1
|
Priyamvada P, Ashok G, Mathpal S, Anbarasu A, Ramaiah S. Marine Compound-Carpatamide D as a Potential Inhibitor Against TOP2A and Its Mutant D1021Y in Colorectal Cancer: Insights from DFT, MEP and Molecular Dynamics Simulation. Mol Biotechnol 2024:10.1007/s12033-024-01265-9. [PMID: 39264528 DOI: 10.1007/s12033-024-01265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, hence there is an urgent need for new and effective therapeutic options. DNA topoisomerase 2A (TOP2A) plays a crucial role in the cell cycle and is involved in CRC progression, making it essential to identify structural and functional relevant alterations. Among the 24 mutations, our findings indicated that mutation D1021Y has the most deleterious effect on the TOP2A protein. Based on virtual screening of 31,561 compounds, we identified three lead candidates: 17683 (nigrospoxydon C), 28461 (carpatamide D), and 28853 (6'-O-acetyl-isohomaarbutin), which showed promising inhibitory effect against TOP2A and its mutant form. These compounds were assessed for their stability using density functional theory (DFT) analysis, where carpatamide D possessed the least energy gap of 4.398 eV showing its high reactivity among all. Further, molecular docking also shows the carpatamide D as the top candidate, which exhibited favourable docking energy against the TOP2A wild type (- 7.47 kcal/mol) and with D1021Y mutant (- 7.62 kcal/mol) as compared to reference compound PK1, which showed - 6.11 kcal/mol TOP2A wild type and - 6.24 kcal/mol against mutant type. The molecular dynamics simulation was performed to analyse the dynamics and stability of complex, which revealed TOP2A_28641 and D1021Y_28641 complexes to be stable with least root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF). Molecular mechanics/Poisson-Boltzmann surface area calculations indicated that TOP2A_28641 and D1021Y_28641 complexes exhibited the lowest binding energy of - 23.55 kcal/mol and - 25.03 kcal/mol, respectively. Our findings suggest carpatamide D as a promising lead compound for the TOP2A_D1021Y targeted cancer therapies, which needs further experimental validation.
Collapse
Affiliation(s)
- P Priyamvada
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Shalini Mathpal
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
2
|
Fu Y, Liu K, Zhao L, Jiang X, Wang T. Circular RNA Ubiquitin-associated Protein 2 Silencing Suppresses Bladder Cancer Progression by Downregulating DNA Topoisomerase 2-alpha Through Sponging miR-496. EUR UROL SUPPL 2023; 50:31-42. [PMID: 37101770 PMCID: PMC10123418 DOI: 10.1016/j.euros.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/22/2023] Open
Abstract
Background Circular RNAs (circRNAs) have been uncovered to be implicated in the malignant development of bladder cancer (BC). Objective Herein, this work aimed to investigate the role and mechanism of circRNA ubiquitin-associated protein 2 (circUBAP2) in BC progression. Design setting and participants Quantitative real-time polymerase chain reaction and Western blotting were used for the detection of genes and proteins. Outcome measurements and statistical analysis In vitro functional experiments were conducted using colony formation, 5-ethynyl-2'-deoxyuridine (EdU), Transwell, wound healing, and flow cytometry assays, respectively. A glycolysis analysis was conducted by assessing glucose uptake and lactate production. A murine xenograft model was established to perform in vivo experiments. The binding interaction between miR-496 and circUBAP2 or DNA topoisomerase 2-alpha (TOP2A) was verified using a dual-luciferase reporter assay. Results and limitations CircUBAP2 was highly expressed in BC patients, and high circUBAP2 expression showed a shorter survival rate. Functionally, knockdown of circUBAP2 could suppress BC cell growth, migration, invasion, and aerobic glycolysis in vitro, as well as impede BC growth in nude mice. Mechanistically, circUBAP2 acted as a sponge for miR-496, which targeted TOP2A. Moreover, circUBAP2 could indirectly regulate TOP2A expression through sequestering miR-496. Furthermore, a series of rescue experiments showed that miR-496 inhibition reversed the anticancer action of circUBAP2 knockdown on BC cells. Moreover, miR-496 could attenuate BC cell malignant phenotypes and aerobic glycolysis, which were abolished by TOP2A overexpression. Conclusions Silencing of circUBAP2 could suppress BC growth, invasion, migration, and aerobic glycolysis by the miR-496/TOP2A axis, suggesting a promising target for the molecular targeted therapies of BC. Patient summary Circular RNA ubiquitin-associated protein 2 (circUBAP2) was found to be associated with poor prognosis in bladder cancer (BC). Knockdown of circUBAP2 might suppress BC growth, invasion, migration, and aerobic glycolysis, indicating that it may be a new target for the development of molecular targeted therapy for BC.
Collapse
Affiliation(s)
| | - Kun Liu
- Corresponding author. Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.6 East Huanghe Road, Huai'an, Jiangsu, 223300, China. Tel. +86 517 8087 2607; Fax: +86 517 8087 2607.
| | | | | | | |
Collapse
|
3
|
Chen X, Lv X, Gao L, Liu J, Wang W, Guo L, Frasinyuk MS, Zhang W, Watt DS, Liu C, Liu X. Chalcone Derivative CX258 Suppresses Colorectal Cancer via Inhibiting the TOP2A/Wnt/β-Catenin Signaling. Cells 2023; 12:cells12071066. [PMID: 37048139 PMCID: PMC10093515 DOI: 10.3390/cells12071066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The deregulation in the Wnt/β-catenin signaling pathway is associated with many human cancers, particularly colorectal cancer (CRC) and, therefore, represents a promising target for drug development. We have screened over 300 semisynthetic and natural compounds using a Wnt reporter assay and identified a family of novel chalcone derivatives (CXs) that inhibited Wnt signaling and CRC cell proliferation. Among them, we selected CX258 for further in vitro and in vivo study to investigate the molecular mechanisms. We found that CX258 significantly inhibited β-catenin expression and nuclear translocation, inducing cell cycle arrest at the G2/M phase in CRC cells. Additionally, CX258 reduced the expression of DNA Topoisomerase II alpha (TOP2A) in CRC cells. Moreover, knocking down TOP2A by siRNAs inhibited the Wnt/β-catenin signaling pathway, a finding suggesting that CX258 inhibited Wnt/β-catenin signaling and CRC cell proliferation at least partially by modulating TOP2A. Further studies showed that CDK1 that interacts with TOP2A was significantly reduced after TOP2A knockdown. We demonstrated that CX258 significantly inhibited DLD-1 CRC cell xenografts in SCID mice. In summary, we identified CX258 as a promising candidate for colorectal cancer treatment by targeting the TOP2A/Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaocheng Lv
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Lijie Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Wei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Lichao Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mykhaylo S. Frasinyuk
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, 02094 Kyiv, Ukraine
| | - Wen Zhang
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - David S. Watt
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
An integrated multi-omics analysis of topoisomerase family in pan-cancer: Friend or foe? PLoS One 2022; 17:e0274546. [PMID: 36288358 PMCID: PMC9604985 DOI: 10.1371/journal.pone.0274546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Topoisomerases are nuclear enzymes that get to the bottom of topological troubles related with DNA all through a range of genetic procedures. More and more studies have shown that topoisomerase-mediated DNA cleavage plays crucial roles in tumor cell death and carcinogenesis. There is however still a lack of comprehensive multi-omics studies related to topoisomerase family genes from a pan-cancer perspective. METHODS In this study, a multiomics pan-cancer analysis of topoisomerase family genes was conducted by integrating over 10,000 multi-dimensional cancer genomic data across 33 cancer types from The Cancer Genome Atlas (TCGA), 481 small molecule drug response data from cancer therapeutics response portal (CTRP) as well as normal tissue data from Genotype-Tissue Expression (GTEx). Finally, overall activity-level analyses of topoisomerase in pan-cancers were performed by gene set variation analysis (GSVA), together with differential expression, clinical relevancy, immune cell infiltration and regulation of cancer-related pathways. RESULTS Dysregulated gene expression of topoisomerase family were related to genomic changes and abnormal epigenetic modifications. The expression levels of topoisomerase family genes could significantly impact cancer progression, intratumoral heterogeneity, alterations in the immunological condition and regulation of the cancer marker-related pathways, which in turn caused the differences in potential drugs sensitivity and the distinct prognosis of patients. CONCLUSION It was anticipated that topoisomerase family genes would become novel prognostic biomarkers for cancer patients and provide new insights for the diagnosis and treatment of tumors.
Collapse
|
5
|
Chen S, Fang Y, Sun L, He R, He B, Zhang S. Long Non-Coding RNA: A Potential Strategy for the Diagnosis and Treatment of Colorectal Cancer. Front Oncol 2021; 11:762752. [PMID: 34778084 PMCID: PMC8578871 DOI: 10.3389/fonc.2021.762752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), being one of the most commonly diagnosed cancers worldwide, endangers human health. Because the pathological mechanism of CRC is not fully understood, there are many challenges in the prevention, diagnosis, and treatment of this disease. Long non-coding RNAs (lncRNAs) have recently drawn great attention for their potential roles in the different stages of CRC formation, invasion, and progression, including regulation of molecular signaling pathways, apoptosis, autophagy, angiogenesis, tumor metabolism, immunological responses, cell cycle, and epithelial-mesenchymal transition (EMT). This review aims to discuss the potential mechanisms of several oncogenic lncRNAs, as well as several suppressor lncRNAs, in CRC occurrence and development to aid in the discovery of new methods for CRC diagnosis, treatment, and prognosis assessment.
Collapse
Affiliation(s)
- Shanshan Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Fang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyu Sun
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruonan He
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Zhang
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Carvalho RF, do Canto LM, Cury SS, Frøstrup Hansen T, Jensen LH, Rogatto SR. Drug Repositioning Based on the Reversal of Gene Expression Signatures Identifies TOP2A as a Therapeutic Target for Rectal Cancer. Cancers (Basel) 2021; 13:5492. [PMID: 34771654 PMCID: PMC8583090 DOI: 10.3390/cancers13215492] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Rectal cancer is a common disease with high mortality rates and limited therapeutic options. Here we combined the gene expression signatures of rectal cancer patients with the reverse drug-induced gene-expression profiles to identify drug repositioning candidates for cancer therapy. Among the predicted repurposable drugs, topoisomerase II inhibitors (doxorubicin, teniposide, idarubicin, mitoxantrone, and epirubicin) presented a high potential to reverse rectal cancer gene expression signatures. We showed that these drugs effectively reduced the growth of colorectal cancer cell lines closely representing rectal cancer signatures. We also found a clear correlation between topoisomerase 2A (TOP2A) gene copy number or expression levels with the sensitivity to topoisomerase II inhibitors. Furthermore, CRISPR-Cas9 and shRNA screenings confirmed that loss-of-function of the TOP2A has the highest efficacy in reducing cellular proliferation. Finally, we observed significant TOP2A copy number gains and increased expression in independent cohorts of rectal cancer patients. These findings can be translated into clinical practice to evaluate TOP2A status for targeted and personalized therapies based on topoisomerase II inhibitors in rectal cancer patients.
Collapse
Affiliation(s)
- Robson Francisco Carvalho
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Functional and Structural Biology—Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Luisa Matos do Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Sarah Santiloni Cury
- Department of Functional and Structural Biology—Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Torben Frøstrup Hansen
- Department of Oncology, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (T.F.H.); (L.H.J.)
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (T.F.H.); (L.H.J.)
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| |
Collapse
|
7
|
Tarpgaard LS, Qvortrup C, Nielsen SL, Stenvang J, Detlefsen S, Brünner N, Pfeiffer P. New use for old drugs: Epirubicin in colorectal cancer. Acta Oncol 2021; 60:954-956. [PMID: 33783307 DOI: 10.1080/0284186x.2021.1904519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Camilla Qvortrup
- Department of Oncology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Signe L. Nielsen
- Faculty of Health and Medical Sciences, Institute of Drug Design and Pharmacology, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Stenvang
- Faculty of Health and Medical Sciences, Institute of Drug Design and Pharmacology, University of Copenhagen, Frederiksberg, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Nils Brünner
- Faculty of Health and Medical Sciences, Institute of Drug Design and Pharmacology, University of Copenhagen, Frederiksberg, Denmark
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Patil AR, Leung MY, Roy S. Identification of Hub Genes in Different Stages of Colorectal Cancer through an Integrated Bioinformatics Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5564. [PMID: 34070979 PMCID: PMC8197092 DOI: 10.3390/ijerph18115564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer that contributes to cancer-related morbidity. However, the differential expression of genes in different phases of CRC is largely unknown. Moreover, very little is known about the role of stress-survival pathways in CRC. We sought to discover the hub genes and identify their roles in several key pathways, including oxidative stress and apoptosis in the different stages of CRC. To identify the hub genes that may be involved in the different stages of CRC, gene expression datasets were obtained from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) common among the different datasets for each group were obtained using the robust rank aggregation method. Then, gene enrichment analysis was carried out with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Finally, the protein-protein interaction networks were constructed using the Cytoscape software. We identified 40 hub genes and performed enrichment analysis for each group. We also used the Oncomine database to identify the DEGs related to stress-survival and apoptosis pathways involved in different stages of CRC. In conclusion, the hub genes were found to be enriched in several key pathways, including the cell cycle and p53 signaling pathway. Some of the hub genes were also reported in the stress-survival and apoptosis pathways. The hub DEGs revealed from our study may be used as biomarkers and may explain CRC development and progression mechanisms.
Collapse
Affiliation(s)
- Abhijeet R. Patil
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.P.); (M.-Y.L.)
| | - Ming-Ying Leung
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA; (A.R.P.); (M.-Y.L.)
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
9
|
Basnet U, Patil AR, Kulkarni A, Roy S. Role of Stress-Survival Pathways and Transcriptomic Alterations in Progression of Colorectal Cancer: A Health Disparities Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5525. [PMID: 34063993 PMCID: PMC8196775 DOI: 10.3390/ijerph18115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/09/2022]
Abstract
Every year, more than a million individuals are diagnosed with colorectal cancer (CRC) across the world. Certain lifestyle and genetic factors are known to drive the high incidence and mortality rates in some groups of individuals. The presence of enormous amounts of reactive oxygen species is implicated for the on-set and carcinogenesis, and oxidant scavengers are thought to be important in CRC therapy. In this review, we focus on the ethnicity-based CRC disparities in the U.S., the negative effects of oxidative stress and apoptosis, and gene regulation in CRC carcinogenesis. We also highlight the use of antioxidants for CRC treatment, along with screening for certain regulatory genetic elements and oxidative stress indicators as potential biomarkers to determine the CRC risk and progression.
Collapse
Affiliation(s)
- Urbashi Basnet
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Abhijeet R. Patil
- Computational Science Program, University of Texas at El Paso, El Paso, TX 79968, USA;
| | - Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (U.B.); (A.K.)
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
10
|
Silva-Fisher JM, Dang HX, White NM, Strand MS, Krasnick BA, Rozycki EB, Jeffers GGL, Grossman JG, Highkin MK, Tang C, Cabanski CR, Eteleeb A, Mudd J, Goedegebuure SP, Luo J, Mardis ER, Wilson RK, Ley TJ, Lockhart AC, Fields RC, Maher CA. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun 2020; 11:2156. [PMID: 32358485 PMCID: PMC7195452 DOI: 10.1038/s41467-020-15547-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/16/2020] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal malignancy in the U.S.A. and approximately 50% of patients develop metastatic disease (mCRC). Despite our understanding of long non-coding RNAs (lncRNAs) in primary colon cancer, their role in mCRC and treatment resistance remains poorly characterized. Therefore, through transcriptome sequencing of normal, primary, and distant mCRC tissues we find 148 differentially expressed RNAs Associated with Metastasis (RAMS). We prioritize RAMS11 due to its association with poor disease-free survival and promotion of aggressive phenotypes in vitro and in vivo. A FDA-approved drug high-throughput viability assay shows that elevated RAMS11 expression increases resistance to topoisomerase inhibitors. Subsequent experiments demonstrate RAMS11-dependent recruitment of Chromobox protein 4 (CBX4) transcriptionally activates Topoisomerase II alpha (TOP2α). Overall, recent clinical trials using topoisomerase inhibitors coupled with our findings of RAMS11-dependent regulation of TOP2α supports the potential use of RAMS11 as a biomarker and therapeutic target for mCRC.
Collapse
Affiliation(s)
- Jessica M Silva-Fisher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ha X Dang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- The McDonnell Genome Institute, St. Louis, MO, USA
| | - Nicole M White
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew S Strand
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily B Rozycki
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gejae G L Jeffers
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie G Grossman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Maureen K Highkin
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cynthia Tang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Abdallah Eteleeb
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingqin Luo
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Richard K Wilson
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Timothy J Ley
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Ryan C Fields
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- The McDonnell Genome Institute, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
An Explorative Analysis of ABCG2/TOP-1 mRNA Expression as a Biomarker Test for FOLFIRI Treatment in Stage III Colon Cancer Patients: Results from Retrospective Analyses of the PETACC-3 Trial. Cancers (Basel) 2020; 12:cancers12040977. [PMID: 32326511 PMCID: PMC7226226 DOI: 10.3390/cancers12040977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biomarker-guided treatment for patients with colon cancer is needed. We tested ABCG2 and topoisomerase 1 (TOP1) mRNA expression as predictive biomarkers for irinotecan benefit in the PETACC-3 patient cohort. The present study included 580 patients with mRNA expression data from Stage III colon cancer samples from the PETACC-3 study, which randomized the patients to Fluorouracil/leucovorin (5FUL) +/- irinotecan. The primary end-points were recurrence free survival (RFS) and overall survival (OS). Patients were divided into one group with high ABCG2 expression (above median) and low TOP-1 expression (below 75 percentile) ("resistant") (n = 216) and another group including all other combinations of these two genes ("sensitive") (n = 364). The rationale for the cut-offs were based on the distribution of expression levels in the PETACC-3 Stage II set of patients, where ABCG2 was unimodal and TOP1 was bimodal with a high expression level mode in the top quarter of the patients. Cox proportional hazards regression was used to estimate the hazard ratios and the association between variables and end-points and log-rank tests to assess the statistical significance of differences in survival between groups. Kaplan-Meier estimates of the survival functions were used for visualization and estimation of survival rates at specific time points. Significant differences were found for both RFS (Hazard ratio (HR): 0.63 (0.44-0.92); p = 0.016) and OS (HR: 0.60 (0.39-0.93); p = 0.02) between the two biomarker groups when the patients received FOLFIRI (5FUL+irinotecan). Considering only the Microsatellite Stable (MSS) and Microsatellite Instability-Low (MSI-L) patients (n = 470), the differences were even more pronounced. In contrast, no significant differences were observed between the groups when patients received 5FUL alone. This study shows that the combination of ABCG2 and TOP1 gene expression significantly divided the Stage III colon cancer patients into two groups regarding benefit from adjuvant treatment with FOLFIRI but not 5FUL.
Collapse
|
12
|
Ding X, Duan H, Luo H. Identification of Core Gene Expression Signature and Key Pathways in Colorectal Cancer. Front Genet 2020; 11:45. [PMID: 32153633 PMCID: PMC7046836 DOI: 10.3389/fgene.2020.00045] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Objective Colorectal cancer (CRC) is considered the most prevalent malignant tumor that contributes to high cancer-related mortality. However, the signaling pathways involved in CRC and CRC-driven genes are largely unknown. We sought to discover a novel biomarker in CRC. Materials and Methods All clinical CRC samples (n = 20) were from Renmin Hospital of Wuhan University. We first selected MAD2L1 by integrated bioinformatics analysis of a GSE dataset. Next, the expression of MAD2L1 in tissues and cell lines was verified by quantitative real-time PCR. The effects of MAD2L1 on cell growth, proliferation, the cell cycle, and apoptosis were examined by in vitro assays. Results We identified 683 shared DEGs (420 upregulated and 263 downregulated), and the top twenty genes (CDK1, CCNA2, TOP2A, PLK1, MAD2L1, AURKA, BUB1B, UBE2C, TPX2, RRM2, KIF11, NCAPG, MELK, NUSAP1, MCM4, RFC4, PTTG1, CHEK1, CEP55, DTL) were selected by integrated analysis. These hub genes were significantly overexpressed in CRC samples and were positively correlated. Our data revealed that the expression of MAD2L1 in CRC tissues is higher than that in normal tissues. MAD2L1 knockdown significantly suppressed CRC cell growth by impairing cell cycle progression and inducing cell apoptosis. Conclusion MAD2L1, as a novel oncogenic gene, plays a role in regulating cancer cell growth and apoptosis and could be used as a new biomarker for diagnosis and therapy in CRC.
Collapse
Affiliation(s)
- Xiang Ding
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Houyu Duan
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Esteban-Medina M, Peña-Chilet M, Loucera C, Dopazo J. Exploring the druggable space around the Fanconi anemia pathway using machine learning and mechanistic models. BMC Bioinformatics 2019; 20:370. [PMID: 31266445 PMCID: PMC6604281 DOI: 10.1186/s12859-019-2969-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In spite of the abundance of genomic data, predictive models that describe phenotypes as a function of gene expression or mutations are difficult to obtain because they are affected by the curse of dimensionality, given the disbalance between samples and candidate genes. And this is especially dramatic in scenarios in which the availability of samples is difficult, such as the case of rare diseases. RESULTS The application of multi-output regression machine learning methodologies to predict the potential effect of external proteins over the signaling circuits that trigger Fanconi anemia related cell functionalities, inferred with a mechanistic model, allowed us to detect over 20 potential therapeutic targets. CONCLUSIONS The use of artificial intelligence methods for the prediction of potentially causal relationships between proteins of interest and cell activities related with disease-related phenotypes opens promising avenues for the systematic search of new targets in rare diseases.
Collapse
Affiliation(s)
- Marina Esteban-Medina
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - María Peña-Chilet
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - Carlos Loucera
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain
| | - Joaquín Dopazo
- Clinical Bioinformatics Area. Fundación Progreso y Salud (FPS). CDCA, Hospital Virgen del Rocio, 41013 Sevilla, Spain
- Bioinformatics in Rare Diseases (BiER). Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013 Sevilla, Spain
- INB-ELIXIR-es, FPS, Hospital Virgen del Rocío, 42013 Sevilla, Spain
| |
Collapse
|
14
|
Zhu X, Wang D, Lin Q, Wu G, Yuan S, Ye F, Fan Q. Screening key lncRNAs for human rectal adenocarcinoma based on lncRNA-mRNA functional synergistic network. Cancer Med 2019; 8:3875-3891. [PMID: 31116002 PMCID: PMC6639256 DOI: 10.1002/cam4.2236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022] Open
Abstract
Background Rectal adenocarcinoma (READ) is one of the deadliest malignancies, and the molecular mechanisms underlying the initiation and development of READ remain largely unknown. In this study, we aimed to find key long noncoding RNAs (lncRNAs) and mRNAs in READ by RNA sequencing. Methods RNA sequencing was performed to identify differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) between READ and normal tissue. READ‐specific protein‐protein interaction (PPI), DElncRNA‐DEmRNA coexpression, and DElncRNA‐nearby DEmRNA interaction networks were constructed. DEmRNAs and DEmRNAs coexpressed with DElncRNAs were functionally annotated. Results A total of 2113 DEmRNAs and 150 DElncRNAs between READ and normal tissue were identified. The PPI network identified several hub proteins, including CDK1, AURKB, CDC6, FOXQ1, NUF2, and TOP2A. The DElncRNA‐DEmRNA coexpression and DElncRNA‐nearby DEmRNA interaction networks identified some hub lncRNAs, including CCAT1, LOC105374879, GAS5, and B3GALT5‐AS1. The colorectal cancer pathway, the intestinal immune network for IgA production and the p53 signaling pathway were three pathways significantly enriched in DEmRNAs and DEmRNAs coexpressed with DElncRNAs. MSH6 coexpressed with two DElncRNAs (LOC105374879 and CASC15) and BCL2 coexpressed with B3GALT5‐AS1 were significantly enriched in the colorectal cancer signaling pathway. TNFRSF17 coexpressed with B3GALT5‐AS1 was enriched in the intestinal immune network for IgA production. CCNB2 coexpressed with LOC105374879 was enriched in the p53 signaling pathway. Conclusion A total of four DEmRNAs (MSH6, BCL2, TNFRSF17, and CCNB2) and three DElncRNAs (LOC105374879, CASC15, and B3GALT5‐AS1) may be involved in the pathogenesis of READ; this data may contribute to understanding the mechanisms of READ and the development of therapeutic strategies for READ.
Collapse
Affiliation(s)
- Xiongwen Zhu
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Dongguo Wang
- Department of Clinical Lab Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Qianyuan Lin
- Department of Medical Technology and Pharmacy, Renji college of Wenzhou Medical University, Wenzhou, China
| | - Guiyang Wu
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Shichao Yuan
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Fubo Ye
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Qinghao Fan
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| |
Collapse
|
15
|
Pottier C, Kriegsmann M, Alberts D, Smargiasso N, Baiwir D, Mazzucchelli G, Herfs M, Fresnais M, Casadonte R, Delvenne P, Pauw E, Longuespée R. Microproteomic Profiling of High‐Grade Squamous Intraepithelial Lesion of the Cervix: Insight into Biological Mechanisms of Dysplasia and New Potential Diagnostic Markers. Proteomics Clin Appl 2018; 13:e1800052. [DOI: 10.1002/prca.201800052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/06/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Charles Pottier
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
- Department of Medical OncologyUniversity of Liège Liège Belgium
| | - Mark Kriegsmann
- Institute of pathologyUniversity of Heidelberg Heidelberg Germany
| | - Deborah Alberts
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Nicolas Smargiasso
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | | | - Gabriel Mazzucchelli
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Michael Herfs
- Laboratory of Experimental PathologyGIGA‐CancerDepartment of PathologyUniversity of Liège Liège Belgium
| | - Margaux Fresnais
- Department of Clinical Pharmacology and PharmacoepidemiologyUniversity of Heidelberg Heidelberg Germany
- German Cancer Consortium (DKTK)‐German Cancer Research Center (DKFZ) Heidelberg Germany
| | | | - Philippe Delvenne
- Laboratory of Experimental PathologyGIGA‐CancerDepartment of PathologyUniversity of Liège Liège Belgium
| | - Edwin Pauw
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
| | - Rémi Longuespée
- Mass Spectrometry LaboratoryGIGA‐ResearchDepartment of ChemistryUniversity of Liège Liège Belgium
- Institute of pathologyUniversity of Heidelberg Heidelberg Germany
- Proteopath GmbH Trier Germany
| |
Collapse
|
16
|
Identification of Common Genes Refers to Colorectal Carcinogenesis with Paired Cancer and Noncancer Samples. DISEASE MARKERS 2018; 2018:3452739. [PMID: 29651323 PMCID: PMC5830953 DOI: 10.1155/2018/3452739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is a malignant tumor which harmed human beings' health. The aim of this study was to explore common biomarkers associated with colorectal carcinogenesis in paired cancer and noncancer samples. At first, fifty-nine pairs of colorectal cancer and noncancer samples from three gene expression datasets were collected and analyzed. Then, 181 upregulation and 282 downregulation common differential expression genes (DEGs) were found. Next, functional annotation was performed in the DAVID database with the DEGs. Finally, real-time polymerase chain reaction (PCR) assay was conducted to verify the analyses in sixteen colorectal cancer and individual-matched adjacent mucosa samples. Real-time PCR showed that MCM2, RNASEH2A, and TOP2A were upregulated in colorectal cancer compared with adjacent mucosa samples (MCM2, P < 0.001; RNASEH2A, P < 0.001; TOP2A, P = 0.001). These suggested that 463 DEGs might contribute to colorectal carcinogenesis.
Collapse
|
17
|
Pei YF, Yin XM, Liu XQ. TOP2A induces malignant character of pancreatic cancer through activating β-catenin signaling pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:197-207. [DOI: 10.1016/j.bbadis.2017.10.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/07/2017] [Accepted: 10/13/2017] [Indexed: 12/20/2022]
|
18
|
High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine. Fam Cancer 2017; 15:405-12. [PMID: 26875156 PMCID: PMC4901118 DOI: 10.1007/s10689-016-9884-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Approximately 15 % of colorectal carcinomas (CRC) display high level microsatellite instability (MSI-H) due to either a germline mutation in one of the genes responsible for DNA mismatch repair (Lynch syndrome, 3 %) or somatic inactivation of the same pathway, most commonly through hypermethylation of the MLH1 gene (sporadic MSI-H, 12 %). Although heterogeneous, MSI-H colorectal carcinomas as a group show some distinct biologic characteristics when compared to CRC with stable or low level microsatellite instability. In the present review we will highlight therapeutically relevant characteristics of MSI-H tumors which could lead to specific responses to some conventional chemotherapy or novel targeted therapy agents.
Collapse
|
19
|
Epigenomic Regulation of Androgen Receptor Signaling: Potential Role in Prostate Cancer Therapy. Cancers (Basel) 2017; 9:cancers9010009. [PMID: 28275218 PMCID: PMC5295780 DOI: 10.3390/cancers9010009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/02/2017] [Accepted: 01/11/2017] [Indexed: 12/18/2022] Open
Abstract
Androgen receptor (AR) signaling remains the major oncogenic pathway in prostate cancer (PCa). Androgen-deprivation therapy (ADT) is the principle treatment for locally advanced and metastatic disease. However, a significant number of patients acquire treatment resistance leading to castration resistant prostate cancer (CRPC). Epigenetics, the study of heritable and reversible changes in gene expression without alterations in DNA sequences, is a crucial regulatory step in AR signaling. We and others, recently described the technological advance Chem-seq, a method to identify the interaction between a drug and the genome. This has permitted better understanding of the underlying regulatory mechanisms of AR during carcinogenesis and revealed the importance of epigenetic modifiers. In screening for new epigenomic modifiying drugs, we identified SD-70, and found that this demethylase inhibitor is effective in CRPC cells in combination with current therapies. The aim of this review is to explore the role of epigenetic modifications as biomarkers for detection, prognosis, and risk evaluation of PCa. Furthermore, we also provide an update of the recent findings on the epigenetic key processes (DNA methylation, chromatin modifications and alterations in noncoding RNA profiles) involved in AR expression and their possible role as therapeutic targets.
Collapse
|
20
|
Cuminaldehyde from Cinnamomum verum Induces Cell Death through Targeting Topoisomerase 1 and 2 in Human Colorectal Adenocarcinoma COLO 205 Cells. Nutrients 2016; 8:nu8060318. [PMID: 27231935 PMCID: PMC4924159 DOI: 10.3390/nu8060318] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
Cinnamomum verum, also called true cinnamon tree, is employed to make the seasoning cinnamon. Furthermore, the plant has been used as a traditional Chinese herbal medication. We explored the anticancer effect of cuminaldehyde, an ingredient of the cortex of the plant, as well as the molecular biomarkers associated with carcinogenesis in human colorectal adenocarcinoma COLO 205 cells. The results show that cuminaldehyde suppressed growth and induced apoptosis, as proved by depletion of the mitochondrial membrane potential, activation of both caspase-3 and -9, and morphological features of apoptosis. Moreover, cuminaldehyde also led to lysosomal vacuolation with an upregulated volume of acidic compartment and cytotoxicity, together with inhibitions of both topoisomerase I and II activities. Additional study shows that the anticancer activity of cuminaldehyde was observed in the model of nude mice. Our results suggest that the anticancer activity of cuminaldehyde in vitro involved the suppression of cell proliferative markers, topoisomerase I as well as II, together with increase of pro-apoptotic molecules, associated with upregulated lysosomal vacuolation. On the other hand, in vivo, cuminaldehyde diminished the tumor burden that would have a significant clinical impact. Furthermore, similar effects were observed in other tested cell lines. In short, our data suggest that cuminaldehyde could be a drug for chemopreventive or anticancer therapy.
Collapse
|
21
|
Tarpgaard LS, Qvortrup C, Nygård SB, Nielsen SL, Andersen DR, Jensen NF, Stenvang J, Detlefsen S, Brünner N, Pfeiffer P. A phase II study of Epirubicin in oxaliplatin-resistant patients with metastatic colorectal cancer and TOP2A gene amplification. BMC Cancer 2016; 16:91. [PMID: 26867764 PMCID: PMC4750171 DOI: 10.1186/s12885-016-2124-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/03/2016] [Indexed: 12/28/2022] Open
Abstract
ᅟ The overall purpose of this study is to provide proof of concept for introducing the anthracycline epirubicin as an effective, biomarker-guided treatment for metastatic colorectal cancer (mCRC) patients who are refractory to treatment with oxaliplatin-based chemotherapy and have TOP2A gene amplification in their tumor cells. Background Epirubicin is an anthracycline that targets DNA topoisomerase 2-α enzyme encoded by the TOP2A gene. It is used for treatment of several malignancies, but currently not in CRC. TOP2A gene amplifications predict improved efficacy of epirubicin in patients with breast cancer and thus could be an alternative option for patients with CRC and amplified TOP2A gene. We have previously analysed the frequency of TOP2A gene aberrations in CRC and found that 46.6 % of these tumors had TOP2A copy gain and 2.0 % had loss of TOP2A when compared to adjacent normal tissue. The TOP2A gene is located on chromosome 17 and when the TOP2A/CEN-17 ratio was applied to identify tumors with gene loss or amplifications, 10.5 % had a ratio ≥ 1.5 consistent with gene amplification and 2.6 % had a ratio ≤ 0.8 suggesting gene deletions. Based on these observations and the knowledge gained from treatment of breast cancer patients, we have initiated a prospective clinical, phase II protocol using epirubicin (90 mg/m2 iv q 3 weeks) in mCRC patients, who are refractory to treatment with oxaliplatin. Methods/Design The study is an open label, single arm, phase II study, investigating the efficacy of epirubicin in patients with oxaliplatin refractory mCRC and with a cancer cell TOP2A/CEN-17 ratio ≥ 1.5. TOP2A gene amplification measured by fluorescence in situ hybridization. A total of 25 evaluable patients (15 + 10 in two steps) will be included (Simon’s two-stage minimax design). Every nine weeks, response is measured by computed tomography imaging and evaluated according to RECIST 1.1. The primary end-point of the study is progression-free survival. Trial registration Eudract no. 2013-001648-79.
Collapse
Affiliation(s)
- Line S Tarpgaard
- Department of Oncology, Odense University Hospital, Odense, Denmark.
| | - Camilla Qvortrup
- Department of Oncology, Odense University Hospital, Odense, Denmark.
| | - Sune B Nygård
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark. .,Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Signe L Nielsen
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark.
| | - Diana R Andersen
- Department of Oncology, Odense University Hospital, Odense, Denmark.
| | - Niels Frank Jensen
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark.
| | - Jan Stenvang
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark.
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, Odense, Denmark.
| | - Nils Brünner
- Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark.
| | - Per Pfeiffer
- Department of Oncology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
22
|
Sønderstrup IMH, Nygård SB, Poulsen TS, Linnemann D, Stenvang J, Nielsen HJ, Bartek J, Brünner N, Nørgaard P, Riis L. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers. Mol Oncol 2015; 9:1207-17. [PMID: 25777966 DOI: 10.1016/j.molonc.2015.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/19/2015] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Topoisomerase 1 (TOP1) and 2A (TOP2A) are potential predictive biomarkers for irinotecan and anthracycline treatment, respectively, in colorectal cancer (CRC), and we have recently reported a high frequency of gene gain of the TOP1 and TOP2A genes in CRC. Furthermore, Mismatch Repair (MMR) subtypes of CRC have been associated with benefit from adjuvant chemotherapy of primary CRC. Given the involvement of the topoisomerase enzymes in DNA replication and repair, we raised the hypothesis that an association may exist between TOP gene copy numbers and MMR proficiency/deficiency in CRC. MATERIAL AND METHODS Test cohort: FISH analysis with an in-house TOP1/CEN20 probe mix and a commercially available TOP2A/CEN17 (Dako, Glostrup, Denmark) probe mix was performed on archival formalin fixed paraffin embedded (FFPE) tissue samples from 18 patients with proficient MMR (pMMR) CRC and 18 patients with deficient MMR (dMMR) CRC. TOP1 and TOP2A gene copy numbers and their ratios per nucleus were correlated with MMR status using the Mann-Whitney test. Validation cohort: FFPE samples from 154 patients with primary stage III CRC (originally included in the RANX05 study) were classified according to MMR status by immunohistochemical analysis using validated antibodies for MLH1, MLH2, MSH6 and PMS2, and information on TOP1, CEN20, TOP2A and CEN17 status was previously published for this cohort. RESULTS The observed TOP1 gene copy numbers in the 36 CRC test cohort were significantly greater (p < 0.01) in the pMMR subgroup (mean: 3.84, SD: 2.03) than in the dMMR subgroup (mean: 1.50, SD: 0.12). Similarly, the TOP2A copy numbers were significantly greater (p < 0.01) in the pMMR subgroup (mean: 1.99, SD: 0.52) than in the dMMR subgroup (mean: 1.52, SD: 0.10). These findings were confirmed in the validation cohort, where in the pMMR subgroup 51% had ≥2 extra TOP1 copies per cell, while all tumors classified as dMMR had diploid TOP1 status and mean TOP2A copy numbers were 2.30 (SD: 1.36) and 1.80 (SD: 0.31) (p = 0.01) in the pMMR subgroup vs. dMMR subgroup, respectively. DISCUSSION AND CONCLUSION Our results show that TOP1 and TOP2A gene copy numbers are increased in the pMMR subgroup. We propose that this preference may reflect a selective pressure to gain and/or maintain the gained extra copies of topoisomerase genes whose products are required to cope with high replication stress present in the pMMR tumors, thereby providing a survival advantage selectively in pMMR tumors. Future studies should test this concept and explore potential differences between pMMR and dMMR tumors in response to Top1 and Top2 inhibitors.
Collapse
Affiliation(s)
| | - Sune Boris Nygård
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark.
| | - Tim Svenstrup Poulsen
- Department of Pathology, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | - Dorte Linnemann
- Department of Pathology, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | - Jan Stenvang
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark.
| | - Hans Jørgen Nielsen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Hvidovre, Kettegårds Allé 30, DK-2650 Hvidovre, Denmark.
| | - Jiri Bartek
- Danish Cancer Research Center, The Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen Ø, Denmark; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Tr Svobody 8, 771 26 Olomouc, Czech Republic.
| | - Nils Brünner
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, Grønnegårdsvej 15, DK-1870 Frederiksberg C, Denmark.
| | - Peter Nørgaard
- Department of Pathology, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | - Lene Riis
- Department of Pathology, Herlev Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| |
Collapse
|