1
|
Cox M, Vitello D, Chawla A. Translating the multifaceted use of liquid biopsy to management of early disease in pancreatic adenocarcinoma. Front Oncol 2025; 15:1520717. [PMID: 40182037 PMCID: PMC11966063 DOI: 10.3389/fonc.2025.1520717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality, primarily due to late stage at diagnosis. This review examines the multifaceted applications of liquid biopsy and circulating tumor DNA (ctDNA) analysis in the diagnosis and management of PDAC. We review the current literature on the technological advancements in liquid biopsy analysis such as next generation sequencing (NGS) and digital droplet PCR (ddPCR) as well as multi-omics technologies, highlighting their potential for accurate molecular subtyping through ctDNA analysis. This review highlights the significant role of ctDNA in the assessment of tumor behavior, disease subtyping, prediction and monitoring of treatment response, and evaluation of minimal residual disease. We discuss the implications of integrating liquid biopsy techniques into clinical practice as well as its challenges and limitations. By drawing insights from recent studies, this review aims to provide a comprehensive overview of how liquid biopsy and ctDNA analysis can enhance early disease management strategies in PDAC. We underscore the need for additional prospective studies and clinical trials to validate its feasibility and accuracy in order to establish clinical utility, with the ultimate goal of routine incorporation into practice to improve patient outcomes and transform the treatment landscape for PDAC.
Collapse
Affiliation(s)
- Madison Cox
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, United States
| | - Dominic Vitello
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, United States
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Cox M, Vitello DJ, Chawla A. The Current Role of Circulating Tumor DNA in the Management of Pancreatic Cancer. J Gastrointest Cancer 2025; 56:44. [PMID: 39808248 DOI: 10.1007/s12029-024-01129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer-related death by 2030. Early identification is rare, with a 5-year overall survival (OS) of less than 10%. Advances in the understanding of PDAC tumor biology are needed to improve these outcomes. Circulating tumor DNA (ctDNA) represents a promising novel biomarker in the identification and management of PDAC. Drawn from peripheral blood and analyzed using a variety of techniques, the detection of ctDNA in PDAC has been associated with shorter OS, minimal residual disease presence, and shorter recurrence-free survival. The use of ctDNA has also been examined as an indicator of therapeutic resistance, susceptibility to targeted therapy, and therapeutic response. While promising, ctDNA analysis is limited by its low rates of detection in some settings and lack of predictive ability in others. Many studies examining the utility of ctDNA for the management of PDAC have been relatively small retrospective cohort studies. The current findings will need to be validated by incorporation of ctDNA analysis into cancer registries and larger prospective studies. Given the current, rapid evolution in the field, it is possible that with time, ctDNA will be more routinely incorporated into the clinical management of PDAC.
Collapse
Affiliation(s)
- Madison Cox
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, USA
| | - Dominic J Vitello
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA.
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, USA.
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Shen Y, Zhang X, Zhang L, Zhang Z, Lyu B, Lai Q, Li Q, Zhang Y, Ying J, Song J. Performance evaluation of a CRISPR Cas9-based selective exponential amplification assay for the detection of KRAS mutations in plasma of patients with advanced pancreatic cancer. J Clin Pathol 2024; 77:853-860. [PMID: 37679033 DOI: 10.1136/jcp-2023-208974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
AIMS Pancreatic ductal adenocarcinoma (PDAC) is highly malignant, with shockingly mortality rates. KRAS oncoprotein is the main molecular target for PDAC. Liquid biopsies, such as the detection of circulating tumour DNA (ctDNA), offer a promising approach for less invasive diagnosis. In this study, we aim to evaluate the precision and utility of programmable enzyme-based selective exponential amplification (PASEA) assay for rare mutant alleles identification. METHODS PASEA uses CRISPR-Cas9 to continuously shear wild-type alleles during recombinase polymerase amplification, while mutant alleles are exponentially amplified, ultimately reaching a level detectable by Sanger sequencing. We applied PASEA to detect KRAS mutations in plasma ctDNA. A total of 153 patients with stage IV PDAC were enrolled. We investigated the relationship between ctDNA detection rates with various clinical factors. RESULTS Our results showed 91.43% vs 44.83% detection rate in patients of prechemotherapy and undergoing chemotherapy. KRAS ctDNA was more prevalent in patients with liver metastases and patients did not undergo surgical resection. Patients with liver metastases prior to chemotherapy showed a sensitivity of 95.24% (20/21) with PASEA. Through longitudinal monitoring, we found ctDNA may be a more accurate biomarker for monitoring chemotherapy efficacy in PDAC than CA19-9. CONCLUSIONS Our study sheds light on the potential of ctDNA as a valuable complementary biomarker for precision targeted therapy, emphasising the importance of considering chemotherapy status, metastatic sites and surgical history when evaluating its diagnostic potential in PDAC. PASEA technology provides a reliable, cost-effective and minimally invasive method for detecting ctDNA of PDAC.
Collapse
Affiliation(s)
- Yue Shen
- School of life sciences, Tianjin University, Tianjin, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiaoling Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Liyi Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zuoying Zhang
- School of life sciences, Tianjin University, Tianjin, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Bao Lyu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qian Lai
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Yuhua Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jieer Ying
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jinzhao Song
- School of life sciences, Tianjin University, Tianjin, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Dubrovsky G, Ross A, Jalali P, Lotze M. Liquid Biopsy in Pancreatic Ductal Adenocarcinoma: A Review of Methods and Applications. Int J Mol Sci 2024; 25:11013. [PMID: 39456796 PMCID: PMC11507494 DOI: 10.3390/ijms252011013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a malignancy with one of the highest mortality rates. One limitation in the diagnosis and treatment of PDAC is the lack of an early and universal biomarker. Extensive research performed recently to develop new assays which could fit this role is available. In this review, we will discuss the current landscape of liquid biopsy in patients with PDAC. Specifically, we will review the various methods of liquid biopsy, focusing on circulating tumor DNA (ctDNA) and exosomes and future opportunities for improvement using artificial intelligence or machine learning to analyze results from a multi-omic approach. We will also consider applications which have been evaluated, including the utility of liquid biopsy for screening and staging patients at diagnosis as well as before and after surgery. We will also examine the potential for liquid biopsy to monitor patient treatment response in the setting of clinical trial development.
Collapse
Affiliation(s)
- Genia Dubrovsky
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
- Pittsburgh VA Medical Center, Pittsburgh, PA 15240, USA
| | - Alison Ross
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; (G.D.); (A.R.)
| | - Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Michael Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Labiano I, Huerta AE, Alsina M, Arasanz H, Castro N, Mendaza S, Lecumberri A, Gonzalez-Borja I, Guerrero-Setas D, Patiño-Garcia A, Alkorta-Aranburu G, Hernández-Garcia I, Arrazubi V, Mata E, Gomez D, Viudez A, Vera R. Building on the clinical applicability of ctDNA analysis in non-metastatic pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:16203. [PMID: 39003322 PMCID: PMC11246447 DOI: 10.1038/s41598-024-67235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Pancreatic ductal adenocarcinoma represents one of the solid tumors showing the worst prognosis worldwide, with a high recurrence rate after adjuvant or neoadjuvant therapy. Circulating tumor DNA analysis raised as a promising non-invasive tool to characterize tumor genomics and to assess treatment response. In this study, surgical tumor tissue and sequential blood samples were analyzed by next-generation sequencing and were correlated with clinical and pathological characteristics. Thirty resectable/borderline pancreatic ductal adenocarcinoma patients treated at the Hospital Universitario de Navarra were included. Circulating tumoral DNA sequencing identified pathogenic variants in KRAS and TP53, and in other cancer-associated genes. Pathogenic variants at diagnosis were detected in patients with a poorer outcome, and were correlated with response to neoadjuvant therapy in borderline pancreatic ductal adneocarcinoma patients. Higher variant allele frequency at diagnosis was associated with worse prognosis, and thesum of variant allele frequency was greater in samples at progression. Our results build on the potential value of circulating tumor DNA for non-metastatic pancreatic ductal adenocarcinoma patients, by complementing tissue genetic information and as a non-invasive tool for treatment decision. Confirmatory studies are needed to corroborate these findings.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ana E Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain.
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain.
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Natalia Castro
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Saioa Mendaza
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Arturo Lecumberri
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Iranzu Gonzalez-Borja
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Guerrero-Setas
- Molecular Pathology of Cancer Group, Navarrabiomed, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ana Patiño-Garcia
- Department of Pediatrics and Clinical Genetics, Clínica Universidad de Navarra (CUN), Cancer Center Clínica Universidad de Navarra (CCUN), Program in Solid Tumors, Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain
| | | | - Irene Hernández-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - David Gomez
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| | - Antonio Viudez
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008, Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008, Pamplona, Spain
| |
Collapse
|
6
|
Arayici ME, İnal A, Basbinar Y, Olgun N. Evaluation of the diagnostic and prognostic clinical values of circulating tumor DNA and cell-free DNA in pancreatic malignancies: a comprehensive meta-analysis. Front Oncol 2024; 14:1382369. [PMID: 38983931 PMCID: PMC11231086 DOI: 10.3389/fonc.2024.1382369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The diagnostic and prognostic clinical value of circulating tumor DNA (ctDNA) and cell-free DNA (cfDNA) in pancreatic malignancies are unclear. Herein, we aimed to perform a meta-analysis to evaluate ctDNA and cfDNA as potential diagnostic and prognostic biomarkers. METHODS PRISMA reporting guidelines were followed closely for conducting the current meta-analysis. The PubMed/Medline, Scopus, and Web of Science (WoS) databases were scanned in detail to identify eligible papers for the study. A quality assessment was performed in accordance with the REMARK criteria. The risk ratios (RRs) of the diagnostic accuracy of ctDNA compared to that of carbohydrate antigen 19.9 (CA 19.9) in all disease stages and the hazard ratios (HRs) of the prognostic role of ctDNA in overall survival (OS) were calculated with 95% confidence intervals (CIs). RESULTS A total of 18 papers were evaluated to assess the diagnostic accuracy and prognostic value of biomarkers related to pancreatic malignancies. The pooled analysis indicated that CA19.9 provides greater diagnostic accuracy across all disease stages than ctDNA or cfDNA (RR = 0.64, 95% CI: 0.50-0.82, p < 0.001). Additionally, in a secondary analysis focusing on prognosis, patients who were ctDNA-positive were found to have significantly worse OS (HR = 2.00, 95% CI: 1.51-2.66, p < 0.001). CONCLUSION The findings of this meta-analysis demonstrated that CA19-9 still has greater diagnostic accuracy across all disease stages than KRAS mutations in ctDNA or cfDNA. Nonetheless, the presence of detectable levels of ctDNA was associated with worse patient outcomes regarding OS. There is a growing need for further research on this topic. SYSTEMATIC REVIEW REGISTRATION https://doi.org/10.37766/inplasy2023.12.0092, identifier INPLASY2023120092.
Collapse
Affiliation(s)
- Mehmet Emin Arayici
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
- Department of Public Health, Faculty of Medicine, Dokuz Eylül University, İzmir, Türkiye
| | - Abdullah İnal
- Department of General Surgery, Faculty of Medicine, İzmir Democracy University, İzmir, Türkiye
| | - Yasemin Basbinar
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| | - Nur Olgun
- Department of Clinical Oncology, Institute of Oncology, Dokuz Eylül University, İzmir, Türkiye
| |
Collapse
|
7
|
Cai W, Zhu Y, Teng Z, Li D, Cong R, Chen Z, Ma X, Zhao X. Extracellular volume-based scoring system for tracking tumor progression in pancreatic cancer patients receiving intraoperative radiotherapy. Insights Imaging 2024; 15:116. [PMID: 38735009 PMCID: PMC11089023 DOI: 10.1186/s13244-024-01689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/03/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES To investigate the value of extracellular volume (ECV) derived from portal-venous phase (PVP) in predicting prognosis in locally advanced pancreatic cancer (LAPC) patients receiving intraoperative radiotherapy (IORT) with initial stable disease (SD) and to construct a risk-scoring system based on ECV and clinical-radiological features. MATERIALS AND METHODS One hundred and three patients with LAPC who received IORT demonstrating SD were enrolled and underwent multiphasic contrast-enhanced CT (CECT) before and after IORT. ECV maps were generated from unenhanced and PVP CT images. Clinical and CT imaging features were analyzed. The independent predictors of progression-free survival (PFS) determined by multivariate Cox regression model were used to construct the risk-scoring system. Time-dependent receiver operating characteristic (ROC) curve analysis and the Kaplan-Meier method were used to evaluate the predictive performance of the scoring system. RESULTS Multivariable analysis revealed that ECV, rim-enhancement, peripancreatic fat infiltration, and carbohydrate antigen 19-9 (CA19-9) response were significant predictors of PFS (all p < 0.05). Time-dependent ROC of the risk-scoring system showed a satisfactory predictive performance for disease progression with area under the curve (AUC) all above 0.70. High-risk patients (risk score ≥ 2) progress significantly faster than low-risk patients (risk score < 2) (p < 0.001). CONCLUSION ECV derived from PVP of conventional CECT was an independent predictor for progression in LAPC patients assessed as SD after IORT. The scoring system integrating ECV, radiological features, and CA19-9 response can be used as a practical tool for stratifying prognosis in these patients, assisting clinicians in developing an appropriate treatment approach. CRITICAL RELEVANCE STATEMENT The scoring system integrating ECV fraction, radiological features, and CA19-9 response can track tumor progression in patients with LAPC receiving IORT, aiding clinicians in choosing individual treatment strategies and improving their prognosis. KEY POINTS Predicting the progression of LAPC in patients receiving IORT is important. Our ECV-based scoring system can risk stratifying patients with initial SD. Appropriate prognostication can assist clinicians in developing appropriate treatment approaches.
Collapse
Affiliation(s)
- Wei Cai
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongjian Zhu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ze Teng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dengfeng Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong Cong
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaowei Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohong Ma
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Xin W, Tu S, Yi S, Xiong Y, Fang K, Sun G, Xiao W. Clinical significance of tumor suppressor genes methylation in circulating tumor DNA of patients with pancreatic cancer. Gene 2024; 897:148078. [PMID: 38097094 DOI: 10.1016/j.gene.2023.148078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) has emerged as a potential diagnostic and prognostic biomarker in various tumors. However, the role of tumor suppressor genes (TSGs) methylation in ctDNA of patients with pancreatic cancer (PC) remains largely unclear. METHODS Patients with PC (n = 43), pancreatic benign diseases (n = 39), and healthy controls (n = 20) were enrolled in the study. Quantitative analysis of methylation pattern of five candidate TSGs including NPTX2, RASSF1A, EYA2, p16, and ppENK in ctDNA was performed by next generation sequencing (NGS). The diagnostic performances of these 5-TSGs methylation were assessed by the operating characteristic (ROC) curve and clinicopathological features correlation analysis. Meanwhile, the changes in methylation levels of these 5-TSGs on the 7th postoperative day were evaluated in 23 PC patients who underwent radical resection. RESULTS The methylation levels of RASSF1A, EYA2, ppENK and p16 genes in patients with PC were significantly higher than those in healthy controls. EYA2, p16 and ppENK genes showed significantly hypermethylation in PC than those in pancreatic benign diseases. NPTX2, RASSF1A, EYA2, p16 and ppENK genes showed significantly hypermethylation in pancreatic benign diseases than those in healthy controls (P < 0.05). The methylation levels of these 5 candidate TSGs were not correlated with the tumor size, nerve invasion, lymph node metastasis and TNM stage of PC. The AUC of these biomarkers for diagnosis of PC ranged from 0.65 to 0.96. The AUC values of these methylated genes and CpG sites for differentiating malignant and benign pancreatic diseases were ranging from 0.68 to 0.92. Combined the hypermethylated genes improved the detective ability of PC than single gene. The methylation levels of NPTX2, EYA2 and ppENK genes were significantly decreased after radical resection of PC. CONCLUSION Quantitative analysis of methylation pattern of NPTX2, RASSF1A, EYA2, p16 and ppENK in ctDNA by NGS could be a valuable non-invasive tool for detection and monitoring of PC.
Collapse
Affiliation(s)
- WanPeng Xin
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Shuju Tu
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Siqing Yi
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanpeng Xiong
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Kang Fang
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Gen Sun
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Weidong Xiao
- Department of General Surgery, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China; Institute of Digestive Surgery, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Huang L, Lv Y, Guan S, Yan H, Han L, Wang Z, Han Q, Dai G, Shi Y. High somatic mutations in circulating tumor DNA predict response of metastatic pancreatic ductal adenocarcinoma to first-line nab-paclitaxel plus S-1: prospective study. J Transl Med 2024; 22:184. [PMID: 38378604 PMCID: PMC10877900 DOI: 10.1186/s12967-024-04989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
AIMS We previously showed that the nab-paclitaxel plus S-1 (NPS) regimen had promising effects against metastatic pancreatic ducal adenocarcinoma (mPDAC), whose efficacy however could not be precisely predicted by routine biomarkers. This prospective study aimed to investigate the values of mutations in circulating tumor DNA (ctDNA) and their dynamic changes in predicting response of mPDAC to NPS chemotherapy. METHODS Paired tumor tissue and blood samples were prospectively collected from patients with mPDAC receiving first-line NPS chemotherapy, and underwent next-generation sequencing with genomic profiling of 425 genes for ctDNA. High mutation allelic frequency (MAF) was defined as ≥ 30% and ≥ 5% in tumor tissue and blood, respectively. Kappa statistics were used to assess agreement between mutant genes in tumor and ctDNA. Associations of mutations in ctDNA and their dynamic changes with tumor response, overall survival (OS), and progression-free survival (PFS) were assessed using the Kaplan-Meier method, multivariable-adjusted Cox proportional hazards regression, and longitudinal data analysis. RESULTS 147 blood samples and 43 paired tumor specimens from 43 patients with mPDAC were sequenced. The most common driver genes with high MAF were KRAS (tumor, 35%; ctDNA, 37%) and TP53 (tumor, 37%; ctDNA, 33%). Mutation rates of KRAS and TP53 in ctDNA were significantly higher in patients with liver metastasis, with baseline CA19-9 ≥ 2000 U/mL, and/or without an early CA19-9 response. κ values for the 5 most commonly mutated genes between tumor and ctDNA ranged from 0.48 to 0.76. MAFs of the genes mostly decreased sequentially during subsequent measurements, which significantly correlated with objective response, with an increase indicating cancer progression. High mutations of KRAS and ARID1A in both tumor and ctDNA, and of TP53, CDKN2A, and SMAD4 in ctDNA but not in tumor were significantly associated with shorter survival. When predicting 6-month OS, AUCs for the 5 most commonly mutated genes in ctDNA ranged from 0.59 to 0.84, larger than for genes in tumor (0.56 to 0.71) and for clinicopathologic characteristics (0.51 to 0.68). Repeated measurements of mutations in ctDNA significantly differentiated survival and tumor response. Among the 31 patients with ≥ 2 ctDNA tests, longitudinal analysis of changes in gene MAF showed that ctDNA progression was 60 and 58 days ahead of radiologic and CA19-9 progression for 48% and 42% of the patients, respectively. CONCLUSIONS High mutations of multiple driving genes in ctDNA and their dynamic changes could effectively predict response of mPDAC to NPS chemotherapy, with promising reliable predictive performance superior to routine clinicopathologic parameters. Inspiringly, longitudinal ctDNA tracking could predict disease progression about 2 months ahead of radiologic or CA19-9 evaluations, with the potential to precisely devise individualized therapeutic strategies for mPDAC.
Collapse
Affiliation(s)
- Lei Huang
- Medical Center on Aging of Ruijin Hospital, MCARJH, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yao Lv
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Shasha Guan
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Huan Yan
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lu Han
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zhikuan Wang
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Quanli Han
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Guanghai Dai
- Department of Medical Oncology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Yan Shi
- Department of General Surgery, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, 358 Datong Road, Gaoqiao Town, Shanghai, 200137, China.
| |
Collapse
|
10
|
Ramírez-Maldonado E, López Gordo S, Major Branco RP, Pavel MC, Estalella L, Llàcer-Millán E, Guerrero MA, López-Gordo E, Memba R, Jorba R. Clinical Application of Liquid Biopsy in Pancreatic Cancer: A Narrative Review. Int J Mol Sci 2024; 25:1640. [PMID: 38338919 PMCID: PMC10855073 DOI: 10.3390/ijms25031640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma contributes significantly to global cancer-related deaths, featuring only a 10% survival rate over five years. The quest for novel tumor markers is critical to facilitate early diagnosis and tailor treatment strategies for this disease, which is key to improving patient outcomes. In pancreatic ductal adenocarcinoma, these markers have been demonstrated to play a crucial role in early identification, continuous monitoring, and prediction of its prognosis and have led to better patient outcomes. Nowadays, biopsy specimens serve to ascertain diagnosis and determine tumor type. However, liquid biopsies present distinct advantages over conventional biopsy techniques. They offer a noninvasive, easily administered procedure, delivering insights into the tumor's status and facilitating real-time monitoring. Liquid biopsies encompass a variety of elements, such as circulating tumor cells, circulating tumor DNA, extracellular vesicles, microRNAs, circulating RNA, tumor platelets, and tumor endothelial cells. This review aims to provide an overview of the clinical applications of liquid biopsy as a technique in the management of pancreatic cancer.
Collapse
Affiliation(s)
- Elena Ramírez-Maldonado
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - Sandra López Gordo
- General Surgery Department, Maresme Health Consortium, 08304 Mataro, Spain;
| | | | - Mihai-Calin Pavel
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - Laia Estalella
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - Erik Llàcer-Millán
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - María Alejandra Guerrero
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | | | - Robert Memba
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| | - Rosa Jorba
- HBP Unit, General Surgery Department, Joan XXIII University Hospital, 43005 Tarragona, Spain; (M.-C.P.); (L.E.); (M.A.G.); (R.M.); (R.J.)
- Medicine and Surgery Department, Rovira i Virgili University, 43204 Reus, Spain
| |
Collapse
|
11
|
Alqahtani A, Alloghbi A, Coffin P, Yin C, Mukherji R, Weinberg BA. Prognostic utility of preoperative and postoperative KRAS-mutated circulating tumor DNA (ctDNA) in resected pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Surg Oncol 2023; 51:102007. [PMID: 37852124 DOI: 10.1016/j.suronc.2023.102007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a challenging disease, with surgery being the only possible cure. However, despite surgery, the majority of patients experience recurrence. Recent evidence suggests that perioperative KRAS-mutated circulating tumor DNA (ctDNA) may have prognostic value. Therefore, we conducted a systematic review and meta-analysis to explore the prognostic significance of preoperative and postoperative KRAS-mutated ctDNA testing in resected PDAC. METHODS We searched PubMed/MEDLINE, Embase, and Cochrane Central Register of Controlled Trials databases for studies that reported the effect of preoperative and postoperative KRAS-mutated ctDNA on overall survival (OS) and/or relapse-free survival (RFS) in resected PDAC. We used a random-effects model to determine the pooled OS and RFS hazard ratios (HR) and their corresponding 95 % confidence intervals (CI). RESULTS We identified 15 studies (868 patients) eligible for analysis. In the preoperative setting, positive ctDNA correlated with worse RFS in 8 studies (HR, 2.067; 95 % CI, 1.346-3.174, P < 0.001) and worse OS in 10 studies (HR, 2.170; 95 % CI, 1.451-3.245, P < 0.001) compared to negative ctDNA. In the postoperative setting, positive ctDNA correlated with worse RFS across 9 studies (HR, 3.32; 95 % CI, 2.19-5.03, P < 0.001) and worse OS in 6 studies (HR, 6.62; 95 % CI, 2.18-20.16, P < 0.001) compared to negative ctDNA. CONCLUSION Our meta-analysis supports the utility of preoperative and postoperative KRAS-mutated ctDNA testing as a prognostic marker for resected PDAC. Further controlled studies are warranted to confirm these results and to investigate the potential therapeutic implications of positive KRAS-mutated ctDNA.
Collapse
Affiliation(s)
- Ali Alqahtani
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA; Medical Oncology Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdurahman Alloghbi
- Cancer Research Unit and Department of Oncology, King Khalid University, Abha, Saudi Arabia
| | - Philip Coffin
- Department of Internal Medicine, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Chao Yin
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Reetu Mukherji
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA
| | - Benjamin A Weinberg
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20057, USA.
| |
Collapse
|
12
|
Edland KH, Tjensvoll K, Oltedal S, Dalen I, Lapin M, Garresori H, Glenjen N, Gilje B, Nordgård O. Monitoring of circulating tumour DNA in advanced pancreatic ductal adenocarcinoma predicts clinical outcome and reveals disease progression earlier than radiological imaging. Mol Oncol 2023; 17:1857-1870. [PMID: 37341038 PMCID: PMC10483602 DOI: 10.1002/1878-0261.13472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a need for better tools to guide treatment selection and follow-up. The aim of this prospective study was to investigate the prognostic value and treatment monitoring potential of longitudinal circulating tumour DNA (ctDNA) measurements in patients with advanced PDAC undergoing palliative chemotherapy. Using KRAS peptide nucleic acid clamp-PCR, we measured ctDNA levels in plasma samples obtained at baseline and every 4 weeks during chemotherapy from 81 patients with locally advanced and metastatic PDAC. Cox proportional hazard regression showed that ctDNA detection at baseline was an independent predictor of progression-free and overall survival. Joint modelling demonstrated that the dynamic ctDNA level was a strong predictor of time to first disease progression. Longitudinal ctDNA measurements during chemotherapy successfully revealed disease progression in 20 (67%) of 30 patients with ctDNA detected at baseline, with a median lead time of 23 days (P = 0.01) over radiological imaging. Here, we confirmed the clinical relevance of ctDNA in advanced PDAC with regard to both the prediction of clinical outcome and disease monitoring during treatment.
Collapse
Affiliation(s)
| | - Kjersti Tjensvoll
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Satu Oltedal
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Ingvild Dalen
- Section of Biostatistics, Department of ResearchStavanger University HospitalNorway
| | - Morten Lapin
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Herish Garresori
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Nils Glenjen
- Department of OncologyHaukeland University HospitalBergenNorway
| | - Bjørnar Gilje
- Department of Hematology and OncologyStavanger University HospitalNorway
| | - Oddmund Nordgård
- Department of Hematology and OncologyStavanger University HospitalNorway
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and TechnologyUniversity of StavangerNorway
| |
Collapse
|
13
|
Wu Y, Liu Y, Chang Y, Liu M. Integration of CRISPR/Cas13a and V-Shape PCR for Rapid, Sensitive, and Specific Genotyping of CYP2C19 Gene Polymorphisms. Anal Chem 2023. [PMID: 37326604 DOI: 10.1021/acs.analchem.3c01968] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rapid detection of single nucleotide polymorphisms (SNPs) in the CYP2C19 gene is of great significance for clopidogrel-accurate medicine. CRISPR/Cas systems have been increasingly used in SNP detection due to their single-nucleotide mismatch specificity. PCR, as a powerful amplification tool, has been incorporated into the CRISPR/Cas system to improve the sensitivity. However, the complicated three-step temperature control of the conventional PCR impeded rapid detection. The "V" shape PCR can shorten about 2/3 of the amplification time compared with conventional PCR. Herein, we present a new system termed the "V" shape PCR-coupled CRISPR/Cas13a (denoted as VPC) system, achieving the rapid, sensitive, and specific genotyping of CYP2C19 gene polymorphisms. The wild- and mutant-type alleles in CYP2C19*2, CYP2C19*3, and CYP2C19*17 genes can be discriminated by using the rationally programmed crRNA. A limit of detection (LOD) of 102 copies/μL was obtained within 45 min. In addition, the clinical applicability was demonstrated by genotyping SNPs in CYP2C19*2, CYP2C19*3, and CYP2C19*17 genes from clinical blood samples and buccal swabs within 1 h. Finally, we conducted the HPV16 and HPV18 detections to validate the generality of the VPC strategy.
Collapse
Affiliation(s)
- Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
- Dalian POCT Laboratory, Dalian 116024, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
- Dalian POCT Laboratory, Dalian 116024, China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian 116024, China
- Dalian POCT Laboratory, Dalian 116024, China
| |
Collapse
|
14
|
Watanabe F, Suzuki K, Aizawa H, Endo Y, Takayama Y, Kakizawa N, Kato T, Noda H, Rikiyama T. Circulating tumor DNA in molecular assessment feasibly predicts early progression of pancreatic cancer that cannot be identified via initial imaging. Sci Rep 2023; 13:4809. [PMID: 36959222 PMCID: PMC10036464 DOI: 10.1038/s41598-023-31051-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/06/2023] [Indexed: 03/25/2023] Open
Abstract
Molecular assessment using circulating tumor DNA (ctDNA) has not been well-defined. We recruited 61 pancreatic cancer (PC) patients who underwent initial computed tomography (CT) imaging study during first-line chemotherapy. Initial molecular assessment was performed using droplet digital PCR and defined as the change in KRAS-mutated ctDNA before and after treatments, which was classified into five categories: mNT, molecular negative; mCR, complete response; mPR, partial response; mSD, stable disease; mPD, progressive disease. Of 61 patients, 14 diagnosed with PD after initial CT imaging showed significantly worse therapeutic outcomes than 47 patients with disease control. In these 47 patients, initial molecular assessment exhibited significant differences in therapeutic outcomes between patients with and without ctDNA (mPD + mSD vs. mCR + mNT; 13.2 M vs. 21.7 M, P = 0.0029) but no difference between those with mPD and mSD + mCR + mNT, suggesting that the presence of ctDNA had more impact on the therapeutic outcomes than change in its number. Multivariate analysis revealed that it was the only independent prognostic factor (P = 0.0405). The presence of ctDNA in initial molecular assessment predicted early tumor progression and identified PC patients more likely to benefit from chemotherapy.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan.
| | - Hidetoshi Aizawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Yuhei Endo
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Yuji Takayama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Nao Kakizawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Takaharu Kato
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| |
Collapse
|
15
|
Labiano I, Huerta AE, Arrazubi V, Hernandez-Garcia I, Mata E, Gomez D, Arasanz H, Vera R, Alsina M. State of the Art: ctDNA in Upper Gastrointestinal Malignancies. Cancers (Basel) 2023; 15:1379. [PMID: 36900172 PMCID: PMC10000247 DOI: 10.3390/cancers15051379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a promising non-invasive source to characterize genetic alterations related to the tumor. Upper gastrointestinal cancers, including gastroesophageal adenocarcinoma (GEC), biliary tract cancer (BTC) and pancreatic ductal adenocarcinoma (PADC) are poor prognostic malignancies, usually diagnosed at advanced stages when no longer amenable to surgical resection and show a poor prognosis even for resected patients. In this sense, ctDNA has emerged as a promising non-invasive tool with different applications, from early diagnosis to molecular characterization and follow-up of tumor genomic evolution. In this manuscript, novel advances in the field of ctDNA analysis in upper gastrointestinal tumors are presented and discussed. Overall, ctDNA analyses can help in early diagnosis, outperforming current diagnostic approaches. Detection of ctDNA prior to surgery or active treatment is also a prognostic marker that associates with worse survival, while ctDNA detection after surgery is indicative of minimal residual disease, anticipating in some cases the imaging-based detection of progression. In the advanced setting, ctDNA analyses characterize the genetic landscape of the tumor and identify patients for targeted-therapy approaches, and studies show variable concordance levels with tissue-based genetic testing. In this line, several studies also show that ctDNA serves to follow responses to active therapy, especially in targeted approaches, where it can detect multiple resistance mechanisms. Unfortunately, current studies are still limited and observational. Future prospective multi-center and interventional studies, carefully designed to assess the value of ctDNA to help clinical decision-making, will shed light on the real applicability of ctDNA in upper gastrointestinal tumor management. This manuscript presents a review of the evidence available in this field up to date.
Collapse
Affiliation(s)
- Ibone Labiano
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ana Elsa Huerta
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Irene Hernandez-Garcia
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Elena Mata
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - David Gomez
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Hugo Arasanz
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Ruth Vera
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| | - Maria Alsina
- Oncobiona Group, Navarrabiomed-Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
16
|
Raufi AG, May MS, Hadfield MJ, Seyhan AA, El-Deiry WS. Advances in Liquid Biopsy Technology and Implications for Pancreatic Cancer. Int J Mol Sci 2023; 24:4238. [PMID: 36835649 PMCID: PMC9958987 DOI: 10.3390/ijms24044238] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 02/23/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy with a climbing incidence. The majority of cases are detected late, with incurable locally advanced or metastatic disease. Even in individuals who undergo resection, recurrence is unfortunately very common. There is no universally accepted screening modality for the general population and diagnosis, evaluation of treatment response, and detection of recurrence relies primarily on the use of imaging. Identification of minimally invasive techniques to help diagnose, prognosticate, predict response or resistance to therapy, and detect recurrence are desperately needed. Liquid biopsies represent an emerging group of technologies which allow for non-invasive serial sampling of tumor material. Although not yet approved for routine use in pancreatic cancer, the increasing sensitivity and specificity of contemporary liquid biopsy platforms will likely change clinical practice in the near future. In this review, we discuss the recent technological advances in liquid biopsy, focusing on circulating tumor DNA, exosomes, microRNAs, and circulating tumor cells.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
| | - Michael S. May
- Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J. Hadfield
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
| | - Attila A. Seyhan
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
17
|
Watanabe F, Suzuki K, Noda H, Rikiyama T. Liquid biopsy leads to a paradigm shift in the treatment of pancreatic cancer. World J Gastroenterol 2022; 28:6478-6496. [PMID: 36569270 PMCID: PMC9782840 DOI: 10.3748/wjg.v28.i46.6478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most cancers. Its 5-year survival rate is very low. The recent induction of neoadjuvant chemotherapy and improvements in chemotherapy for patients with pancreatic cancer have resulted in improved survival outcomes. However, the prognosis of pancreatic cancer is still poor. To dramatically improve the prognosis, we need to develop more tools for early diagnosis, treatment selection, disease monitoring, and response rate evaluation. Recently, liquid biopsy (circulating free DNA, circulating tumor DNA, circulating tumor cells, exosomes, and microRNAs) has caught the attention of many researchers as a new biomarker that is minimally invasive, confers low-risk, and displays an overall state of the tumor. Thus, liquid biopsy does not employ the traditional difficulties of obtaining tumor samples from patients with advanced PDAC to investigate their molecular biological status. In addition, it allows for long-term monitoring of the molecular profile of tumor progression. These could help in identifying tumor-specific alterations that use the target structure for tailor-made therapy. Through this review, we highlighted the latest discoveries and advances in liquid biopsy technology in pancreatic cancer research and showed how it can be applied in clinical practice.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| |
Collapse
|
18
|
Lam RCT, Johnson D, Lam G, Li MLY, Wong JWL, Lam WKJ, Chan KCA, Ma B. Clinical applications of circulating tumor-derived DNA in the management of gastrointestinal cancers - current evidence and future directions. Front Oncol 2022; 12:970242. [PMID: 36248993 PMCID: PMC9556664 DOI: 10.3389/fonc.2022.970242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in Next Generation Sequencing (NGS) technologies have enabled the accurate detection and quantification of circulating tumor-derived (ct)DNA in most gastrointestinal (GI) cancers. The prognostic and predictive utility of ctDNA in patiets with different stages of colorectal (CRC), gastro-esophageal (GEC) and pancreaticobiliary cancers (PBC) are currently under active investigation. The most mature clinical data to date are derived from studies in the prognostic utility of personalized ctDNA-based NGS assays in the detection of minimal residual disease (MRD) and early recurrence after surgery in CRC and other GI cancers. These findings are being validated in several prospective studies which are designed to test if ctDNA could outperform conventional approaches in guiding adjuvant chemotherapy, and in post-operative surveillance in some GI cancers. Several adaptive studies using ctDNA as a screening platform are also being used to identify patients with actionable genomic alterations for clinical trials of targeted therapies. In the palliative setting, ctDNA monitoring during treatment has shown promise in the detection and tracking of clonal variants associated with acquired resistance to targeted therapies and immune-checkpoint inhibitors (ICI). Moreover, ctDNA may help to guide the therapeutic re-challenge of targeted therapies in patients who have prior exposure to such treatment. This review will examine the most updated research findings on ctDNA as a biomarker in CRC, GEC and PBCs. It aims to provide insights into how the unique strengths of this biomarker could be optimally leveraged in improving the management of these GI cancers.
Collapse
Affiliation(s)
- Rachel C. T. Lam
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - David Johnson
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir Y. K Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Gigi Lam
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Michelle L. Y. Li
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Joyce W. L. Wong
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - W. K. Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - K. C. Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Brigette Ma
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir Y. K Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Guan S, Deng G, Sun J, Han Q, Lv Y, Xue T, Ding L, Yang T, Qian N, Dai G. Evaluation of circulating tumor DNA as a prognostic biomarker for metastatic pancreatic adenocarcinoma. Front Oncol 2022; 12:926260. [PMID: 36081557 PMCID: PMC9446234 DOI: 10.3389/fonc.2022.926260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
PurposePancreatic cancer is an aggressive solid tumor with a severe prognosis. Although tumor biomarkers are often used to identify advanced pancreatic cancer, this is not accurate, and the currently used biomarkers are not indicative of prognosis. The present study evaluated circulating tumor DNA (ctDNA) as a biomarker for prognosis prediction and disease monitoring in metastatic pancreatic adenocarcinoma (PAC).MethodsFrom 2017 to 2018, 40 patients with metastatic PAC were enrolled, and tumor tissue and blood samples were collected from 40 and 35 patients, respectively. CtDNA was sequenced by next-generation sequencing (NGS) with a 425-gene capture panel. The association of clinical characteristics, laboratory indicators, and dynamic ctDNA with patient outcomes was analyzed.ResultsMutations in KRAS (87.5%, N = 35) and TP53 (77.5%, N = 31) were most common in 40 tumor tissue. Patients’ ECOG score, CA19-9, CEA, neutrophil-lymphocyte ratio (NLR), platelet- lymphocyte ratio (PLR) levels and mutations in ≥ 3 driver genes were strongly correlated with patients’ overall survival (OS). Patients’ gender, ECOG score, CA19-9, and CEA levels were associated with progression-free survival (PFS) (P<0.05). In 35 blood samples, univariate analysis showed a significant association between ECOG score, CA19-9, KRAS or CDKN2A mutation in ctDNA and OS and between CA19-9, CDKN2A or SMAD4 mutation in ctDNA and PFS. Cox hazard proportion model showed that patients’ CDKN2A mutation in ctDNA (HR=16.1, 95% CI=4.4-59.1, P<0.001), ECOG score (HR=6.2, 95% CI=2.4-15.7, P<0.001) and tumor location (HR=0.4, 95% CI=0.1-0.9, P=0.027) were significantly associated with OS. Patients’ CDKN2A mutation in ctDNA (HR=6.8, 95% CI=2.3-19.9, P=0.001), SMAD4 mutation in ctDNA (HR=3.0, 95% CI=1.1-7.9, P=0.031) and metastatic organ (HR=0.4, 95% CI=0.2-1.0, P=0.046) were significantly associated with PFS. Longitudinal changes in gene mutation allelic frequency (MAF) value were evaluated in 24 patients. Detection of progression disease (PD) by ctDNA was 0.9 months earlier than by radiological imaging (mean PFS: 4.6m vs 5.5m, P=0.004, paired t-test).ConclusionsThe ctDNA has the potential as a specific survival predictive marker for metastatic PAC patients. Longitudinal ctDNA tracking could potentially help identify disease progression and be a valuable complement for routine clinical markers and imaging.
Collapse
Affiliation(s)
- Shasha Guan
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army (PLA) General Hospital, Sanya, China
| | - Guochao Deng
- Senior Department of Oncology, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Jingjie Sun
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army (PLA) General Hospital, Sanya, China
| | - Quanli Han
- Senior Department of Oncology, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yao Lv
- Senior Department of Oncology, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Tianhui Xue
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army (PLA) General Hospital, Sanya, China
| | - Lijuan Ding
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army (PLA) General Hospital, Sanya, China
| | - Tongxin Yang
- Department of Oncology, Hainan Hospital of Chinese People’s Liberation Army (PLA) General Hospital, Sanya, China
| | - Niansong Qian
- Department of Thoracic Oncology, The Eighth Medical Center, Chinese People’ Liberation Army (PLA) General Hospital, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Niansong Qian, ; Guanghai Dai,
| | - Guanghai Dai
- Senior Department of Oncology, The Fifth Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Niansong Qian, ; Guanghai Dai,
| |
Collapse
|
20
|
Duffy MJ, Crown J. Circulating Tumor DNA as a Biomarker for Monitoring Patients with Solid Cancers: Comparison with Standard Protein Biomarkers. Clin Chem 2022; 68:1381-1390. [PMID: 35962648 DOI: 10.1093/clinchem/hvac121] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Protein-based biomarkers are widely used in monitoring patients with diagnosed cancer. These biomarkers however, lack specificity for cancer and have poor sensitivity in detecting early recurrences and monitoring therapy effectiveness. Emerging data suggest that the use of circulating tumor DNA (ctDNA) has several advantages over standard biomarkers. CONTENT Following curative-intent surgery for cancer, the presence of ctDNA is highly predictive of early disease recurrence, while in metastatic cancer an early decline in ctDNA following the initiation of treatment is predictive of good outcome. Compared with protein biomarkers, ctDNA provides greater cancer specificity and sensitivity for detecting early recurrent/metastatic disease. Thus, in patients with surgically resected colorectal cancer, multiple studies have shown that ctDNA is superior to carcinoembryonic antigen (CEA) in detecting residual disease and early recurrence. Similarly, in breast cancer, ctDNA was shown to be more accurate than carbohydrate antigen 15-3 (CA 15-3) in detecting early recurrences. Other advantages of ctDNA over protein biomarkers in monitoring cancer patients include a shorter half-life in plasma and an ability to predict likely response to specific therapies and identify mechanisms of therapy resistance. However, in contrast to proteins, ctDNA biomarkers are more expensive to measure, less widely available, and have longer turnaround times for reporting. Furthermore, ctDNA assays are less well standardized. SUMMARY Because of their advantages, it is likely that ctDNA measurements will enter clinical use in the future, where they will complement existing biomarkers and imaging in managing patients with cancer. Hopefully, these combined approaches will lead to a better outcome for patients.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
21
|
Li W, Zhang X, Li Y, Yue Q, Cui M, Liu J. Prognostic Value of KRAS Mutations in the Peripheral Blood of Patients with Pancreatic Cancer: a Systematic Review and Meta-analysis. Indian J Surg 2022. [DOI: 10.1007/s12262-021-03142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Sheel A, Addison S, Nuguru SP, Manne A. Is Cell-Free DNA Testing in Pancreatic Ductal Adenocarcinoma Ready for Prime Time? Cancers (Basel) 2022; 14:3453. [PMID: 35884515 PMCID: PMC9322623 DOI: 10.3390/cancers14143453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cell-free DNA (cfDNA) testing currently does not have a significant role in PDA management: it is insufficient to diagnose PDA, and its use is primarily restricted to identifying targetable mutations (if tissue is insufficient or unavailable). cfDNA testing has the potential to address critical needs in PDA management, such as pre-operative risk stratification (POR), prognostication, and predicting (and monitoring) treatment response. Prior studies have focused primarily on somatic mutations, specifically KRAS variants, and have shown limited success in addressing prognosis and POR. Recent studies have demonstrated the importance of other less prevalent mutations (ERBB2 and TP53), but no studies have provided reliable mutation panels for clinical use. Methylation aberrations in cfDNA (epigenetic markers) in PDA have been relatively less explored. However, early evidence has suggested they offer diagnostic and, to some extent, prognostic value. The inclusion of epigenetic markers of cfDNA adds another dimension to genomic testing and may open new therapeutic avenues beyond addressing critical areas of need in PDA treatment. For cfDNA to substantially influence PDA management, concerted efforts are required to include less frequent mutations and epigenetic markers. Furthermore, relying on KRAS mutations for PDA management will always be inadequate.
Collapse
Affiliation(s)
- Ankur Sheel
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH 432120, USA;
| | - Sarah Addison
- School of Medicine, The Ohio State University, Columbus, OH 432120, USA;
| | - Surya Pratik Nuguru
- Department of Internal Medicine, Kamineni Academy of Medical Sciences and Research Center, Hyderabad 500012, India;
| | - Ashish Manne
- Department of Internal Medicine, Division of Medical Oncology at the Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Zheng W, Bai X, Zhou Y, Yu L, Ji D, Zheng Y, Meng N, Wang H, Huang Z, Chen W, Yam JWP, Xu Y, Cui Y. Transcriptional ITPR3 as potential targets and biomarkers for human pancreatic cancer. Aging (Albany NY) 2022; 14:4425-4444. [PMID: 35580861 PMCID: PMC9186782 DOI: 10.18632/aging.204080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Inositol 1,4,5-Triphosphate Receptor Family (ITPRs) are necessary intracellular Ca2+-release channel encoders and participate in mammalian cell physiological and pathological processes. Previous studies have suggested that ITPRs participate in tumorigenesis of multiple cancers. Nevertheless, the diverse expression profiles and prognostic significance of three ITPRs in pancreatic cancer have yet to be uncovered. In this work, we examined the expression levels and survival dates of ITPRs in patients with pancreatic cancer. As a result, we identified that ITPR1 and ITPR3 expression levels are significantly elevated in cancerous specimens. Survival data revealed that over-expression of ITPR2 and ITPR3 resulted in unfavourable overall survival and pathological stage. The multivariate Cox logistic regression analysis showed that ITPR3 could be an independent risk factor for PAAD patient survival. Moreover, to investigate how ITPRs work, co-expressed genes, alterations, protein-protein interaction, immune infiltration, methylation, and functional enrichment of ITPRs were also analyzed. Then, we evaluated these findings in clinical samples. Moreover, the gain and loss of function of ITPR3 were also conducted. The electron microscope assay was employed to explore the role of ITPR3 in pancreatic cancer cell lines' endoplasmic reticulum stress. In summary, our findings demonstrated that ITPR3 has the potential to be drug targets and biomarkers for human pancreatic cancer.
Collapse
Affiliation(s)
- Wangyang Zheng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department II of Gastroenterology, Third Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xue Bai
- Department of Clinic of Internal Medicine I, Ulm University, Ulm 89081, Germany
| | - Yongxu Zhou
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Daolin Ji
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Hepatopancreatobiliary Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yuling Zheng
- Department of Pediatric, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
24
|
Tjensvoll K, Lapin M, Gilje B, Garresori H, Oltedal S, Forthun RB, Molven A, Rozenholc Y, Nordgård O. Novel hybridization- and tag-based error-corrected method for sensitive ctDNA mutation detection using ion semiconductor sequencing. Sci Rep 2022; 12:5816. [PMID: 35388068 PMCID: PMC8986848 DOI: 10.1038/s41598-022-09698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a clinically useful tool for cancer diagnostics and treatment monitoring. However, ctDNA detection is complicated by low DNA concentrations and technical challenges. Here we describe our newly developed sensitive method for ctDNA detection on the Ion Torrent sequencing platform, which we call HYbridization- and Tag-based Error-Corrected sequencing (HYTEC-seq). This method combines hybridization-based capture with molecular tags, and the novel variant caller PlasmaMutationDetector2 to eliminate background errors. We describe the validation of HYTEC-seq using control samples with known mutations, demonstrating an analytical sensitivity down to 0.1% at > 99.99% specificity. Furthermore, to demonstrate the utility of this method in a clinical setting, we analyzed plasma samples from 44 patients with advanced pancreatic cancer, revealing mutations in 57% of the patients at allele frequencies as low as 0.23%.
Collapse
Affiliation(s)
- Kjersti Tjensvoll
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway.
| | - Morten Lapin
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Herish Garresori
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Satu Oltedal
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Rakel Brendsdal Forthun
- Department of Medical Genetics, Haukeland University Hospital, 5020, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, 5020, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Yves Rozenholc
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Citè, 75006, Paris, France
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| |
Collapse
|
25
|
Botrus G, Uson Junior PLS, Raman P, Kaufman AE, Kosiorek H, Yin J, Fu Y, Majeed U, Sonbol MB, Ahn DH, Chang IW, Drusbosky LM, Dada H, Starr J, Borad M, Mody K, Bekaii-Saab TS. Circulating Cell-Free Tumor DNA in Advanced Pancreatic Adenocarcinoma Identifies Patients With Worse Overall Survival. Front Oncol 2022; 11:794009. [PMID: 35083150 PMCID: PMC8784799 DOI: 10.3389/fonc.2021.794009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Plasma-based circulating cell-free tumor DNA (ctDNA) genomic profiling by next-generation sequencing (NGS)is an emerging diagnostic tool for pancreatic cancer (PC). The impact of detected genomic alterations and variant allele fraction (VAF) in tumor response to systemic treatments and outcomes is under investigation. Methods Patients with advanced PC who had ctDNA profiled at time of initial diagnosis were retrospectively evaluated. We considered the somatic alteration with the highest VAF as the dominant clone allele frequency (DCAF). ctDNA NGS results were related to clinical demographics, progression-free survival (PFS) and overall survival (OS). Results A total of 104 patients were evaluated. Somatic alterations were detected in 84.6% of the patients. Patients with ≥ 2 detectable genomic alterations had worse median PFS (p < 0.001) and worse median OS (p = 0.001). KRAS was associated with disease progression to systemic treatments (80.4% vs 19.6%, p = 0.006), worse median PFS (p < 0.001) and worse median OS (p = 0.002). TP53 was associated with worse median PFS (p = 0.02) and worse median OS (p = 0.001). The median DCAF was 0.45% (range 0-55%). DCAF >0.45% was associated with worse median PFS (p<0.0001) and median OS (p=0.0003). Patients that achieved clearance of KRAS had better PFS (p=0.047), while patients that achieved clearance of TP53 had better PFS (p=0.0056) and OS (p=0.037). Conclusions Initial detection of ctDNA in advanced PC can identify somatic alterations that may help predict clinical outcomes. The dynamics of ctDNA are prognostic of outcomes and should be evaluated in prospective studies.
Collapse
Affiliation(s)
- Gehan Botrus
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Pedro Luiz Serrano Uson Junior
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States.,Center for Personalized Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Puneet Raman
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Adrienne E Kaufman
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Heidi Kosiorek
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Jun Yin
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yu Fu
- Guardant Health, Inc., Redwood City, CA, United States
| | - Umair Majeed
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mohamad Bassam Sonbol
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Daniel H Ahn
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Isabela W Chang
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | | | - Hiba Dada
- Guardant Health, Inc., Redwood City, CA, United States
| | - Jason Starr
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mitesh Borad
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States.,Center of individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Cancer Center, Phoenix, AZ, United States
| | - Kabir Mody
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Tanios S Bekaii-Saab
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
26
|
Croitoru VM, Cazacu IM, Popescu I, Paul D, Dima SO, Croitoru AE, Tanase AD. Clonal Hematopoiesis and Liquid Biopsy in Gastrointestinal Cancers. Front Med (Lausanne) 2022; 8:772166. [PMID: 35127745 PMCID: PMC8814311 DOI: 10.3389/fmed.2021.772166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023] Open
Abstract
The use of blood liquid biopsy is increasingly being incorporated into the clinical setting of gastrointestinal cancers care. Clonal hematopoiesis (CH) occurs naturally as a result of the accumulation of somatic mutations and the clonal proliferation of hematopoietic stem cells with normal aging. The identification of CH-mutations has been described as a source of biological noise in blood liquid biopsy. Incorrect interpretation of CH events as cancer related can have a direct impact on cancer diagnosis and treatment. This review summarizes the current understanding of CH as a form of biological noise in blood liquid biopsy and the reported clinical significance of CH in patients with GI cancers.
Collapse
Affiliation(s)
- Vlad M. Croitoru
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Department of Medical Oncology, Fundeni Clinical Institute, Bucharest, Romania
| | - Irina M. Cazacu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Department of Medical Oncology, Fundeni Clinical Institute, Bucharest, Romania
| | - Ionut Popescu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Doru Paul
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine/New York-Presbyterian, New York, NY, United States
| | - Simona Olimpia Dima
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Adina Emilia Croitoru
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Department of Medical Oncology, Fundeni Clinical Institute, Bucharest, Romania
- *Correspondence: Adina Emilia Croitoru
| | - Alina Daniela Tanase
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
- Bone Marrow Transplant Unit, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
27
|
Schreyer D, Neoptolemos JP, Barry ST, Bailey P. Deconstructing Pancreatic Cancer Using Next Generation-Omic Technologies-From Discovery to Knowledge-Guided Platforms for Better Patient Management. Front Cell Dev Biol 2022; 9:795735. [PMID: 35096825 PMCID: PMC8793685 DOI: 10.3389/fcell.2021.795735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Comprehensive molecular landscaping studies reveal a potentially brighter future for pancreatic ductal adenocarcinoma (PDAC) patients. Blood-borne biomarkers obtained from minimally invasive "liquid biopsies" are now being trialled for early disease detection and to track responses to therapy. Integrated genomic and transcriptomic studies using resectable tumour material have defined intrinsic patient subtypes and actionable genomic segments that promise a shift towards genome-guided patient management. Multimodal mapping of PDAC using spatially resolved single cell transcriptomics and imaging techniques has identified new potentially therapeutically actionable cellular targets and is providing new insights into PDAC tumour heterogeneity. Despite these rapid advances, defining biomarkers for patient selection remain limited. This review examines the current PDAC cancer biomarker ecosystem (identified in tumour and blood) and explores how advances in single cell sequencing and spatially resolved imaging modalities are being used to uncover new targets for therapeutic intervention and are transforming our understanding of this difficult to treat disease.
Collapse
Affiliation(s)
- Daniel Schreyer
- Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
| | - John P. Neoptolemos
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Ako S, Kato H, Nouso K, Kinugasa H, Terasawa H, Matushita H, Takada S, Saragai Y, Mizukawa S, Muro S, Uchida D, Tomoda T, Matsumoto K, Horiguchi S, Nobuoka D, Yoshida R, Umeda Y, Yagi T, Okada H. Plasma KRAS mutations predict the early recurrence after surgical resection of pancreatic cancer. Cancer Biol Ther 2021; 22:564-570. [PMID: 34632919 PMCID: PMC8726677 DOI: 10.1080/15384047.2021.1980312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND The technique to analyze circulating tumor DNA (ctDNA) in body fluid (so-called "liquid biopsy") is recently developed. AIMS Our aim was to assess the utility of liquid biopsy for predicting progression of pancreatic ductal adenocarcinoma (PDAC) after surgical resection or chemotherapy. METHODS A total of 72 patients with PDAC were retrospectively enrolled for this study, 33 treated surgically and 39 given chemotherapy, either FOLFIRINOX (oxaliplatin/irinotecan/fluorouracil/leucovorin) or gemcitabine plus nab-paclitaxel. Prior to treatment, patients were screened for the presence of KRAS mutations (G12D and G12V) in plasma using droplet digital polymerase chain reaction, and outcomes were compared. RESULTS KRAS mutations were identified in plasma samples of 12 patients (36%) underwent surgical resection. Patients with plasma KRAS mutations had significantly shorter disease-free survival (DFS) and overall survival (p < .01 and p = .01, respectively). Of 10 clinical variables analyzed, plasma KRAS mutation was the factor predictive of DFS in multivariate analysis (RR = 3.58, 95% CI: 1.36-9.60; p = .01). Although 12 patients (31%) given chemotherapy tested positive for plasma KRAS mutations, there was no demonstrable relation between plasma KRAS mutations and progression-free survival (PFS) or overall survival (OS) (p = .35 and p = .68, respectively). CONCLUSIONS In patients with PDAC, detection of KRAS mutations in plasma proved independently predictive of early recurrence after surgical resection but did not correlate with PFS following chemotherapy.
Collapse
Affiliation(s)
- Soichiro Ako
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Terasawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Matushita
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Saimon Takada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Saragai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sho Mizukawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Muro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Tomoda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuyuki Matsumoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Nobuoka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
29
|
Guven DC, Sahin TK, Yildirim HC, Aktepe OH, Dizdar O, Yalcin S. A systematic review and meta-analysis of the association between circulating tumor DNA (ctDNA) and prognosis in pancreatic cancer. Crit Rev Oncol Hematol 2021; 168:103528. [PMID: 34800650 DOI: 10.1016/j.critrevonc.2021.103528] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is a deadly disease with limited therapeutic options. Several strategies are being investigated to improve disease management, including the early diagnosis of recurrences and treatment tailoring by better prognosis estimation. Circulating tumor DNA (ctDNA) could be a promising tool in this regard, although the data is limited. Therefore, we conducted a systemical review and meta-analysis of the published studies on the association of ctDNA and survival outcomes in pancreatic cancer. In the pooled analysis, positive preoperative or postoperative ctDNA was associated with lower RFS/PFS (HR: 2.27, 95 % CI: 1.59-3.24, p < 0.001) and OS (HR: 2.04, 95 % CI: 1.29-3.21, p = 0.002) in localized pancreatic cancer. Similarly, positive baseline ctDNA was associated with lower RFS/PFS (HR: 2.61, 95 % CI: 1.94-3.51, p < 0.001) and OS (HR: 2.41, 95 % CI: 1.74-3.34, p < 0.001) in advanced pancreatic cancer. In conclusion, ctDNA could be a promising tool to individualize treatment planning and to improve outcomes in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Omer Dizdar
- Hacettepe University Cancer Institute, Ankara, Turkey
| | - Suayib Yalcin
- Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
30
|
Hu HF, Ye Z, Qin Y, Xu XW, Yu XJ, Zhuo QF, Ji SR. Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacol Sin 2021; 42:1725-1741. [PMID: 33574569 PMCID: PMC8563973 DOI: 10.1038/s41401-020-00584-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a minimal difference between its incidence rate and mortality rate. Advances in oncology over the past several decades have dramatically improved the overall survival of patients with multiple cancers due to the implementation of new techniques in early diagnosis, therapeutic drugs, and personalized therapy. However, pancreatic cancers remain recalcitrant, with a 5-year relative survival rate of <9%. The lack of measures for early diagnosis, strong resistance to chemotherapy, ineffective adjuvant chemotherapy and the unavailability of molecularly targeted therapy are responsible for the high mortality rate of this notorious disease. Genetically, PDAC progresses as a complex result of the activation of oncogenes and inactivation of tumor suppressors. Although next-generation sequencing has identified numerous new genetic alterations, their clinical implications remain unknown. Classically, oncogenic mutations in genes such as KRAS and loss-of-function mutations in tumor suppressors, such as TP53, CDNK2A, DPC4/SMAD4, and BRCA2, are frequently observed in PDAC. Currently, research on these key driver genes is still the main focus. Therefore, studies assessing the functions of these genes and their potential clinical implications are of paramount importance. In this review, we summarize the biological function of key driver genes and pharmaceutical targets in PDAC. In addition, we conclude the results of molecularly targeted therapies in clinical trials and discuss how to utilize these genetic alterations in further clinical practice.
Collapse
Affiliation(s)
- Hai-Feng Hu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xiao-Wu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Qi-Feng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Shun-Rong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Watanabe F, Suzuki K, Tamaki S, Abe I, Endo Y, Takayama Y, Ishikawa H, Kakizawa N, Saito M, Futsuhara K, Noda H, Konishi F, Rikiyama T. Optimal value of CA19-9 determined by KRAS-mutated circulating tumor DNA contributes to the prediction of prognosis in pancreatic cancer patients. Sci Rep 2021; 11:20797. [PMID: 34675229 PMCID: PMC8531317 DOI: 10.1038/s41598-021-00060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the acceptance of carbohydrate antigen 19-9 (CA19-9) as a valuable predictor for the prognosis of pancreatic ductal adenocarcinoma (PDAC), its cutoff value remains controversial. Our previous study showed a significant correlation between CA19-9 levels and the presence of KRAS-mutated ctDNA in the blood of patients with PDAC. Based on this correlation, we investigated the optimal cutoff value of CA19-9 before surgery. Continuous CA19-9 values and KRAS-mutated ctDNAs were monitored in 22 patients with unresectable PDAC who underwent chemotherapy between 2015 and 2017. Receiver operating characteristic curve analysis identified 949.7 U/mL of CA19-9 as the cutoff value corresponding to the presence of KRAS-mutated ctDNA. The median value of CA19-9 was 221.1 U/mL. Subsequently, these values were verified for their prognostic values of recurrence-free survival (RFS) and overall survival (OS) in 60 patients who underwent surgery between 2005 and 2013. Multivariate analysis revealed that 949.7 U/mL of CA19-9 was an independent risk factor for OS and RFS in these patients (P = 0.001 and P = 0.010, respectively), along with lymph node metastasis (P = 0.008 and P = 0.017), unlike the median CA19-9 level (P = 0.150 and P = 0.210). The optimal CA19-9 level contributes to the prediction of prognosis in patients with PDAC before surgery.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan.
| | - Sawako Tamaki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Iku Abe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Yuhei Endo
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Yuji Takayama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Hideki Ishikawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Nao Kakizawa
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Masaaki Saito
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Kazushige Futsuhara
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| | - Fumio Konishi
- Nerima Hikarigaoka Hospital, 2-11-1, Hikarigaoka, Nerima-ku, Tokyo, 179-0072, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, 1-847, Amanuma-cho, Omiya-ku, Saitama, 330-8503, Japan
| |
Collapse
|
32
|
Moati E, Taly V, Garinet S, Didelot A, Taieb J, Laurent-Puig P, Zaanan A. Role of Circulating Tumor DNA in Gastrointestinal Cancers: Current Knowledge and Perspectives. Cancers (Basel) 2021; 13:4743. [PMID: 34638228 PMCID: PMC8507552 DOI: 10.3390/cancers13194743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Gastrointestinal (GI) cancers are major health burdens worldwide and biomarkers are needed to improve the management of these diseases along their evolution. Circulating tumor DNA (ctDNA) is a promising non-invasive blood and other bodily-fluid-based biomarker in cancer management that can help clinicians in various cases for the detection, diagnosis, prognosis, monitoring and personalization of treatment in digestive oncology. In addition to the well-studied prognostic role of ctDNA, the main real-world applications appear to be the assessment of minimal residual disease to further guide adjuvant therapy and predict relapse, but also the monitoring of clonal evolution to tailor treatments in metastatic setting. Other challenges such as predicting response to treatment including immune checkpoint inhibitors could also be among the potential applications of ctDNA. Although the level of advancement of ctDNA development in the different tumor localizations is still inhomogeneous, it might be now reliable enough to be soon used in clinical routine for colorectal cancers and shows promising results in other GI cancers.
Collapse
Affiliation(s)
- Emilie Moati
- Department of Gastroenterology and Digestive Oncology, Institut du Cancer Paris Carpem, Assistance Publique des Hôpitaux de Paris, European Georges Pompidou Hospital, 75015 Paris, France; (E.M.); (J.T.)
| | - Valerie Taly
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Centre National de la Recherche Scientifique, Sorbonne Université, USPC, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC 5096, 75006 Paris, France; (V.T.); (S.G.); (A.D.); (P.L.-P.)
| | - Simon Garinet
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Centre National de la Recherche Scientifique, Sorbonne Université, USPC, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC 5096, 75006 Paris, France; (V.T.); (S.G.); (A.D.); (P.L.-P.)
- Department of Biochemistry, Institut du Cancer Paris Carpem, Assistance Publique des Hôpitaux de Paris, European Georges Pompidou Hospital, 75015 Paris, France
| | - Audrey Didelot
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Centre National de la Recherche Scientifique, Sorbonne Université, USPC, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC 5096, 75006 Paris, France; (V.T.); (S.G.); (A.D.); (P.L.-P.)
| | - Julien Taieb
- Department of Gastroenterology and Digestive Oncology, Institut du Cancer Paris Carpem, Assistance Publique des Hôpitaux de Paris, European Georges Pompidou Hospital, 75015 Paris, France; (E.M.); (J.T.)
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Centre National de la Recherche Scientifique, Sorbonne Université, USPC, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC 5096, 75006 Paris, France; (V.T.); (S.G.); (A.D.); (P.L.-P.)
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Centre National de la Recherche Scientifique, Sorbonne Université, USPC, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC 5096, 75006 Paris, France; (V.T.); (S.G.); (A.D.); (P.L.-P.)
- Department of Biochemistry, Institut du Cancer Paris Carpem, Assistance Publique des Hôpitaux de Paris, European Georges Pompidou Hospital, 75015 Paris, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Institut du Cancer Paris Carpem, Assistance Publique des Hôpitaux de Paris, European Georges Pompidou Hospital, 75015 Paris, France; (E.M.); (J.T.)
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Centre National de la Recherche Scientifique, Sorbonne Université, USPC, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC 5096, 75006 Paris, France; (V.T.); (S.G.); (A.D.); (P.L.-P.)
| |
Collapse
|
33
|
van der Sijde F, Azmani Z, Besselink MG, Bonsing BA, de Groot JWB, Groot Koerkamp B, Haberkorn BCM, Homs MYV, van IJcken WFJ, Janssen QP, Lolkema MP, Luelmo SAC, Mekenkamp LJM, Mustafa DAM, van Schaik RHN, Wilmink JW, Vietsch EE, van Eijck CHJ. Circulating TP53 mutations are associated with early tumor progression and poor survival in pancreatic cancer patients treated with FOLFIRINOX. Ther Adv Med Oncol 2021; 13:17588359211033704. [PMID: 34422118 PMCID: PMC8377319 DOI: 10.1177/17588359211033704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Biomarkers predicting treatment response may be used to stratify pancreatic ductal adenocarcinoma (PDAC) patients for therapy. The aim of this study was to identify circulating tumor DNA (ctDNA) mutations that associate with tumor progression during FOLFIRINOX chemotherapy, and overall survival (OS). Methods: Circulating cell-free DNA was analyzed with a 57 gene next-generation sequencing panel using plasma samples of 48 PDAC patients of all disease stages. Patients received FOLFIRINOX as initial treatment. Chemotherapy response was determined on CT scans as disease control (n = 30) or progressive disease (n = 18) within eight cycles of FOLFIRINOX, based on RECIST 1.1 criteria. Results: Detection of a TP53 ctDNA mutation before start of FOLFIRINOX [odds ratio (OR) 10.51, 95% confidence interval (CI) 1.40–79.14] and the presence of a homozygous TP53 Pro72Arg germline variant (OR 6.98, 95% CI 1.31–37.30) were predictors of early tumor progression during FOLFIRINOX in multivariable analysis. Five patients presented with the combination of a TP53 ctDNA mutation before start of FOLFIRINOX and the homozygous Pro72Arg variant. All five patients showed progression during FOLFIRINOX. The combination of the TP53 mutation and TP53 germline variant was associated with shorter survival (median OS 4.4 months, 95% CI 2.6–6.2 months) compared with patients without any TP53 alterations (median OS 13.0 months, 95% CI 8.6–17.4 months). Conclusion: The combination of a TP53 ctDNA mutation before start of FOLFIRINOX and a homozygous TP53 Pro72Arg variant is a promising biomarker, associated with early tumor progression during FOLFIRINOX and poor OS. The results of this exploratory study need to be validated in an independent cohort.
Collapse
Affiliation(s)
- Fleur van der Sijde
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Zakia Azmani
- Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | | | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Marjolein Y. V. Homs
- Department of Medical Oncology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Quisette P. Janssen
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Leonie J. M. Mekenkamp
- Department of Medical Oncology, Medisch Spectrum Twente, Enschede, Overijssel, The Netherlands
| | - Dana A. M. Mustafa
- Department of Pathology, Tumor Immuno-Pathology Laboratory, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Hipp J, Hussung S, Timme-Bronsert S, Boerries M, Biesel E, Fichtner-Feigl S, Fritsch R, Wittel UA. Perioperative cell-free mutant KRAS dynamics in patients with pancreatic cancer. Br J Surg 2021; 108:239-243. [PMID: 33793718 DOI: 10.1093/bjs/znaa116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
This prospective observational biomarker trial evaluated the diagnostic and prognostic value of circulating KRAS mutations (cmKRAS) and their perioperative dynamics in patients with resectable pancreatic ductal adenocarcinoma (PDAC). Plasma cmKRAS samples (G12D, G12V, G12R, and G12C) were analysed by droplet digital PCR in 51 patients with resectable PDAC, 20 with advanced PDAC, and 34 with non-malignant pancreatic pathology. Preoperative detection of cmKRAS alone did not correlate with poorer overall and disease-free survival in this patient cohort. However, a perioperative change in cmKRAS, particularly accurate when an intraoperative sample was included, was identified as a new and useful marker for prediction of prolonged survival.
Promising biomarker
Collapse
Affiliation(s)
- J Hipp
- Department of General and Visceral Surgery, Centre of Surgery, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - S Hussung
- Department of Medicine (Haematology, Oncology and Stem Cell Transplantation), Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - S Timme-Bronsert
- Institute for Surgical Pathology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Tumorbank Comprehensive Cancer Centre Freiburg, Freiburg, Germany
| | - M Boerries
- German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Institute of Medical Bioinformatics and System Medicine, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre Freiburg (CCCF), Freiburg, Germany
| | - E Biesel
- Department of General and Visceral Surgery, Centre of Surgery, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - S Fichtner-Feigl
- Department of General and Visceral Surgery, Centre of Surgery, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R Fritsch
- Department of Medicine (Haematology, Oncology and Stem Cell Transplantation), Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Department of Medical Oncology and Haematology, Zurich University Hospital, Zurich, Switzerland
| | - U A Wittel
- Department of General and Visceral Surgery, Centre of Surgery, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Milin-Lazovic J, Madzarevic P, Rajovic N, Djordjevic V, Milic N, Pavlovic S, Veljkovic N, Milic NM, Radenkovic D. Meta-Analysis of Circulating Cell-Free DNA's Role in the Prognosis of Pancreatic Cancer. Cancers (Basel) 2021; 13:3378. [PMID: 34298594 PMCID: PMC8303288 DOI: 10.3390/cancers13143378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION The analysis of cell-free DNA (cfDNA) for genetic abnormalities is a promising new approach for the diagnosis and prognosis of pancreatic cancer patients. Insights into the molecular characteristics of pancreatic cancer may provide valuable information, leading to its earlier detection and the development of targeted therapies. MATERIAL AND METHODS We conducted a systematic review and a meta-analysis of studies that reported cfDNA in pancreatic ductal adenocarcinoma (PDAC). The studies were considered eligible if they included patients with PDAC, if they had blood tests for cfDNA/ctDNA, and if they analyzed the prognostic value of cfDNA/ctDNA for patients' survival. The studies published before 22 October 2020 were identified through the PubMED, EMBASE, Web of Science and Cochrane Library databases. The assessed outcomes were the overall (OS) and progression-free survival (PFS), expressed as the log hazard ratio (HR) and standard error (SE). The summary of the HR effect size was estimated by pooling the individual trial results using the Review Manager, version 5.3, Cochrane Collaboration. The heterogeneity was assessed using the Cochran Q test and I2 statistic. RESULTS In total, 48 studies were included in the qualitative review, while 44 were assessed in the quantitative synthesis, with the total number of patients included being 3524. Overall negative impacts of cfDNA and KRAS mutations on OS and PFS in PDAC (HR = 2.42, 95% CI: 1.95-2.99 and HR = 2.46, 95% CI: 2.01-3.00, respectively) were found. The subgroup analysis of the locally advanced and metastatic disease presented similar results (HR = 2.51, 95% CI: 1.90-3.31). In the studies assessing the pre-treatment presence of KRAS, there was a moderate to high degree of heterogeneity (I2 = 87% and I2 = 48%, for OS and PFS, respectively), which was remarkably decreased in the analysis of the studies measuring post-treatment KRAS (I2 = 24% and I2 = 0%, for OS and PFS, respectively). The patients who were KRAS positive before but KRAS negative after treatment had a better prognosis than the persistently KRAS-positive patients (HR = 5.30, 95% CI: 1.02-27.63). CONCLUSION The assessment of KRAS mutation by liquid biopsy can be considered as an additional tool for the estimation of the disease course and outcome in PDAC patients.
Collapse
Affiliation(s)
- Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Petar Madzarevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
| | - Vladimir Djordjevic
- Department of Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nevena Veljkovic
- Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
- Heliant Ltd., 11000 Belgrade, Serbia
| | - Natasa M. Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.M.-L.); (P.M.); (N.R.); (N.M.M.)
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, USA
| | - Dejan Radenkovic
- Department of Surgery, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
36
|
Wahl SGF, Dai HY, Emdal EF, Ottestad AL, Dale VG, Richardsen E, Halvorsen TO, Grønberg BH. Prognostic value of absolute quantification of mutated KRAS in circulating tumour DNA in lung adenocarcinoma patients prior to therapy. J Pathol Clin Res 2021; 7:209-219. [PMID: 33502820 PMCID: PMC8073004 DOI: 10.1002/cjp2.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Droplet digital polymerase chain reaction (ddPCR) is a highly sensitive and accurate method for quantification of nucleic acid sequences. We used absolute quantification of mutated v-Ki-ras2 Kirsten rat sarcoma viral oncogene homology gene (KRAS) by ddPCR to investigate the prognostic role of mutated KRAS in patients with KRAS-mutated lung adenocarcinomas. Pre-treatment plasma samples from 60 patients with stages I-IV KRAS-mutated lung adenocarcinomas were analysed for KRAS mutations. The associations between survival, detectable KRAS mutations in plasma, and the plasma concentration of mutated KRAS were assessed. Overall, 23 of 60 (38%) patients had detectable KRAS mutation in plasma. The percentage of patients with detectable mutation was 8% in stage I, 30% in stage II, 71% in stage III, and 73% in stage IV. Estimated overall median progression-free survival (PFS) and overall survival (OS) were 26.2 months [95% confidence interval (CI) 12.5-39.9] and 50.8 months (95% CI 0-107.3), respectively. Patients with detectable mutations in plasma had significantly worse median PFS compared to patients with undetectable mutation (13.1 versus 70.1 months) and shorter median OS (20.7 versus not reached). High circulating tumour DNA (ctDNA) concentrations of mutated KRAS were significantly associated with shorter PFS [hazard ratio (HR) 1.008, 95% CI 1.004-1.012] and OS (HR 1.007, 95% CI 1.003-1.011). All associations remained statistically significant in multivariable analyses. In conclusion, ddPCR is an accurate and easily feasible technique for quantification of KRAS mutations in ctDNA. The presence of detectable KRAS mutation in plasma at baseline was associated with worse PFS and OS. High concentration of mutated KRAS in ctDNA was an independent negative prognostic factor for both PFS and OS.
Collapse
Affiliation(s)
- Sissel Gyrid Freim Wahl
- Department of PathologySt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
- Department of Clinical and Molecular MedicineNTNU, Norwegian University of Technology and ScienceTrondheimNorway
| | - Hong Yan Dai
- Department of PathologySt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
- Department of Clinical and Molecular MedicineNTNU, Norwegian University of Technology and ScienceTrondheimNorway
| | - Elisabeth F Emdal
- Department of PathologySt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Anine L Ottestad
- Department of Clinical and Molecular MedicineNTNU, Norwegian University of Technology and ScienceTrondheimNorway
| | - Vibeke G Dale
- Department of PathologySt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Elin Richardsen
- Department of Medical BiologyUiT, The Arctic University of NorwayTromsøNorway
- Department of Clinical PathologyUniversity Hospital of North NorwayTromsøNorway
| | - Tarje O Halvorsen
- Department of Clinical and Molecular MedicineNTNU, Norwegian University of Technology and ScienceTrondheimNorway
- Department of OncologySt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Bjørn Henning Grønberg
- Department of Clinical and Molecular MedicineNTNU, Norwegian University of Technology and ScienceTrondheimNorway
- Department of OncologySt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| |
Collapse
|
37
|
Nordgård O, Brendsdal Forthun R, Lapin M, Grønberg BH, Kalland KH, Kopperud RK, Thomsen LCV, Tjensvoll K, Gilje B, Gjertsen BT, Hovland R. Liquid Biopsies in Solid Cancers: Implementation in a Nordic Healthcare System. Cancers (Basel) 2021; 13:cancers13081861. [PMID: 33924696 PMCID: PMC8069797 DOI: 10.3390/cancers13081861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary We here review liquid biopsy methods and their use in the diagnostics and treatment of patients with solid cancers. More specifically, circulating tumor DNA, circulating tumor cells, and their current and future clinical applications are considered. Important factors for further integration of liquid biopsy methods in clinical practice are discussed, with a special focus on a Nordic Healthcare system. Abstract Liquid biopsies have emerged as a potential new diagnostic tool, providing detailed information relevant for characterization and treatment of solid cancers. We here present an overview of current evidence supporting the clinical relevance of liquid biopsy assessments. We also discuss the implementation of liquid biopsies in clinical studies and their current and future clinical role, with a special reference to the Nordic healthcare systems. Our considerations are restricted to the most established liquid biopsy specimens: circulating tumor DNA (ctDNA) and circulating tumor cells (CTC). Both ctDNA and CTCs have been used for prognostic stratification, treatment choices, and treatment monitoring in solid cancers. Several recent publications also support the role of ctDNA in early cancer detection. ctDNA seems to provide more robust clinically relevant information in general, whereas CTCs have the potential to answer more basic questions related to cancer biology and metastasis. Epidermal growth factor receptor-directed treatment of non-small-cell lung cancer represents a clinical setting where ctDNA already has entered the clinic. The role of liquid biopsies in treatment decisions, standardization of methods, diagnostic performance and the need for further research, as well as cost and regulatory issues were identified as factors that influence further integration in the clinic. In conclusion, substantial evidence supports the clinical utility of liquid biopsies in cancer diagnostics, but further research is still required for a more general application in clinical practice.
Collapse
Affiliation(s)
- Oddmund Nordgård
- Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; (M.L.); (K.T.); (B.G.)
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway
- Correspondence:
| | - Rakel Brendsdal Forthun
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway; (R.B.F.); (R.H.)
- Section of Cancer Genomics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Morten Lapin
- Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; (M.L.); (K.T.); (B.G.)
| | - Bjørn Henning Grønberg
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
- Department of Oncology, St. Olav’s Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Karl Henning Kalland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (K.H.K.); (R.K.K.); (L.C.V.T.); (B.T.G.)
- Department of Microbiology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Reidun Kristin Kopperud
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (K.H.K.); (R.K.K.); (L.C.V.T.); (B.T.G.)
| | - Liv Cecilie Vestrheim Thomsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (K.H.K.); (R.K.K.); (L.C.V.T.); (B.T.G.)
| | - Kjersti Tjensvoll
- Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; (M.L.); (K.T.); (B.G.)
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway; (M.L.); (K.T.); (B.G.)
| | - Bjørn Tore Gjertsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; (K.H.K.); (R.K.K.); (L.C.V.T.); (B.T.G.)
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, 5021 Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway; (R.B.F.); (R.H.)
- Section of Cancer Genomics, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
38
|
Rodríguez J, Avila J, Rolfo C, Ruíz-Patiño A, Russo A, Ricaurte L, Ordóñez-Reyes C, Arrieta O, Zatarain-Barrón ZL, Recondo G, Cardona AF. When Tissue is an Issue the Liquid Biopsy is Nonissue: A Review. Oncol Ther 2021; 9:89-110. [PMID: 33689160 PMCID: PMC8140006 DOI: 10.1007/s40487-021-00144-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Precision medicine has impacted the field of medical oncology by introducing personalized therapies, improving all measurable outcomes. This field, in turn, has expanded to obtaining and analyzing a vast and ever-increasing amount of genomic information. One technique currently applied is the liquid biopsy, which consists of detecting and isolating DNA and exosomes in cancer patients. Newly developed techniques have made it possible to use the liquid biopsy in a wide range of settings. However, challenges regarding the validation of its clinical utility exist because of a lack of standardization across different techniques and tumor types, confounder genomic information, lack of appropriate clinical trial designs, and a non-measured, and therefore not estimated, economic impact on population health. Nowadays, liquid biopsy is not routinely used, but ongoing research is increasing its popularity, and a new era in oncology is developing. Therefore, it is essential to have an in-depth understanding of the liquid biopsy technique. In this review, we summarize the leading techniques and liquid biopsy applications in cancer.
Collapse
Affiliation(s)
- July Rodríguez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Jenny Avila
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alejandro Ruíz-Patiño
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia
| | - Alessandro Russo
- Medical Oncology Unit A.O. Papardo and Department of Human Pathology, University of Messina, Messina, Italy
| | - Luisa Ricaurte
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia
- Pathology Department, Mayo Clinic, Rochester, MN, USA
| | | | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Gonzalo Recondo
- Thoracic Oncology Section, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Buenos Aires, Argentina
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogota, Colombia.
- Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad El Bosque, Bogota, Colombia.
- Clinical and Traslational Oncology Group, Clinica del Country, Bogota, Colombia.
| |
Collapse
|
39
|
Botrus G, Kosirorek H, Sonbol MB, Kusne Y, Uson Junior PLS, Borad MJ, Ahn DH, Kasi PM, Drusbosky LM, Dada H, Surapaneni PK, Starr J, Ritter A, McMillan J, Wylie N, Mody K, Bekaii-Saab TS. Circulating Tumor DNA-Based Testing and Actionable Findings in Patients with Advanced and Metastatic Pancreatic Adenocarcinoma. Oncologist 2021; 26:569-578. [PMID: 33555095 DOI: 10.1002/onco.13717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Recent advances in molecular diagnostic technologies allow for the evaluation of solid tumor malignancies through noninvasive blood sampling, including circulating tumor DNA profiling (ctDNA). Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, often because of late presentation of disease. Diagnosis is often made using endoscopic ultrasound or endoscopic retrograde cholangiopancreatography, which often does not yield enough tissue for next-generation sequencing. With this study, we sought to characterize the ctDNA genomic alteration landscape in patients with advanced PDAC with a focus on actionable findings. MATERIALS AND METHODS From December 2014 through October 2019, 357 samples collected from 282 patients with PDAC at Mayo Clinic underwent ctDNA testing using a clinically available assay. The majority of samples were tested using the 73-gene panel which includes somatic genomic targets, including complete or critical exon coverage in 30 and 40 genes, respectively, and in some, amplifications, fusions, and indels. Clinical data and outcome variables were available for 165 patients; with 104 patients at initial presentation. RESULTS All patients included in this study had locally advanced or metastatic PDAC. Samples having at least one alteration, when variants of unknown significance (VUS) were excluded, numbered 266 (75%). After excluding VUS, therapeutically relevant alterations were observed in 170 (48%) of the total 357 cohort, including KRAS (G12C), EGFR, ATM, MYC, BRCA, PIK3CA, and BRAF mutations. KRAS, SMAD, CCND2, or TP53 alterations were seen in higher frequency in patients with advanced disease. CONCLUSION Our study is the largest cohort to date that demonstrates the feasibility of ctDNA testing in PDAC. We provide a benchmark landscape upon which the field can continue to grow. Future applications may include use of ctDNA to guide treatment and serial monitoring of ctDNA during disease course to identify novel therapeutic targets for improved prognosis. IMPLICATIONS FOR PRACTICE Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis often due to late presentation of disease. Biopsy tissue sampling is invasive and samples are often inadequate, requiring repeated invasive procedures and delays in treatment. Noninvasive methods to identify PDAC early in its course may improve prognosis in PDAC. Using ctDNA, targetable genes can be identified and used for treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pashtoon M Kasi
- Division of Internal Medicine, College of Medicine and Oncology, University of Iowa, Iowa City, Iowa, USA
| | | | - Hiba Dada
- Guardant Health, Inc, Redwood City, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Huerta M, Roselló S, Sabater L, Ferrer A, Tarazona N, Roda D, Gambardella V, Alfaro-Cervelló C, Garcés-Albir M, Cervantes A, Ibarrola-Villava M. Circulating Tumor DNA Detection by Digital-Droplet PCR in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13050994. [PMID: 33673558 PMCID: PMC7956845 DOI: 10.3390/cancers13050994] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer is a digestive tumor that is most difficult to treat and carries one of the worst prognoses. The anatomical location of the pancreas makes it very difficult to obtain enough tumor material to establish a molecular diagnosis, so knowing the biology of this tumor and implementing new targeted-therapies is still a pending issue. The use of liquid biopsy, a blood sample test to detect circulating-tumor DNA fragments (ctDNA), is key to overcoming this difficulty and improving the evolution of this tumor. Liquid biopsies are equally representative of the tissue from which they come and allow relevant molecular and diagnostic information to be obtained in a faster and less invasive way. One challenge related to ctDNA is the lack of consistency in the study design. Moreover, ctDNA accounts for only a small percentage of the total cell-free circulating DNA and prior knowledge about particular mutations is usually required. Thus, our aim was to understand the current role and future perspectives of ctDNA in pancreatic cancer using digital-droplet PCR technology. Abstract Pancreatic cancer (PC) is one of the most devastating malignant tumors, being the seventh leading cause of cancer-related death worldwide. Researchers and clinicians are endeavoring to develop strategies for the early detection of the disease and the improvement of treatment results. Adequate biopsy is still challenging because of the pancreas’s poor anatomic location. Recently, circulating tumor DNA (ctDNA) could be identified as a liquid biopsy tool with huge potential as a non-invasive biomarker in early diagnosis, prognosis and management of PC. ctDNA is released from apoptotic and necrotic cancer cells, as well as from living tumor cells and even circulating tumor cells, and it can reveal genetic and epigenetic alterations with tumor-specific and individual mutation and methylation profiles. However, ctDNA sensibility remains a limitation and the accuracy of ctDNA as a biomarker for PC is relatively low and cannot be currently used as a screening or diagnostic tool. Increasing evidence suggests that ctDNA is an interesting biomarker for predictive or prognosis studies, evaluating minimal residual disease, longitudinal follow-up and treatment management. Promising results have been published and therefore the objective of our review is to understand the current role and the future perspectives of ctDNA in PC.
Collapse
Affiliation(s)
- Marisol Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
| | - Susana Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Department of Surgery, Hospital Clínico Universitario of Valencia, University of Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (L.S.); (M.G.-A.)
| | - Ana Ferrer
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Desamparados Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Valentina Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Clara Alfaro-Cervelló
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain;
| | - Marina Garcés-Albir
- Liver, Biliary and Pancreatic Unit, Department of Surgery, Hospital Clínico Universitario of Valencia, University of Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (L.S.); (M.G.-A.)
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-862-894
| |
Collapse
|
41
|
Jaworski JJ, Morgan RD, Sivakumar S. Circulating Cell-Free Tumour DNA for Early Detection of Pancreatic Cancer. Cancers (Basel) 2020; 12:E3704. [PMID: 33317202 PMCID: PMC7763954 DOI: 10.3390/cancers12123704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 01/11/2023] Open
Abstract
Pancreatic cancer is a lethal disease, with mortality rates negatively associated with the stage at which the disease is detected. Early detection is therefore critical to improving survival outcomes. A recent focus of research for early detection is the use of circulating cell-free tumour DNA (ctDNA). The detection of ctDNA offers potential as a relatively non-invasive method of diagnosing pancreatic cancer by using genetic sequencing technology to detect tumour-specific mutational signatures in blood samples before symptoms manifest. These technologies are limited by a number of factors that lower sensitivity and specificity, including low levels of detectable ctDNA in early stage disease and contamination with non-cancer circulating cell-free DNA. However, genetic and epigenetic analysis of ctDNA in combination with other standard diagnostic tests may improve early detection rates. In this review, we evaluate the genetic and epigenetic methods under investigation in diagnosing pancreatic cancer and provide a perspective for future developments.
Collapse
Affiliation(s)
- Jedrzej J. Jaworski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK;
| | - Robert D. Morgan
- Department of Medical Oncology, Christie NHS Foundation Trust, Manchester M20 4BX, UK;
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Shivan Sivakumar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Department of Medical Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| |
Collapse
|
42
|
Fang Z, Meng Q, Zhang B, Shi S, Liu J, Liang C, Hua J, Yu X, Xu J, Wang W. Prognostic value of circulating tumor DNA in pancreatic cancer: a systematic review and meta-analysis. Aging (Albany NY) 2020; 13:2031-2048. [PMID: 33318293 PMCID: PMC7880399 DOI: 10.18632/aging.202199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023]
Abstract
Increasing evidence has revealed the potential correlation between circulating tumor DNA (ctDNA) and the prognosis of pancreatic cancer, but inconsistent findings have been reported. Therefore, a meta-analysis was performed to evaluate the prognostic value of ctDNA in pancreatic cancer. The Embase, MEDLINE, and Web of Science databases were searched for relevant articles published until April 2020. Articles reporting the correlation between ctDNA and the prognosis of pancreatic cancer were identified through database searches. The pooled hazard ratios (HRs) for prognostic data were calculated and analyzed using Stata software. A total of 2326 patients pooled from 25 eligible studies were included in the meta-analysis to evaluate the prognostic value of ctDNA in pancreatic cancer. Patients with mutations detected or high concentrations of ctDNA had a significantly poorer overall survival (OS) (univariate: HR = 2.54; 95% CI, 2.05-3.14; multivariate: HR = 2.07; 95% CI, 1.69-2.54) and progression-free survival (PFS) (univariate: HR = 2.18; 95% CI, 1.41-3.37; multivariate: HR = 2.20; 95% CI, 1.38-3.52). In conclusion, the present meta-analysis indicates that mutations detected or high concentrations of ctDNA are significant predictors of OS and PFS in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Iovanna J. Implementing biological markers as a tool to guide clinical care of patients with pancreatic cancer. Transl Oncol 2020; 14:100965. [PMID: 33248412 PMCID: PMC7704461 DOI: 10.1016/j.tranon.2020.100965] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
A major obstacle for the effective treatment of PDAC is its molecular heterogeneity. Stratification of PDAC using markers highly specific, reproducible, sensitive, easily measurable and inexpensive is necessary. At the early stages, clinician’s priority lies in rapid diagnosis, so that the patient receives surgery without delay. At advanced disease stages, priority is to determine the tumor subtype and select a suitable effective treatment.
A major obstacle for the effective treatment of pancreatic ductal adenocarcinoma (PDAC) is its molecular heterogeneity, reflected by the diverse clinical outcomes and responses to therapies that occur. The tumors of patients with PDAC must therefore be closely examined and classified before treatment initiation in order to predict the natural evolution of the disease and the response to therapy. To stratify patients, it is absolutely necessary to identify biological markers that are highly specific and reproducible, and easily measurable by inexpensive sensitive techniques. Several promising strategies to find biomarkers are already available or under development, such as the use of liquid biopsies to detect circulating tumor cells, circulating free DNA, methylated DNA, circulating RNA, and exosomes and extracellular vesicles, as well as immunological markers and molecular markers. Such biomarkers are capable of classifying patients with PDAC and predicting their therapeutic sensitivity. Interestingly, developing chemograms using primary cell lines or organoids and analyzing the resulting high-throughput data via artificial intelligence would be highly beneficial to patients. How can exploiting these biomarkers benefit patients with resectable, borderline resectable, locally advanced, and metastatic PDAC? In fact, the utility of these biomarkers depends on the patient's clinical situation. At the early stages of the disease, the clinician's priority lies in rapid diagnosis, so that the patient receives surgery without delay; at advanced disease stages, where therapeutic possibilities are severely limited, the priority is to determine the PDAC tumor subtype so as to estimate the clinical outcome and select a suitable effective treatment.
Collapse
Affiliation(s)
- Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288 Marseille, France.
| |
Collapse
|
44
|
To YH, Lee B, Wong HL, Gibbs P, Tie J. Circulating Tumour DNA to Guide Treatment of Gastrointestinal Malignancies. Visc Med 2020; 36:388-396. [PMID: 33178736 DOI: 10.1159/000509657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background Gastrointestinal cancers are among the most common cancers worldwide and account for a high proportion of cancer-related mortality. Advancements to improve outcomes are constrained by the lack of biomarkers that can offer early diagnostic and prognostic information as traditional serological tumour markers and conventional imaging approaches are not able to provide early information regarding disease recurrence and treatment outcomes. Recent advances in technology have allowed the detection of circulating tumour DNA (ctDNA) in plasma, nucleic acid fragments released into the circulation from primary or metastatic lesions undergoing apoptosis and necrosis. A growing body of evidence has emerged supporting the use of ctDNA in many aspects of cancer care. Summary This review focuses on the potential role of ctDNA in the management of patients with gastrointestinal cancers including colorectal, pancreatic, and upper gastrointestinal cancers. In this review, we discuss its possible utility in screening, detection of minimal residual disease and prognostication, longitudinal surveillance, and identification of therapeutic targets and resistance incorporating recent literature and ongoing randomised clinical trials. Key Messages ctDNA has substantial potential as a clinically useful marker in the management of gastrointestinal cancers from cancer screening through to treatment of advanced disease.
Collapse
Affiliation(s)
- Yat Hang To
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Belinda Lee
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Medical Oncology, The Northern Hospital, Epping, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Hui-Li Wong
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Gibbs
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Oncology, Western Health, Footscray, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeanne Tie
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Medical Oncology, Western Health, Footscray, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Khomiak A, Brunner M, Kordes M, Lindblad S, Miksch RC, Öhlund D, Regel I. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers (Basel) 2020; 12:E3234. [PMID: 33147766 PMCID: PMC7692691 DOI: 10.3390/cancers12113234] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis that is frequently diagnosed at an advanced stage. Although less common than other malignant diseases, it currently ranks as the fourth most common cause of cancer-related death in the European Union with a five-year survival rate of below 9%. Surgical resection, followed by adjuvant chemotherapy, remains the only potentially curative treatment but only a minority of patients is diagnosed with locally resectable, non-metastatic disease. Patients with advanced disease are treated with chemotherapy but high rates of treatment resistance and unfavorable side-effect profiles of some of the used regimens remain major challenges. Biomarkers reflect pathophysiological or physiological processes linked to a disease and can be used as diagnostic, prognostic and predictive tools. Thus, accurate biomarkers can allow for better patient stratification and guide therapy choices. Currently, the only broadly used biomarker for PDAC, CA 19-9, has multiple limitations and the need for novel biomarkers is urgent. In this review, we highlight the current situation, recent discoveries and developments in the field of biomarkers of PDAC and their potential clinical applications.
Collapse
Affiliation(s)
- Andrii Khomiak
- Shalimov National Institute of Surgery and Transplantology, 03058 Kyiv, Ukraine;
| | - Marius Brunner
- Department of Gastroenterology, Endocrinology and Gastrointestinal Oncology, University Medical Center, 37075 Goettingen, Germany;
| | - Maximilian Kordes
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 14186 Stockholm, Sweden;
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stina Lindblad
- Department of Radiation Sciences, Sweden and Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Rainer Christoph Miksch
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Daniel Öhlund
- Department of Radiation Sciences, Sweden and Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
46
|
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States. Pancreatic cancer presents dismal clinical outcomes in patients, and the incidence of pancreatic cancer has continuously increased to likely become the second most common cause of cancer-related deaths by as early as 2030. One of main reasons for the high mortality rate of pancreatic cancer is the lack of tools for early-stage detection. Current practice in detecting and monitoring therapeutic response in pancreatic cancer relies on imaging analysis and invasive endoscopic examination. Liquid biopsy-based analysis of genetic alterations in biofluids has become a fundamental component in the diagnosis and management of cancers. There is an urgent need for scientific and technological advancement to detect pancreatic cancer early and to develop effective therapies. The development of a highly sensitive and specific liquid biopsy tool will require extensive understanding on the characteristics of circulating tumor DNA in biofluids. Here, we have reviewed the current status of liquid biopsy in detecting and monitoring pancreatic cancers and our understanding of circulating tumor DNA that should be considered for the development of a liquid biopsy tool, which will greatly aid in the diagnosis and healthcare of people at risk.
Collapse
|
47
|
Pessoa LS, Heringer M, Ferrer VP. ctDNA as a cancer biomarker: A broad overview. Crit Rev Oncol Hematol 2020; 155:103109. [PMID: 33049662 DOI: 10.1016/j.critrevonc.2020.103109] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor DNA (ctDNA) in fluids has gained attention because ctDNA seems to identify tumor-specific abnormalities, which could be used for diagnosis, follow-up of treatment, and prognosis: the so-called liquid biopsy. Liquid biopsy is a minimally invasive approach and presents the sum of ctDNA from primary and secondary tumor sites. It has been possible not only to quantify the amount of ctDNA but also to identify (epi)genetic changes. Specific mutations in genes have been identified in the plasma of patients with several types of cancer, which highlights ctDNA as a possible cancer biomarker. However, achieving detectable concentrations of ctDNA in body fluids is not an easy task. ctDNA fragments present a short half-life, and there are no cut-off values to discriminate high and low ctDNA concentrations. Here, we discuss the use of ctDNA as a cancer biomarker, the main methodologies, the inherent difficulties, and the clinical predictive value of ctDNA.
Collapse
Affiliation(s)
- Luciana Santos Pessoa
- Brain's Biomedicine Laboratory, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Rio de Janeiro, Brazil; Center for Experimental Surgery, Graduate Program in Surgical Sciences, Department of Surgery, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Manoela Heringer
- Brain's Biomedicine Laboratory, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria Pereira Ferrer
- Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Baumgartner JM, Riviere P, Lanman RB, Kelly KJ, Veerapong J, Lowy AM, Kurzrock R. Prognostic Utility of Pre- and Postoperative Circulating Tumor DNA Liquid Biopsies in Patients with Peritoneal Metastases. Ann Surg Oncol 2020; 27:3259-3267. [PMID: 32767050 DOI: 10.1245/s10434-020-08331-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) is a promising technology for treatment selection, prognostication, and surveillance after definitive therapy. Its use in the perioperative setting for patients with metastatic disease has not been well studied. We characterize perioperative plasma ctDNA and its association with progression-free survival (PFS) in patients undergoing surgery for peritoneal metastases. PATIENTS AND METHODS We recruited 71 patients undergoing surgery for peritoneal metastases and evaluated their plasma with a targeted 73-gene ctDNA next-generation sequencing test before and after surgery. The association between perioperative ctDNA, as well as other patient factors, and PFS was evaluated by Cox regression. RESULTS ctDNA was detectable in 28 patients (39.4%) preoperatively and in 37 patients (52.1%) postoperatively. Patients with high ctDNA [maximum somatic variant allele fraction (MSVAF) > 0.25%] had worse PFS than those with low MSVAF (< 0.25%) in both the pre- and postoperative settings (median 4.8 vs. 19.3 months, p < 0.001, and 9.2 vs.15.0 months, p = 0.049, respectively; log-rank test). On multivariate analysis, high-grade histology [hazard ratio (HR) 3.42, p = 0.001], incomplete resection (HR 2.35, p = 0.010), and high preoperative MSVAF (HR 3.04, p = 0.001) were associated with worse PFS. Patients with new postoperative alterations in the context of preoperative alteration(s) also had a significantly shorter PFS compared with other groups (HR 4.28, p < 0.001). CONCLUSIONS High levels of perioperative ctDNA and new postoperative ctDNA alterations in the context of preoperative alterations predict worse outcomes in patients undergoing resection for peritoneal metastases. This may highlight a role for longitudinal ctDNA surveillance in this population.
Collapse
Affiliation(s)
- Joel M Baumgartner
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, La Jolla, CA, USA.
| | - Paul Riviere
- Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA
| | | | - Kaitlyn J Kelly
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, La Jolla, CA, USA
| | - Jula Veerapong
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, La Jolla, CA, USA
| | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, University of California, San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Uesato Y, Sasahira N, Ozaka M, Sasaki T, Takatsuki M, Zembutsu H. Evaluation of circulating tumor DNA as a biomarker in pancreatic cancer with liver metastasis. PLoS One 2020; 15:e0235623. [PMID: 32614932 PMCID: PMC7332050 DOI: 10.1371/journal.pone.0235623] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer is an aggressive, solid tumor, with a grave prognosis. Despite surgical treatment in patients with pancreatic cancer, the rate of recurrence is high. In addition, although tumor biomarkers are frequently used to confirm advanced pancreatic cancer, this is not accurate and the biomarkers currently used cannot indicate prognosis. This study sought to evaluate circulating tumor DNA as a tumor biomarker to prognosticate pancreatic cancer. Patients with advanced pancreatic cancer and liver metastasis (N = 104) were included, and blood samples were collected from all patients. The mutant allele frequency was measured using amplicon-based deep sequencing on a cell-free DNA panel covering 14 genes with > 240 hot spots. In patients with advanced pancreatic cancer, 50% (N = 52) had detectable ctDNA levels, with TP53 (45%, N = 47) and KRAS (42.3%, N = 44) mutations the most common. Patients with detectable circulating tumor DNA levels also had significantly worse overall survival and progression free survival than ctDNA negative patients (8.4 vs 16 months, P<0.0001 for overall survival; 3.2 vs 7.9 months, P<0.0001 for progression-free survival). In a multivariate analysis, ctDNA status was independently associated with overall survival and progression-free survival (HR = 3.1, 95%CI = 1.9-5.0, P<0.0001; HR 2.6, 95%CI = 1.7-4.0, P<0.0001, respectively). Moreover, circulating tumor DNA significantly correlated with a higher number of liver metastases, the presence of lung and/or peritoneal metastases, tumor burden, and higher carbohydrate antigen 19-9 levels. This study supports the use of circulating tumor DNA as an independent prognostic marker for advanced pancreatic cancer.
Collapse
Affiliation(s)
- Yasunori Uesato
- Project of Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Digestive and General Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- * E-mail:
| | - Naoki Sasahira
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masato Ozaka
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takashi Sasaki
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mitsuhisa Takatsuki
- Department of Digestive and General Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hitoshi Zembutsu
- Project of Development of Liquid Biopsy Diagnosis, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
50
|
Toledano-Fonseca M, Cano MT, Inga E, Rodríguez-Alonso R, Gómez-España MA, Guil-Luna S, Mena-Osuna R, de la Haba-Rodríguez JR, Rodríguez-Ariza A, Aranda E. Circulating Cell-Free DNA-Based Liquid Biopsy Markers for the Non-Invasive Prognosis and Monitoring of Metastatic Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12071754. [PMID: 32630266 PMCID: PMC7409337 DOI: 10.3390/cancers12071754] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
Liquid biopsy may assist in the management of cancer patients, which can be particularly applicable in pancreatic ductal adenocarcinoma (PDAC). In this study, we investigated the utility of circulating cell-free DNA (cfDNA)-based markers as prognostic tools in metastatic PDAC. Plasma was obtained from 61 metastatic PDAC patients, and cfDNA levels and fragmentation were determined. BEAMing technique was used for quantitative determination of RAS mutation allele fraction (MAF) in cfDNA. We found that the prognosis was more accurately predicted by RAS mutation detection in plasma than in tissue. RAS mutation status in plasma was a strong independent prognostic factor for both overall survival (OS) and progression-free survival (PFS). Moreover, RAS MAF in cfDNA was also an independent risk factor for poor OS, and was strongly associated with primary tumours in the body/tail of the pancreas and liver metastases. Higher cfDNA levels and fragmentation were also associated with poorer OS and shorter PFS, body/tail tumors, and hepatic metastases, whereas cfDNA fragmentation positively correlated with RAS MAF. Remarkably, the combination of CA19-9 with MAF, cfDNA levels and fragmentation improved the prognostic stratification of patients. Furthermore, dynamics of RAS MAF better correlated with patients’ outcome than standard CA19-9 marker. In conclusion, our study supports the use of cfDNA-based liquid biopsy markers as clinical tools for the non-invasive prognosis and monitoring of metastatic PDAC patients.
Collapse
Affiliation(s)
- Marta Toledano-Fonseca
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (R.M.-O.); (J.R.d.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Center (CIBERONC), E28029 Madrid, Spain;
| | - M. Teresa Cano
- Medical Oncology Department, Reina Sofía University Hospital, E14004 Córdoba, Spain; (M.T.C.); (E.I.); (R.R.-A.)
| | - Elizabeth Inga
- Medical Oncology Department, Reina Sofía University Hospital, E14004 Córdoba, Spain; (M.T.C.); (E.I.); (R.R.-A.)
| | - Rosa Rodríguez-Alonso
- Medical Oncology Department, Reina Sofía University Hospital, E14004 Córdoba, Spain; (M.T.C.); (E.I.); (R.R.-A.)
| | - M. Auxiliadora Gómez-España
- Cancer Network Biomedical Research Center (CIBERONC), E28029 Madrid, Spain;
- Medical Oncology Department, Reina Sofía University Hospital, E14004 Córdoba, Spain; (M.T.C.); (E.I.); (R.R.-A.)
| | - Silvia Guil-Luna
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (R.M.-O.); (J.R.d.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Center (CIBERONC), E28029 Madrid, Spain;
| | - Rafael Mena-Osuna
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (R.M.-O.); (J.R.d.l.H.-R.); (E.A.)
| | - Juan R. de la Haba-Rodríguez
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (R.M.-O.); (J.R.d.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Center (CIBERONC), E28029 Madrid, Spain;
- Medical Oncology Department, Reina Sofía University Hospital, E14004 Córdoba, Spain; (M.T.C.); (E.I.); (R.R.-A.)
| | - Antonio Rodríguez-Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (R.M.-O.); (J.R.d.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Center (CIBERONC), E28029 Madrid, Spain;
- Medical Oncology Department, Reina Sofía University Hospital, E14004 Córdoba, Spain; (M.T.C.); (E.I.); (R.R.-A.)
- Correspondence:
| | - Enrique Aranda
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), E14004 Córdoba, Spain; (M.T.-F.); (S.G.-L.); (R.M.-O.); (J.R.d.l.H.-R.); (E.A.)
- Cancer Network Biomedical Research Center (CIBERONC), E28029 Madrid, Spain;
- Medical Oncology Department, Reina Sofía University Hospital, E14004 Córdoba, Spain; (M.T.C.); (E.I.); (R.R.-A.)
- Department of Medicine, Faculty of Medicine, University of Córdoba, E14004 Córdoba, Spain
| |
Collapse
|