT2A partner gene cannot always be identified by banding karyotyping. We sought to identify such partner genes in 13 cases of childhood leukemia with uninformative karyotypes by combining molecular techniques, including multicolor banding FISH, reverse-transcriptase PCR, and long-distance inverse PCR. Of the KMT2A fusion partner genes, MLLT3 was present in five patients, all with acute lymphoblastic leukemia, MLLT1 in two patients, and MLLT10, MLLT4, MLLT11, and AFF1 in one patient each. Reciprocal reading by long-distance inverse PCR also disclosed KMT2A fusions with PITPNA in one patient, with LOC100132273 in another patient, and with DNA sequences not compatible with any gene in three patients. The most common KMT2A breakpoint region was intron/exon 9 (3/8 patients), followed by intron/exon 11 and 10. Finally, multicolor banding revealed breakpoints in other chromosomes whose biological and prognostic implications remain to be determined. We conclude that the combination of molecular techniques used in this study can efficiently identify KMT2A fusion partners in complex pediatric acute leukemia karyotypes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniela R Ney Garcia
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil
| | - Mariana T de Souza
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil.,Oncology Post Graduation Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Amanda F de Figueiredo
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil.,Oncology Post Graduation Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Moneeb A K Othman
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Eliana Abdelhay
- Oncology Post Graduation Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Roberto R Capela de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil.,Oncology Post Graduation Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Claus Meyer
- Institute of Pharmaceutical Biology, Diagnostic Center of Acute Leukemia, Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Diagnostic Center of Acute Leukemia, Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | - Marcelo G P Land
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Martagão Gesteira Institute of Pediatrics and Child Development, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Maria Luiza Macedo Silva
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil.,Oncology Post Graduation Program, National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Array-based comparative genomic hybridization detects copy number variations with prognostic relevance in 80% of ALL with normal karyotype or failed chromosome analysis. Leukemia 2015; 30:318-24. [PMID: 26449660 DOI: 10.1038/leu.2015.276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 11/08/2022]
Abstract
Pretreatment cytogenetics is an important parameter for risk stratification and therapy approach in acute lymphoblastic leukemia (ALL). However, in up to 30% of cases, chromosome banding analysis (CBA) fails or reveals a normal karyotype. To characterize the subset of ALL with normal karyotype or failed CBA, we performed fluorescence in situ hybridization (FISH) or PCR for BCR-ABL1 and MLL rearrangements as well as array comparative genomic hybridization (aCGH) in 186 adult patients. We further carried out FISH for MYC in cases with Burkitt leukemia phenotype. FISH or PCR revealed one of the respective rearrangements in 22% of patients. In 80% of cases, copy number variations (CNV) were identified by aCGH. In 22% of cases, all CNV were below the resolution of CBA. On the basis of results of FISH, RT-PCR and aCGH, patients were categorized into three groups. The novel subset of patients with submicroscopic CNV only showed an overall survival at 3 years of 84% compared with 64% for patients classified as adverse abnormalities and 77% for cases with other aberrations (P=0.046). Thus, ALL with non-informative CBA can be further classified by FISH and aCGH providing prognostic information, which may be useful for a more individualized therapy.
Collapse
|
12
|
Coccé MC, Alonso CN, Rossi JG, Bernasconi AR, Rampazzi MA, Felice MS, Rubio PL, Eandi Eberle S, Medina A, Gallego MS. Cytogenetic and Molecular Findings in Children with Acute Lymphoblastic Leukemia: Experience of a Single Institution in Argentina. Mol Syndromol 2015; 6:193-203. [PMID: 26648836 DOI: 10.1159/000441046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2015] [Indexed: 11/19/2022] Open
Abstract
The purpose of the current study was to evaluate the cytogenetic findings in 1,057 children with acute lymphoblastic leukemia (ALL) referred to the cytogenetics laboratory at the Hospital de Pediatría Dr. Juan P. Garrahan, between 1991 and 2014. Chromosomal abnormalities were evaluated by G-banding and FISH. Since December 2002, RT-PCR determinations were systematically carried out for BCR-ABL1, KMT2A-AFF1, ETV6-RUNX1, and TCF3-PBX1 rearrangements in children, adding KMT2A-MLLT3 and KMT2A-MLLT1 in infants. The percentage of abnormalities detected by cytogenetics was 70.1%. Four novel abnormalities, t(2;8)(p11.2;p22), inv(4)(p16q25), t(1;7)(q25;q32), and t(5;6)(q21;q21), were found in this cohort. We compared cytogenetic and RT-PCR results for BCR-ABL1, KMT2A-AFF1 and TCF3-PBX1 rearrangements in 497 children evaluated by both methods. The results were highly concordant (p < 0.7), and interestingly, FISH was relevant to confirm G-banding findings that were discordant with RT-PCR studies. This study showed the importance of performing G-banding, FISH and RT-PCR simultaneously to improve the detection of chromosomal abnormalities considering their important value in the diagnosis and prognosis of childhood ALL patients. Finally, to the best of our knowledge, this is the first series of cytogenetic findings in children with ALL reported in Argentina.
Collapse
Affiliation(s)
- Mariela C Coccé
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Cristina N Alonso
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Jorge G Rossi
- Department of Immunology and Rheumatology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Andrea R Bernasconi
- Department of Immunology and Rheumatology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Maria A Rampazzi
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Maria S Felice
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Patricia L Rubio
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Silvia Eandi Eberle
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Adriana Medina
- Department of Hematology and Oncology, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| | - Marta S Gallego
- Cytogenetics Laboratory, Genetics Department, Hospital de Pediatría 'Prof Dr. Juan P. Garrahan', Buenos Aires, Argentina
| |
Collapse
|
13
|
Loghavi S, Kutok JL, Jorgensen JL. B-acute lymphoblastic leukemia/lymphoblastic lymphoma. Am J Clin Pathol 2015; 144:393-410. [PMID: 26276770 DOI: 10.1309/ajcpan7bh5dnywzb] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES This session of the 2013 Society of Hematopathology/European Association for Haematopathology Workshop was dedicated to B-acute lymphoblastic leukemia (B-ALL)/lymphoblastic lymphoma (LBL) with recurrent translocations and not otherwise specified. METHODS In this review, we summarize the cases discussed during the workshop, review the pertinent and most recent literature on the respective topics, and provide a few key points that may aid in the workup of patients with B-ALL/LBL. RESULTS Many of the submitted cases showed interesting diagnostic, immunophenotypic, or clinical aspects of B-ALL with BCR/ABL1, MLL-associated, and other recurrent chromosomal abnormalities. Several cases showed rare aberrancies such as coexistent IGH/BCL2 and MYC rearrangements and raised issues in classification. Other cases had unusual clinical presentations, including B-ALL with hypereosinophilia and therapy-related B-ALL. Several cases highlighted the role of flow cytometry immunophenotyping in distinguishing benign B-cell precursors from aberrant lymphoblasts, and other cases raised questions regarding the clinical importance of myeloperoxidase positivity in acute lymphoblastic leukemia. CONCLUSIONS The complexity and spectrum of cases presented in this review highlight the importance of clinicopathologic correlation and the value of ancillary studies in the classification and workup of patients with B-ALL/LBL.
Collapse
Affiliation(s)
- Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston; and
| | | | - Jeffrey L. Jorgensen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston; and
| |
Collapse
|
14
|
Hu WQ, Wang XX, Yang RR, Yu K. MLL-ELL fusion gene in an acute myelomonocytic leukemia patient transformed from acute promyelocytic leukemia. Clin Case Rep 2015; 3:402-5. [PMID: 26185637 PMCID: PMC4498851 DOI: 10.1002/ccr3.245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/27/2015] [Accepted: 02/20/2015] [Indexed: 11/09/2022] Open
Abstract
We report an extremely rare case of acute myelomonocytic leukemia (M4) with an MLL-ELL fusion gene lacking the PML-RARα rearrangement that transformed from hypergranular acute promyelocytic leukemia (APL) without showing any karyotypic evolution. The treatment was effective with chemotherapy for M4 and idarubicin plus a cytarabine-based chemotherapy protocol without ATRA.
Collapse
Affiliation(s)
- Wang Qiang Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Xiao Xia Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Rong Rong Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Kang Yu
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Gole B, Wiesmüller L. Leukemogenic rearrangements at the mixed lineage leukemia gene (MLL)-multiple rather than a single mechanism. Front Cell Dev Biol 2015; 3:41. [PMID: 26161385 PMCID: PMC4479792 DOI: 10.3389/fcell.2015.00041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022] Open
Abstract
Despite manifold efforts to achieve reduced-intensity and -toxicity regimens, secondary leukemia has remained the most severe side effect of chemotherapeutic cancer treatment. Rearrangements involving a short telomeric <1 kb region of the mixed lineage leukemia (MLL) gene are the most frequently observed molecular changes in secondary as well as infant acute leukemia. Due to the mode-of-action of epipodophyllotoxins and anthracyclines, which have widely been used in cancer therapy, and support from in vitro experiments, cleavage of this MLL breakpoint cluster hotspot by poisoned topoisomerase II was proposed to trigger the molecular events leading to malignant transformation. Later on, clinical patient data and cell-based studies addressing a wider spectrum of stimuli identified cellular stress signaling pathways, which create secondary DNA structures, provide chromatin accessibility, and activate nucleases other than topoisomerase II at the MLL. The MLL destabilizing signaling pathways under discussion, namely early apoptotic DNA fragmentation, transcription stalling, and replication stalling, may all act in concert upon infection-, transplantation-, or therapy-induced cell cycle entry of hematopoietic stem and progenitor cells (HSPCs), to permit misguided cleavage and error-prone DNA repair in the cell-of-leukemia-origin.
Collapse
Affiliation(s)
- Boris Gole
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University Ulm, Germany
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University Ulm, Germany
| |
Collapse
|
16
|
Othman MAK, Grygalewicz B, Pienkowska-Grela B, Rincic M, Rittscher K, Melo JB, Carreira IM, Meyer B, Marzena W, Liehr T. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene. J Histochem Cytochem 2015; 63:384-90. [PMID: 25699572 DOI: 10.1369/0022155415576201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/05/2015] [Indexed: 11/22/2022] Open
Abstract
MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5' region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL.
Collapse
Affiliation(s)
- Moneeb A K Othman
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany (MAKO, MR, KR, TL)
| | - Beata Grygalewicz
- Cytogenetic Laboratory, Maria Sklodowska-Curie Memorial Cancer Centre and Institute, Warsaw, Poland (BG)
| | - Barbara Pienkowska-Grela
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland (BPG)
| | - Martina Rincic
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany (MAKO, MR, KR, TL),Croatian Institute of Brain Research, Zagreb, Croatia (MR)
| | - Katharina Rittscher
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany (MAKO, MR, KR, TL)
| | - Joana B Melo
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal (JBM, IMC),CIMAGO, Centro de Investigação em Meio Ambiente, Genéticae Oncobiologia University of Coimbra, (JBM, IMC)
| | - Isabel M Carreira
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal (JBM, IMC),CIMAGO, Centro de Investigação em Meio Ambiente, Genéticae Oncobiologia University of Coimbra, (JBM, IMC)
| | | | - Watek Marzena
- Department of Haematology and Bone Marrow Transplantation, Holy Cross Cancer Center, Kielce, Poland (WM)
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany (MAKO, MR, KR, TL)
| |
Collapse
|
17
|
Ney Garcia DR, Liehr T, Emerenciano M, Meyer C, Marschalek R, Pombo-de-Oliveira MDS, Ribeiro RC, Poirot Land MG, Macedo Silva ML. Molecular studies reveal a MLL-MLLT3 gene fusion displaced in a case of childhood acute lymphoblastic leukemia with complex karyotype. Cancer Genet 2015; 208:143-7. [PMID: 25843568 DOI: 10.1016/j.cancergen.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/07/2015] [Accepted: 02/11/2015] [Indexed: 01/08/2023]
Abstract
Rearrangement of the mixed lineage-leukemia gene (MLL-r) is common in hematological diseases and is generally associated with poor prognosis. The mixed-lineage leukemia gene translocated to, 3 (MLLT3) gene (9p22) is a frequent MLL-r partner (∼18% of leukemias with MLL rearrangement) and is characterized by the translocation t(9;11) (p22;q23), forming an MLL-MLLT3 gene fusion. MLL-r are usually simple reciprocal translocations between two different chromosomes, although karyotypes with complex MLL-r have been observed. We present a rare case of a child with acute lymphoblastic leukemia with a complex karyotype in which the classical t(9;11) (p22;q23) was cryptically relocated into a third chromosome in a balanced three-way translocation. At the genome level, however, the MLL-MLLT3 three-way translocation still displayed both reciprocal fusion transcripts. This argues in favor for a model where a simple two-way t(9;11) (p22;q23) was likely the first step that then evolved in to a more complex karyotype. Multicolor banding techniques can be used to greatly refine complex karyotypes and its chromosomal breakpoints. Also in the presence of putative new rearrangements, Long distance inverse-PCR is an important tool to identify which gene fusion is involved.
Collapse
Affiliation(s)
- Daniela Ribeiro Ney Garcia
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University, Rio de Janeiro, Brazil; Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mariana Emerenciano
- Postgraduate Oncology Program, National Cancer Institute, Rio de Janeiro, Brazil
| | - Claus Meyer
- Institute of Pharmaceutical Biology, Diagnostic Center of Acute Leukemia, Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Diagnostic Center of Acute Leukemia, Goethe-University of Frankfurt, Frankfurt/Main, Germany
| | | | - Raul C Ribeiro
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marcelo Gerardin Poirot Land
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University, Rio de Janeiro, Brazil; Martagão Gesteira Institute of Pediatrics and Child Development, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Luiza Macedo Silva
- Clinical Medicine Postgraduate Program, College of Medicine, Federal University, Rio de Janeiro, Brazil; Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute, Rio de Janeiro, Brazil; Postgraduate Oncology Program, National Cancer Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Panagopoulos I, Gorunova L, Kerndrup G, Spetalen S, Tierens A, Osnes LTN, Andersen K, Müller LSO, Hellebostad M, Zeller B, Heim S. Rare MLL-ELL fusion transcripts in childhood acute myeloid leukemia-association with young age and myeloid sarcomas? Exp Hematol Oncol 2015; 5:8. [PMID: 26949571 PMCID: PMC4779576 DOI: 10.1186/s40164-016-0037-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The chromosomal translocation t(11;19)(q23;p13) with a breakpoint within subband 19p13.1 is found mainly in acute myeloid leukemia (AML) and results in the MLL-ELL fusion gene. Variations in the structure of MLL-ELL seem to influence the leukemogenic potency of the fusion in vivo and may lie behind differences in clinical features. The number of cases reported so far is very limited and the addition of more information about MLL-ELL variants is essential if the possible clinical significance of rare fusions is to be determined. CASE PRESENTATION Cytogenetic and molecular genetic analyses were done on the bone marrow cells of a 20-month-old boy with an unusual form of myelomonocytic AML with multiple myeloid sarcomas infiltrating bone and soft tissues. The G-banding analysis together with FISH yielded the karyotype 47,XY, +6,t(8;19;11)(q24;p13;q23). FISH analysis also demonstrated that MLL was split. RNA-sequencing showed that the translocation had generated an MLL-ELL chimera in which exon 9 of MLL (nt 4241 in sequence with accession number NM_005933.3) was fused to exon 6 of ELL (nt 817 in sequence with accession number NM_006532.3). RT-PCR together with Sanger sequencing verified the presence of the above-mentioned fusion transcript. CONCLUSIONS Based on our findings and information on a few previously reported patients, we speculate that young age, myelomonoblastic AML, and the presence of extramedullary disease may be typical of children with rare MLL-ELL fusion transcripts.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, P.O.Box 4953, 0424 Oslo, Norway ; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ludmila Gorunova
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, P.O.Box 4953, 0424 Oslo, Norway ; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gitte Kerndrup
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Anne Tierens
- Laboratory Medicine Program, Department of Haematopathology, University Health Network, Toronto, Canada
| | - Liv T N Osnes
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Kristin Andersen
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, P.O.Box 4953, 0424 Oslo, Norway ; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Marit Hellebostad
- Department of Pediatrics, Drammen Hospital, Vestre Viken HF, Drammen, Norway
| | - Bernward Zeller
- Department of Pediatrics, Oslo University Hospital, Oslo, Norway
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, P.O.Box 4953, 0424 Oslo, Norway ; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway ; Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
MLL partner genes in secondary acute lymphoblastic leukemia: report of a new partner PRRC1 and review of the literature. Leuk Res 2014; 38:1316-9. [PMID: 25205603 DOI: 10.1016/j.leukres.2014.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/23/2022]
Abstract
Secondary acute lymphoblastic leukemia (sALL) following chemotherapy and/or radiotherapy of previous malignancies represents 2-10% of all cases of ALL. A 72-year-old female patient was diagnosed with acute lymphoblastic leukemia following chemotherapy for a diffuse large B cell lymphoma. Banding cytogenetics showed a t(t(5;11)(q23-31;q23) in 20 of the 21 metaphases examined and fluorescent in situ hybridization confirmed rearrangement of MLL. Long distance inverse-polymerase chain reaction revealed an in-frame fusion between 5'MLL and 3'PRRC1. Sixty-five cases of sALL associated with 11q23/MLL rearrangement, including 47 with a t(4;11)(q21;q23), were retrieved from the literature. Drug regimen used to treat the primary neoplasm was available for 54 patients; 52 had received a topoisomerase II inhibitor, known to induce MLL rearrangement.
Collapse
|
20
|
Tuborgh A, Meyer C, Marschalek R, Preiss B, Hasle H, Kjeldsen E. Complex Three-Way Translocation Involving MLL, ELL, RREB1, and CMAHP Genes in an Infant with Acute Myeloid Leukemia and t(6;19;11)(p22.2;p13.1;q23.3). Cytogenet Genome Res 2013; 141:7-15. [DOI: 10.1159/000351224] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2013] [Indexed: 11/19/2022] Open
|
21
|
Bohn OL, Whitten J, Spitzer B, Kobos R, Prockop S, Boulad F, Arcila M, Wang L, Teruya-Feldstein J. Posttransplant Lymphoproliferative Disorder Complicating Hematopoietic Stem Cell Transplantation in a Patient With Dyskeratosis Congenita. Int J Surg Pathol 2012; 21:520-5. [DOI: 10.1177/1066896912468214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dyskeratosis congenita (DC) is a rare inherited disorder characterized by bone marrow failure and cancer predisposition. We present a case of a 28-year-old woman with DC who was admitted for hematopoietic stem cell transplantation (HSCT) for aplastic anemia and who developed acute myeloid leukemia with complex genetic karyotype abnormalities including the MLL (11q23) gene, 1q25, and chromosome 8. After transplantation, a monomorphic Epstein–Barr virus (EBV) negative posttransplant-associated lymphoproliferative disorder (PTLD) diffuse large B-cell lymphoma was discovered involving the liver, omental tissue, and peritoneal fluid samples showing additional MLL (11q23) gene abnormalities by fluorescence in situ hybridization. Despite treatment, the patient died of complications associated with transplantation and invasive fungal infection. This case represents the first bona fide documented case of EBV-negative monomorphic PTLD host derived, with MLL gene abnormalities in a patient with DC, and shows another possible mechanism for the development of a therapy-related lymphoid neoplasm after transplantation.
Collapse
Affiliation(s)
- Olga L. Bohn
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Joseph Whitten
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Rachel Kobos
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Susan Prockop
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Farid Boulad
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Maria Arcila
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Lu Wang
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
22
|
Cerveira N, Lisboa S, Correia C, Bizarro S, Santos J, Torres L, Vieira J, Barros-Silva JD, Pereira D, Moreira C, Meyer C, Oliva T, Moreira I, Martins Â, Viterbo L, Costa V, Marschalek R, Pinto A, Mariz JM, Teixeira MR. Genetic and clinical characterization of 45 acute leukemia patients with MLL gene rearrangements from a single institution. Mol Oncol 2012; 6:553-64. [PMID: 22846743 DOI: 10.1016/j.molonc.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 12/31/2022] Open
Abstract
Chromosomal rearrangements affecting the MLL gene are associated with high-risk pediatric, adult and therapy-associated acute leukemia. In this study, conventional cytogenetic, fluorescence in situ hybridization, and molecular genetic studies were used to characterize the type and frequency of MLL rearrangements in a consecutive series of 45 Portuguese patients with MLL-related leukemia treated in a single institution between 1998 and 2011. In the group of patients with acute lymphoblastic leukemia and an identified MLL fusion partner, 47% showed the presence of an MLL-AFF1 fusion, as a result of a t(4;11). In the remaining cases, a MLL-MLLT3 (27%), a MLL-MLLT1 (20%), or MLL-MLLT4 (7%) rearrangement was found. The most frequent rearrangement found in patients with acute myeloid leukemia was the MLL-MLLT3 fusion (42%), followed by MLL-MLLT10 (23%), MLL-MLLT1 (8%), MLL-ELL (8%), MLL-MLLT4 (4%), and MLL-MLLT11 (4%). In three patients, fusions involving MLL and a septin family gene (SEPT2, SEPT6, and SEPT9), were identified. The most frequently identified chromosomal rearrangements were reciprocal translocations, but insertions and deletions, some cryptic, were also observed. In our series, patients with MLL rearrangements were shown to have a poor prognosis, regardless of leukemia subtype. Interestingly, children with 1 year or less showed a statistically significant better overall survival when compared with both older children and adults. The use of a combined strategy in the initial genetic evaluation of acute leukemia patients allowed us to characterize the pattern of MLL rearrangements in our institution, including our previous discovery of two novel MLL fusion partners, the SEPT2 and CT45A2 genes, and a very rare MLL-MLLT4 fusion variant.
Collapse
Affiliation(s)
- Nuno Cerveira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
De Braekeleer E, Douet-Guilbert N, Meyer C, Morel F, Marschalek R, De Braekeleer M. MLL-ELL fusion gene in two infants with acute monoblastic leukemia and myeloid sarcoma. Leuk Lymphoma 2011; 53:1222-4. [PMID: 22149207 DOI: 10.3109/10428194.2011.648632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
MESH Headings
- Age of Onset
- Fatal Outcome
- Female
- Humans
- Infant
- Infant, Newborn
- Leukemia, Monocytic, Acute/complications
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/therapy
- Myeloid-Lymphoid Leukemia Protein/genetics
- Oncogene Proteins, Fusion/genetics
- Remission Induction
- Sarcoma, Myeloid/complications
- Sarcoma, Myeloid/genetics
Collapse
|
24
|
De Braekeleer E, Meyer C, Douet-Guilbert N, Basinko A, Le Bris MJ, Morel F, Berthou C, Marschalek R, Férec C, De Braekeleer M. Identification of MLL partner genes in 27 patients with acute leukemia from a single cytogenetic laboratory. Mol Oncol 2011; 5:555-63. [PMID: 21900057 DOI: 10.1016/j.molonc.2011.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/16/2011] [Accepted: 08/21/2011] [Indexed: 10/17/2022] Open
Abstract
Chromosomal rearrangements involving the MLL gene have been associated with many different types of hematological malignancies. Fluorescent in situ hybridization with a panel of probes coupled with long distance inverse-PCR was used to identify chromosomal rearrangements involving the MLL gene. Between 1995 and 2010, 27 patients with an acute leukemia were found to have a fusion gene involving MLL. All seven ALL patients with B cell acute lymphoblastic leukemia were characterized by the MLL/AFF1 fusion gene resulting from a translocation (5 patients) or an insertion (2 patients). In the 19 AML patients with acute myeloblastic leukemia, 31.6% of all characterized MLL fusion genes were MLL/MLLT3, 21.1% MLL/ELL, 10.5% MLL/MLLT6 and 10.5% MLL/EPS15. Two patients had rare or undescribed fusion genes, MLL/KIAA0284 and MLL/FLNA. Seven patients (26%) had a complex chromosomal rearrangement (three-way translocations, insertions, deletions) involving the MLL gene. Splicing fusion genes were found in three patients, leading to a MLL/EPS15 fusion in two and a MLL/ELL fusion in a third patient. This study showed that fusion involving the MLL gene can be generated through various chromosomal rearrangements such as translocations, insertions and deletions, some being complex or cryptic. A systematic approach should be used in all cases of acute leukemia starting with FISH analyses using a commercially available MLL split signal probe. Then, the analysis has to be completed, if necessary, by further molecular cytogenetic and genomic PCR methods.
Collapse
|