1
|
Ni T, Zhao RH, Wu JF, Li CY, Xue G, Lin X. KLK7, KLK10, and KLK11 in Papillary Thyroid Cancer: Bioinformatic Analysis and Experimental Validation. Biochem Genet 2024; 62:4446-4471. [PMID: 38316654 DOI: 10.1007/s10528-024-10679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024]
Abstract
Despite many studies on papillary thyroid carcinoma (PTC) in the past few decades, some critical and significant genes remain undiscovered. To explore genes that may play crucial roles in PTC, a detailed analysis of the expression levels, mutations, and clinical significance of Kallikrein-related peptidases (KLKs) family genes in PTC was undertaken to provide new targets for the precise treatment of the disease. A comprehensive analysis of KLK family genes was performed using various online tools, such as GEPIA, Kaplan-Meier Plotter, LinkedOmics, GSCA, TIMER, and Cluego. KLK7, KLK10, and KLK11 were critical factors of KLK family genes. Then, functional assays were carried out on KLK7/10/11 to determine their proliferation, migration, and invasion capabilities in PTC. The mRNA expression levels of KLK7, KLK10, KLK11, and KLK13 were significantly elevated in thyroid carcinoma, while KLK1, KLK2, KLK3 and KLK4 mRNA levels were decreased compared to normal tissues. Correlations between KLK2/7-12/15 expression levels and tumor stage were also observed in thyroid carcinoma. Survival analysis demonstrated that KLK4/5/7/9-12/14 was associated with overall survival in patients with thyroid cancer. Not only were KLK genes strongly associated with cancer-related pathways, but also KLK7/10/11 was associated with immune-cell infiltration. Finally, silencing KLK7/10/11 impaired human papillary thyroid carcinoma cells' growth, migration ability, and invasiveness. The increased expression of KLK7, KLK10, and KLK11 may serve as molecular markers to identify PTC patients. KLK7, KLK10, and KLK11 could be potential prognostic indicators and targets for precision therapy against PTC.
Collapse
Affiliation(s)
- Tao Ni
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Ru-Hua Zhao
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China
| | - Jing-Fang Wu
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China
| | - Chao-You Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Gang Xue
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China.
| | - Xu Lin
- Department of Morphology Laboratory, Hebei North University, Zhangjiakou, 075000, China.
| |
Collapse
|
2
|
Ferreira JM, Gonçalves CS, Costa BM. Emerging roles and biomarker potential of WNT6 in human cancers. Cell Commun Signal 2024; 22:538. [PMID: 39529066 PMCID: PMC11552340 DOI: 10.1186/s12964-024-01892-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
The WNT6 ligand is a well-known activator of the WNT signaling pathway, considered a vital player in several important physiologic processes during embryonic development and maintaining homeostasis throughout life, regulating the proliferation and differentiation of multiple stem/progenitor cell types. More recently, as it is the case for many key molecular regulators of embryonic development, dysregulation of WNT6 has been implicated in cancer development and progression in multiple studies. In this review, we overview the most significant recent findings regarding WNT6 in the context of human malignancies, exploring its influence on multiple dimensions of tumor pathophysiology and highlighting the putative underlying WNT6-associated molecular mechanisms. We also discuss the potential clinical implications of WNT6 as a prognostic and therapeutic biomarker. This critical review highlights the emerging relevance of WNT6 in multiple human cancers, and its potential as a clinically-useful biomarker, addressing key unanswered questions that could lead to new opportunities in patient diagnosis, stratification, and the development of rationally-designed precision therapies.
Collapse
Affiliation(s)
- Joana M Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Céline S Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
3
|
Lakis F, Ayoub R, Faour WH, Makki M, Yassine H, Fayyad-Kazan H, Abdel Sater F. Identification of CSNK1D and KLK6 as two common upregulated genes present in BRCA1 mutated triple-negative breast cancer and ovarian epithelial carcinoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:554-567. [PMID: 38781585 DOI: 10.1080/15257770.2024.2357267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Deficiency in the breast cancer type 1 (BRCA1) gene expression predisposes to triple-negative breast cancer (TNBC) and ovarian cancer (OC). We previously identified by Comparative Genomic Hybridization (CGH) array a gain in the 17q25.3 genomic region in 90% of the BRCA1 mutated TNBC tissues, where 17 genes were up-regulated. A second region (Chr19_45681759_54221324) was identified as the second most frequent gain in the BRCA1-mutated population and has not yet been described in the context of BRCA1 mutation. We thus aimed to validate the expression of the Casein kinase 1 delta (CSNK1D) gene of Chr17 in TNBC and OC cell lines and to investigate the expression of genes of Chr19 in TNBC cell lines and tissues as well as in OC cell lines. Expression level of the genes of the 17q25.3, 19q13.32,13.33 and 13.41 chromosomal regions was analyzed using RT-PCR in BRCA1 deficient TNBC and OC cell lines, as well as in 10 BRCA1-mutated TNBC tissues versus 10 wild type carriers. Our results revealed a significant upregulation of CSNK1D gene expression in BRCA1 deficient TNBC and OC cell lines when compared to control ones, and a significant aberration in the expression of the other six genes of Chr19 was observed. Interestingly, upregulation of kallikrein-related peptidase 6 (KLK6) was detected among the BRCA1 deficient TNBC (cell lines and tissues) and OC cell lines. In conclusion, our results suggested that CSNK1D and KLK6 expression levels could be very promising in the search for biomarkers for BRCA1 deficient TNBC and OC.
Collapse
Affiliation(s)
- Fatima Lakis
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Rita Ayoub
- Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Mohammad Makki
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Hanane Yassine
- Biology Department, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Fadi Abdel Sater
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
4
|
Sananes A, Cohen I, Allon I, Ben‐David O, Abu Shareb R, Yegodayev KM, Stepensky D, Elkabets M, Papo N. Serine protease inhibitors decrease metastasis in prostate, breast, and ovarian cancers. Mol Oncol 2023; 17:2337-2355. [PMID: 37609678 PMCID: PMC10620120 DOI: 10.1002/1878-0261.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
Targeted therapies for prostate, breast, and ovarian cancers are based on their activity against primary tumors rather than their anti-metastatic activity. Consequently, there is an urgent need for new agents targeting the metastatic process. Emerging evidence correlates in vitro and in vivo cancer invasion and metastasis with increased activity of the proteases mesotrypsin (prostate and breast cancer) and kallikrein 6 (KLK6; ovarian cancer). Thus, mesotrypsin and KLK6 are attractive putative targets for therapeutic intervention. As potential therapeutics for advanced metastatic prostate, breast, and ovarian cancers, we report novel mesotrypsin- and KLK6-based therapies, based on our previously developed mutants of the human amyloid β-protein precursor Kunitz protease inhibitor domain (APPI). These mutants, designated APPI-3M (prostate and breast cancer) and APPI-4M (ovarian cancer), demonstrated significant accumulation in tumors and therapeutic efficacy in orthotopic preclinical models, with the advantages of long retention times in vivo, high affinity and favorable pharmacokinetic properties. The applicability of the APPIs, as a novel therapy and for imaging purposes, is supported by their good safety profile and their controlled and scalable manufacturability in bioreactors.
Collapse
Affiliation(s)
- Amiram Sananes
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Itay Cohen
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Irit Allon
- Institute of Pathology, Barzilai University Medical Center, Ashkelon, Israel ad Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Oshrit Ben‐David
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Raghda Abu Shareb
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - David Stepensky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Niv Papo
- Avram and Stella Goldstein‐Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
5
|
KLK6 Functions as an Oncogene and Unfavorable Prognostic Factor in Bladder Urothelial Carcinoma. DISEASE MARKERS 2022; 2022:3373851. [PMID: 36193495 PMCID: PMC9526581 DOI: 10.1155/2022/3373851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
Background Kallikrein-related peptidase 6 (KLK6) has been substantiated as a diagnostic, prognostic, and therapeutic molecular in several cancer types. In our study, we attempt to explore the biological functions of KLK6 in bladder urothelial carcinoma (BLCA). Methods KLK6 gene expression prognostic, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and immune infiltration were analyzed using The Cancer Genome Atlas (TCGA) database. In vitro and in vivo experimental measurements, including CCK8, transwell migration, TUNEL, and nude mouse transplanted tumor model, were used to evaluate the antineoplastic activities of KLK6 loss-of-function. Results The combination of bioinformatics analyses and experimental measurements demonstrate that KLK6 expression is aberrantly upregulated in human specimens and cell lines of BLCA. GO and GSEA enrichment analyses exhibited that KLK6 is implicated in the inflammatory response and immune infiltration, suggesting that upregulation of KLK6 may be associated with the progression of BLCA. Knockdown of KLK6 is able to inhibit the growth and migration and trigger apoptosis of RT4 and T24 cells. Moreover, the TCGA database indicates that KLK6 high expression in BLCA patients showed a poorer prognosis than those patients with KLK6 low expression. Univariate and multivariate regression analyses suggest KLK6 as an independent prognostic factor to predict unfavorable OS in patients with BLCA. Conclusion KLK6 is an independent prognostic factor and an antitumor target of BLCA. KLK6 expression positively correlates with several immune cells infiltration, indicating that inhibition of KLK6 may contribute to immunotherapy of BLCA.
Collapse
|
6
|
Pampalakis G, Zingkou E, Zoumpourlis V, Sotiropoulou G. Ectopic expression of KLK6 in MDA-MB-435 melanoma cells reduces tumorigenicity in vivo. Pathol Res Pract 2021; 217:153276. [PMID: 33249398 DOI: 10.1016/j.prp.2020.153276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Melanoma is an aggressive form of cancer with poor prognosis therefore, identification of associated pathophysiological mechanisms is imperative towards the development of new therapeutic strategies. The KLK6 is a serine protease normally expressed in the epidermis. Recently, we found that elimination of Klk6 in mice results in enhanced resistance to chemically induced non-melanoma skin cancer. To delineate putative roles of KLK6 in melanoma, the invasive KLK6-non-expressing MDA-MB-435 melanoma cell line was stably transfected with the full-length KLK6 cDNA and expression of the corresponding RNA and protein were confirmed. Interestingly, restoration of KLK6 expression resulted in markedly suppressed growth of primary tumors when orthotopically implanted in SCID mice. Analysis of data retrieved from the human protein atlas revealed that melanomas with high KLK6 expression have a trend for longer survival. Collectively, we suggest that KLK6 inhibits growth of melanomas.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece
| | | | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, 265 04, Greece.
| |
Collapse
|
7
|
Kong L, Wang J, Cheng J, Zang C, Chen F, Wang W, Zhao H, Wang Y, Wang D. Comprehensive Identification of the Human Secretome as Potential Indicators in Treatment Outcome of HPV-Positive and -Negative Cervical Cancer Patients. Gynecol Obstet Invest 2020; 85:405-415. [PMID: 33171469 DOI: 10.1159/000510713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/01/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this work was to explore the novel and promising biomarkers for the diagnosis and prognosis of cervical cancer patients. METHODS The secretome of primary cervical tissues was extracted and then determined by the LC-MS/MS assay. The level of screened targets was confirmed using the RT-PCR and ELISA in cervical cancer tissue samples. The median expression level of certain targets was used as a cutoff value to divide the patients into 2 groups, and then the patients were followed up. The predictive abilities of the targets on the prognosis were further studied. RESULTS LC-MS/MS, together with bioinformatic analysis, demonstrated that totally 95 targets were dysregulated in cervical cancer. Among them, ECM2, KLK6, and MASP1 were increased in cervical cancer in a stage-dependent manner, whereas FGA was negatively associated with the stage of cervical cancers. Overall survival (OS) and disease-free survival (DFS) rates were significantly decreased in the KLK6 high group, whereas little difference was found between the high and low groups of other 3 cases. Univariate analysis of the 5-year OS and DFS revealed a significantly worse outcome for patients with KLK6 high tumors. In multivariate analysis, KLK6 remained a highly significant prognostic marker for OS and DFS. Combined survival analysis of KLK6 expression and the HPV infection revealed that KLK6highHPV(-) predicted the most poor OS rate and the KLK6lowHPV(+) group showed the best prognosis. CONCLUSION Through the secretome analysis, we identified a series of secreted proteins differentially expressed in the clinical cancer, among which KLK6 has the potential to become a promising biomarker for the diagnosis and prognosis of cervical cancer patients.
Collapse
Affiliation(s)
- Liang Kong
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China,
| | - Jinjuan Wang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jiumei Cheng
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Chunyi Zang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Fang Chen
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wenli Wang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hui Zhao
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yuwei Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Dong S, Ding Z, Zhang H, Chen Q. Identification of Prognostic Biomarkers and Drugs Targeting Them in Colon Adenocarcinoma: A Bioinformatic Analysis. Integr Cancer Ther 2020; 18:1534735419864434. [PMID: 31370719 PMCID: PMC6681251 DOI: 10.1177/1534735419864434] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: To identify prognostic biomarkers and drugs that target them in colon adenocarcinoma (COAD) based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Methods: The TCGA dataset was used to identify the top 50 upregulated differentially expressed genes (DEGs), and Gene Expression Omnibus profiles were used for validation. Survival analyses were conducted with the TCGA dataset using the RTCGAToolbox package in the R software environment. Drugs targeting the candidate prognostic biomarkers were searched in the DrugBank and herbal databases. Results: Among the top 50 upregulated DEGs in patients with COAD in the TCGA dataset, the Wnt signaling pathway and cytokine-cytokine receptor interactions and pathways in cancer Kyoto Encyclopedia of Genes and Genomes pathway analysis were enriched in DEGs. Tissue development and regulation of cell proliferation were the main Gene Ontology biological processes associated with upregulated DEGs. MYC and KLK6 were overexpressed in tumors validated in the TCGA, GSE41328, and GSE113513 databases (all P < .001) and were significantly associated with overall survival in patients with COAD (P = .021 and P = .047). Nadroparin and benzamidine were identified as inhibitors of MYC and KLK6 in DrugBank, and 8 herbs targeting MYC, including Da Huang (Radix Rhei Et Rhizome), Hu Zhang (Polygoni Cuspidati Rhizoma Et Radix), Huang Lian (Coptidis Rhizoma), Ban Xia (Arum Ternatum Thunb), Tu Fu Ling (Smilacis Glabrae Rhixoma), Lei Gong Teng (Tripterygii Radix), Er Cha (Catechu), and Guang Zao (Choerospondiatis Fructus), were identified. Conclusion: MYC and KLK6 may serve as candidate prognostic predictors and therapeutic targets in patients with COAD.
Collapse
Affiliation(s)
- Shu Dong
- 1 Fudan University Shanghai Cancer Center, Shanghai, China.,2 Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhimin Ding
- 3 Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Hao Zhang
- 1 Fudan University Shanghai Cancer Center, Shanghai, China.,2 Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiwen Chen
- 1 Fudan University Shanghai Cancer Center, Shanghai, China.,2 Shanghai Medical College, Fudan University, Shanghai, China.,4 Fudan University, Shanghai, China
| |
Collapse
|
9
|
Chen H, Sells E, Pandey R, Abril ER, Hsu CH, Krouse RS, Nagle RB, Pampalakis G, Sotiropoulou G, Ignatenko NA. Kallikrein 6 protease advances colon tumorigenesis via induction of the high mobility group A2 protein. Oncotarget 2019; 10:6062-6078. [PMID: 31692974 PMCID: PMC6817440 DOI: 10.18632/oncotarget.27153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) overexpression is commonly observed in primary tumors of colorectal cancer (CRC) patients and has been associated with tumor aggressiveness, metastasis, and poor prognosis. We previously established a unique contribution of KLK6 in colon cancer metastasis via a specific network of microRNAs and mRNAs. Here we evaluated the cellular functions of KLK6 protease in Caco-2 colon adenocarcinoma cell line after introduction of the enzymatically active or inactive form of the enzyme. We found that proteolytically active KLK6 increased Caco-2 cells invasiveness in vitro and decreased the animal survival in the orthotopic colon cancer model. The active KLK6 induced phosphorylation of SMAD 2/3 proteins leading to the altered expression of the epithelial-mesenchymal transition (EMT) markers. KLK6 overexpression also induced the RNA-binding protein LIN28B and high-mobility group AT-hook 2 (HMGA2) transcription factor, two essential regulators of cell invasion and metastasis. In the CRC patients, KLK6 protein levels were elevated in the non-cancerous distant and adjacent tissues, compared to their paired tumor tissues (p < 0.0001 and p = 0.0157, respectively). Patients with mutant K-RAS tumors had significantly higher level of KLK6 protein in the luminal surface of non-cancerous distant tissue, compared to the corresponding tissues of the patients with K-RAS wild type tumors (p ≤ 0.05). Furthermore, KLK6 and HMGA2 immunohistochemistry (IHC) scores in patients' tumors and paired adjacent tissues positively correlated (Spearman correlation P < 0.01 and p = 0.03, respectively). These findings demonstrate the critical function of the KLK6 enzyme in colon cancer progression and its contribution to the signaling network in colon cancer.
Collapse
Affiliation(s)
- Hwudaurw Chen
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Earlphia Sells
- Biochemistry and Molecular and Cellular Biology Graduate Program, Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Ritu Pandey
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Chiu-Hsieh Hsu
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Robert S. Krouse
- University of Arizona College of Medicine, Tucson, AZ, USA
- Southern Arizona Veterans Affairs Health Care System, Tucson, AZ, USA
| | - Raymond B. Nagle
- Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | - Natalia A. Ignatenko
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Pampalakis G, Zingkou E, Sidiropoulos KG, Diamandis EP, Zoumpourlis V, Yousef GM, Sotiropoulou G. Biochemical pathways mediated by KLK6 protease in breast cancer. Mol Oncol 2019; 13:2329-2343. [PMID: 30980596 PMCID: PMC6822253 DOI: 10.1002/1878-0261.12493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) is a serine protease normally expressed in mammary tissue and aberrantly regulated in breast cancer. At physiological levels, KLK6 functions as a suppressor of breast cancer, while its aberrant overexpression (> 50-fold higher than normal) is characteristic of a subset of breast cancers and has been linked to accelerated growth of primary breast tumors in severe combined immunodeficiency mice (Pampalakis et al. Cancer Res 2009, 69, 3779). Here, we investigated the molecular mechanisms underlying the concentration-dependent functions of KLK6 by comparing MDA-MB-231 stable transfectants expressing increasing levels of KLK6 in in vitro and in vivo tumorigenicity assays (soft agar, xenograft growth, tail vein metastasis). Quantitative proteomics was applied to identify proteins that are altered upon re-expression of KLK6 in MDA-MB-231 at normal or constitutive levels. Overexpression of KLK6 is associated with increased metastatic ability of breast cancer cells into lungs, increased expression of certain S100 proteins (S100A4, S100A11) and keratins (KRT), and downregulation of the apoptosis-related proteases CASP7 and CASP8, and RABs. On the other hand, KLK6 re-expression at physiological levels leads to inhibition of lung metastases associated with suppression of S100 proteins (S100A4, S100A10, S100A13, S100A16) and induced CASP7 and CASP8 expression. As this is the first report that KLK6 expression is associated with S100 proteins, caspases, RABs, and KRTs, we validated this finding in clinical datasets. By integrating proteomics and microarray data from breast cancer patients, we generated two composite scores, KLK6 + S100B-S100A7 and KLK6 + S100B-S100A14-S100A16, to predict long-term survival of breast cancer patients. We present previously unknown pathways implicating KLK6 in breast cancer. The findings promise to aid our understanding of the functional roles of KLK6 in breast cancer and may yield new biomarkers for the cancer types in which KLK6 is known to be aberrantly upregulated.
Collapse
Affiliation(s)
- Georgios Pampalakis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Eleni Zingkou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| | - Konstantinos Gus Sidiropoulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute, Department of Laboratory Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras, Greece
| |
Collapse
|
11
|
Di Meo A, Wang C, Cheng Y, Diamandis EP, Yousef GM. The miRNA-kallikrein interaction: a mosaic of epigenetic regulation in cancer. Biol Chem 2019; 399:973-982. [PMID: 29604203 DOI: 10.1515/hsz-2018-0112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
The kallikrein-related peptidases (KLKs) constitute a family of 15 highly conserved serine proteases with trypsin- and chymotrypsin-like activities. Dysregulated expression and/or aberrant activation of KLKs has been linked to various pathophysiological processes, including cancer. Many KLKs have been identified as potential cancer biomarkers. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by pairing to the 3' untranslated region (UTR) of complimentary mRNA targets. miRNAs are dysregulated in many cancers, including prostate, kidney and ovarian cancers. Several studies have shown that miRNAs are involved in the post-transcriptional regulation of KLKs. However, recent evidence suggests that miRNAs can also act as downstream effectors of KLKs. In this review, we provide an update on the epigenetic regulation of KLKs by miRNAs. We also present recent experimental evidence that supports the regulatory role of KLKs on miRNA networks. The potential diagnostic and therapeutic applications of miRNA-kallikrein interactions are also discussed.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Cong Wang
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, M5T 3L9, Canada
| | - George M Yousef
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| |
Collapse
|
12
|
Zhu S, Shi J, Zhang S, Li Z. KLK6 Promotes Growth, Migration, and Invasion of Gastric Cancer Cells. J Gastric Cancer 2018; 18:356-367. [PMID: 30607299 PMCID: PMC6310766 DOI: 10.5230/jgc.2018.18.e35] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 11/20/2022] Open
Abstract
Purpose Kallikrein (KLK) proteases are hormone-like signaling molecules with critical functions in different cancers. This study investigated the expression of KLK6 in gastric cancer and its potential role in the growth, migration, and invasion of gastric cancer cells. Materials and Methods In this study, we compared protein levels of KLK6, vascular endothelial growth factor (VEGF), and matrix metallopeptidase (MMP) 9 in normal gastric epithelial and gastric cancer cell lines by western blot. Fluorescence-activated cell sorting was employed to sort 2 clones of SGC-7901 cells with distinct KLK6 expression, namely, KLK6-high (KLK6high) and KLK6-low (KLK6low), which were then expanded. Lastly, immunohistochemical analysis was performed to investigate KLK6 expression in gastric cancer patients. Results The expression levels of KLK6, VEGF, and MMP 9, were significantly higher in the gastric cancer cell lines SGC-7901, BGC-823, MKN-28, and MGC-803 than in the normal gastric epithelial cell line GES-1. Compared to KLK6low cells, KLK6high cells showed enhanced viability, colony-forming ability, migration, and invasion potential in vitro. Importantly, immunohistochemical analysis of a human gastric cancer tissue cohort revealed that the staining for KLK6, VEGF, and MMP9 was markedly stronger in the cancerous tissues than in the adjacent normal tissues. KLK6 expression also correlated with that of VEGF and MMP9 expression, as well as several key clinicopathological parameters. Conclusions Together, these results suggest an important role for KLK6 in human gastric cancer progression.
Collapse
Affiliation(s)
- Shengxing Zhu
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of The Second General Surgery, People's Hospital of Zhengzhou, Zhengzhou, China
| | - Jihua Shi
- Department of Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanfeng Zhang
- School of Basic Medicine, Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Wang X, Fang L. Advances in circular RNAs and their roles in breast Cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:206. [PMID: 30157902 PMCID: PMC6116371 DOI: 10.1186/s13046-018-0870-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are a type of noncoding RNAs with a closed loop structure. With the development of high-throughput sequencing, massive circRNAs have been discovered in tumorous tissues. Emerging evidence suggests that the biological functions of circRNAs including serving as ceRNAs or miRNA sponges, interacting with proteins, regulating gene transcription and translation, suggesting that circRNAs will be novel biomarkers and targets for the diagnosis and prognosis of diseases. Breast cancer is the most frequently occurring cancer and the leading cause of cancer-related death among women worldwide. It is vital to understand the molecular pathways involved in the pathogenesis of proliferation and progression. In this review, we summarize the current knowledge on human circRNAs and their potential clinical implications on breast cancer.
Collapse
Affiliation(s)
- Xuehui Wang
- Nanjing Medical University, Nanjing, 211166, China.,Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Shanghai, 200070, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People's Hospital, Shanghai, 200070, China.
| |
Collapse
|
14
|
Sananes A, Cohen I, Shahar A, Hockla A, De Vita E, Miller AK, Radisky ES, Papo N. A potent, proteolysis-resistant inhibitor of kallikrein-related peptidase 6 (KLK6) for cancer therapy, developed by combinatorial engineering. J Biol Chem 2018; 293:12663-12680. [PMID: 29934309 DOI: 10.1074/jbc.ra117.000871] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/12/2018] [Indexed: 01/01/2023] Open
Abstract
Human tissue kallikrein (KLK) proteases are hormone-like signaling molecules with important functions in cancer pathophysiology. KLK-related peptidase 6 (KLK6), specifically, is highly up-regulated in several types of cancer, where its increased activity promotes cancer invasion and metastasis. This characteristic suggests KLK6 as an attractive target for therapeutic interventions. However, inhibitors that specifically target KLK6 have not yet been reported, possibly because KLK6 shares a high sequence homology and structural similarity with other serine proteases and resists inhibition by many polypeptide inhibitors. Here, we present an innovative combinatorial approach to engineering KLK6 inhibitors via flow cytometry-based screening of a yeast-displayed mutant library of the human amyloid precursor protein Kunitz protease inhibitor domain (APPI), an inhibitor of other serine proteases, such as anionic and cationic trypsins. On the basis of this screening, we generated APPIM17L,I18F,S19F,F34V (APPI-4M), an APPI variant with a KLK6 inhibition constant (Ki ) of 160 pm and a turnover time of 10 days. To the best of our knowledge, APPI-4M is the most potent KLK6 inhibitor reported to date, displaying 146-fold improved affinity and 13-fold improved proteolytic stability compared with WT APPI (APPIWT). We further demonstrate that APPI-4M acts as a functional inhibitor in a cell-based model of KLK6-dependent breast cancer invasion. Finally, the crystal structures of the APPIWT/KLK6 and APPI-4M/KLK6 complexes revealed the structural and mechanistic bases for the improved KLK6 binding and proteolytic resistance of APPI-4M. We anticipate that APPI-4M will have substantial translational potential as both imaging agent and therapeutic.
Collapse
Affiliation(s)
- Amiram Sananes
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105 Israel
| | - Itay Cohen
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105 Israel
| | - Anat Shahar
- The National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, 84105 Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Elena De Vita
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105 Israel.
| |
Collapse
|
15
|
Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018; 399:821-836. [DOI: 10.1515/hsz-2017-0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Gastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression of KLKs in human malignancies is often regulated by KLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to target KLKs and therefore alter their expression levels. The biomarker utility of KLKs has been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels of KLKs in these types of cancer.
Collapse
Affiliation(s)
- Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| |
Collapse
|
16
|
Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 2018; 8:44096-44107. [PMID: 28484086 PMCID: PMC5546465 DOI: 10.18632/oncotarget.17307] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/21/2022] Open
Abstract
Endogenous noncoding circular RNAs (circRNAs) have gained attention for their involvement in carcinogenesis, but their expression pattern in breast cancer has remained largely unknown. In this two-stage study, we first used an Arraystar Human circRNA Array to construct a genome-wide circRNA profile. We then selected candidate circRNAs for validation using a quantitative real-time polymerase chain reaction system. CircRNA/miRNA interactions were predicted and sequence analyses were performed. Among 1155 differentially expressed circRNAs, 715 were upregulated and 440 were downregulated in breast cancer tissues. The validation study demonstrated that hsa_circ_103110, hsa_circ_104689 and hsa_circ_104821 levels were elevated in breast cancer tissues, whereas hsa_circ_006054, hsa_circ_100219 and hsa_circ_406697 were downregulated. These circRNAs targeted complementary miRNA response elements. The area under the receiver operating characteristic curve for distinguishing breast cancer was 0.82 (95% CI: 0.73-0.90) when hsa_circ_006054, hsa_circ_100219 and hsa_circ_406697 were used in combination. This study provides evidence that circRNAs are differentially expressed in breast cancer and are important in carcinogenesis because they participate in cancer-related pathways and sequester miRNAs.
Collapse
|
17
|
Kallikrein-related peptidase 6 (KLK6) expression differentiates tumor subtypes and predicts clinical outcome in breast cancer patients. Clin Exp Med 2018; 18:203-213. [DOI: 10.1007/s10238-018-0487-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/05/2018] [Indexed: 12/29/2022]
|
18
|
Wang H, Xiao Y, Wu L, Ma D. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis. Int J Oncol 2018; 52:743-754. [PMID: 29431182 PMCID: PMC5807038 DOI: 10.3892/ijo.2018.4265] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
Circular RNAs (circRNAs) are key regulators in the development and progression of human cancers; however their roles in breast tumorigenesis are not yet well understood. Thus, the present study aimed to investigate the expression profiles and potential modulatory effects of circRNAs on breast carcinogenesis. A human circRNA microarray analysis was performed to screen for abnormally expressed circRNAs in breast cancer tissue and circRNA-000911 was identified as a circRNA which was significantly downregulated in breast cancer cells. Mechanistic investigations suggested that the enhanced expression of circRNA-000911 suppressed cell proliferation, migration and invasion, and promoted the apoptosis of breast cancer cells. By using a biotin-labeled circRNA-000911 probe to perform RNA precipitation in breast cancer cells, we identified miR‑449a as the circRNA‑000911-associated microRNA. Gain- and loss-of-function assays indicated that miR‑449a antagonized circRNA-000911 to regulate breast cancer progression. Subsequently, Notch1 was identified as the functional target of miR‑449a, and the overexpression of circRNA-000911 in breast cancer elevated Notch1 expression. Furthermore, Cignal Signal Transduction Reporter Array and western blot analysis identified nuclear factor-κB (NF-κB) signaling as a functional target of the circRNA-000911/miR‑449a pathway. On the whole, our findings indicate that circRNA-000911 plays an anti-oncogenic role in breast cancer and may thus serve as a promising therapeutic target for patients with breast cancer. Therefore, the overexpression of circRNA-000911 may provide a future direction which may aid in the development of a novel treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Honglei Wang
- Galactophore Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yi Xiao
- Galactophore Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li Wu
- Galactophore Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Dachang Ma
- Galactophore Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
19
|
Prognostic role of miR-17-92 family in human cancers: evaluation of multiple prognostic outcomes. Oncotarget 2017; 8:69125-69138. [PMID: 28978185 PMCID: PMC5620325 DOI: 10.18632/oncotarget.19096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Recent evidence indicates that miR-17–92 family might be an essential prognostic biomarker for human cancers. However, results are still inconsistent. We therefore performed a meta-analysis to evaluate the predictive role of miR-17–92 family in human cancer prognosis. We searched literatures published before March 31th, 2017 inPubMed, Cochrane and Embase databases. Twenty six studies were included in our analyses. The overall hazard ratios (HRs) showed that high expression level of miR-17-92 family was a predictor of poor overall survival (OS): adjusted HRs = 1.71, 95% confidence intervals (CIs): 1.39–2.11, p < 0.00001, and poor disease-free survival (DFS): adjusted HRs = 2.29, 95% CIs: 1.41–3.72, p = 0.0008. However, no association between miR-17-92 family expression and cancer progress-free survival (PFS) was found (p > 0.05). Subgroup analyses showed that high expression of miR-17-92 family was associated with poor OS (adjusted HRs = 1.89, 95% CIs: 1.43–2.49, p < 0.00001) and DFS (adjusted HRs = 2.83, 95% CIs: 1.59–5.04, p = 0.0003) among the Asian, and no association was found for the Caucasian (p > 0.05). Besides, the HRs of miR-17-92 family high expression in tissue and serum samples was 1.68 (1.35–2.09) and 2.20 (1.08–4.46) for OS, and 1.73 (0.80–3.74) and 3.37 (2.25–5.02) for DFS. It also found that high expression of miR-17-92 family predicted a poor OS in breast cancer, esophageal squamous cell carcinoma, lymphoma and other cancers. Findings suggest that miR-17-92 family can be an effective predictor for prognosis prediction in cancer patients.
Collapse
|
20
|
Sells E, Pandey R, Chen H, Skovan BA, Cui H, Ignatenko NA. Specific microRNA-mRNA Regulatory Network of Colon Cancer Invasion Mediated by Tissue Kallikrein-Related Peptidase 6. Neoplasia 2017; 19:396-411. [PMID: 28431272 PMCID: PMC5397577 DOI: 10.1016/j.neo.2017.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 01/05/2023] Open
Abstract
Metastatic colon cancer is a major cause of deaths among colorectal cancer (CRC) patients. Elevated expression of kallikrein 6 (KLK6), a member of a kallikrein subfamily of peptidase S1 family serine proteases, has been reported in CRC and is associated with low patient survival rates and poor disease prognosis. We knocked down KLK6 expression in HCT116 colon cancer cells to determine the significance of KLK6 expression for metastatic dissemination and to identify the KLK6-associated microRNAs (miRNAs) signaling networks in metastatic colon cancer. KLK6 suppression resulted in decreased cells invasion in vitro with a minimal effect on the cell growth and viability. In vivo, animals with orthotopic colon tumors deficient in KLK6 expression had the statistically significant increase in survival rates (P = .005) and decrease in incidence of distant metastases. We further performed the integrated miRNA and messenger RNA (mRNA) expression profiling to identify functional miRNA-mRNA interactions associated with KLK6-mediated invasiveness of colon cancer. Through bioinformatics analysis we identified and functionally validated the top two up-regulated miRNAs, miR-182 and miR-203, and one down-regulated miRNA, miRNA-181d, and their seven mRNA effectors. The established miRNA-mRNA interactions modulate cellular proliferation, differentiation and epithelial–mesenchymal transition (EMT) in KLK6-expressing colon cancer cells via the TGF-β signaling pathway and RAS-related GTP-binding proteins. We confirmed the potential tumor suppressive properties of miR-181d and miR-203 in KLK6-expressing HCT116 cells using Matrigel invasion assay. Our data provide experimental evidence that KLK6 controls metastasis formation in colon cancer via specific downstream network of miRNA-mRNA effectors.
Collapse
Affiliation(s)
- Earlphia Sells
- Biochemistry and, Molecular and Cellular Biology Graduate Program, Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Ritu Pandey
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Hwudaurw Chen
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Bethany A Skovan
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Haiyan Cui
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Natalia A Ignatenko
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
21
|
Malekpour Afshar R, Mollaei HR, Shokrizadeh M, Iranpour M. Evaluation Expression of Microrna-93 and Integrin Β8 in Different Types of Glioma Tumors. Asian Pac J Cancer Prev 2017; 18:603-608. [PMID: 28440610 PMCID: PMC5464472 DOI: 10.22034/apjcp.2017.18.3.603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs), are a type of small non-coding RNAs, that induce mRNA degradation or repress translation by binding to the 3′-untranslated region (UTR) of its target mRNA. Some specific miRNAs, e.g. miR-93, have been discovered to be involved in pathological procedures by targeting some oncogenes or tumor suppressors in glioma. In the present study, real-time RT-PCR data was indicated the expression pattern and prognostic value of miR-93 in patients with types of Glioma. MiR-93 expression was significantly decreased in tumor tissue compared with normal group brain tissues (P<0.001). Low miR-93 expression was significantly correlated with progressive tumor grade (P=0.02). Moreover, multivariate analysis showed that miR-93 decreased expression (HR, 4.3; 95% CI, 0.8–17.2, P=0.02), advanced tumor grade (HR, 3.1; 95% CI, 0.2–13.9, P=0.04), for integrinβ8, level expression was inverse. Our data was shown that the down regulation of miR-93 was significantly correlated with unfavorable pathological features in patients with Glioma. Suggesting that decreased expression of miR-93can be used as a novel prognostic factor for this disease.
Collapse
Affiliation(s)
- Reza Malekpour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Iran.
| | | | | | | |
Collapse
|
22
|
Tamilzhalagan S, Rathinam D, Ganesan K. Amplified 7q21-22 geneMCM7and its intronic miR-25 suppressCOL1A2associated genes to sustain intestinal gastric cancer features. Mol Carcinog 2017; 56:1590-1602. [DOI: 10.1002/mc.22614] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Sembulingam Tamilzhalagan
- Unit of Excellence in Cancer Genetics; Department of Genetics; Centre for Excellence in Genomic Sciences; School of Biological Sciences; Madurai Kamaraj University; Madurai India
| | - Dhanasekaran Rathinam
- Unit of Excellence in Cancer Genetics; Department of Genetics; Centre for Excellence in Genomic Sciences; School of Biological Sciences; Madurai Kamaraj University; Madurai India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics; Department of Genetics; Centre for Excellence in Genomic Sciences; School of Biological Sciences; Madurai Kamaraj University; Madurai India
| |
Collapse
|
23
|
Sidiropoulos KG, Ding Q, Pampalakis G, White NMA, Boulos P, Sotiropoulou G, Yousef GM. KLK6-regulated miRNA networks activate oncogenic pathways in breast cancer subtypes. Mol Oncol 2016; 10:993-1007. [PMID: 27093921 DOI: 10.1016/j.molonc.2016.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
KLK6 is expressed in normal mammary tissues and is aberrantly regulated in breast cancer. At physiological levels of expression, i.e. those found in normal mammary tissues, KLK6 acts as a tumor suppressor in human breast cancer. However, aberrant overexpression of KLK6 (i.e. 50-100-fold higher than normal), a characteristic of a subset of human breast cancers is associated with increased tumorigenicity (Pampalakis et al. Cancer Res 69:3779-3787, 2009). Here, we stably transfected KLK6-non-expressing MDA-MB-231 breast cancer cells with the full-length KLK6 cDNA to overexpress KLK6 at levels comparable to those observed in patients, and investigated potential oncogenic miRNA networks regulated by these abnormally high KLK6 expression levels and increased activity of this serine protease. A number of miRNAs that are upregulated (e.g. miR-146a) or downregulated (e.g. miR-34a) via KLK6-induced alterations in the miRNA biogenesis machinery were identified. Integrated experimental and bioinformatics analyses identified convergent miRNA networks targeting the cell cycle, MYC, MAPK, and other signaling pathways. In large clinical datasets, significant correlations between KLK6 and downstream MAPK and MYC targets at both the RNA and protein levels was confirmed, as well as negative correlation with GATA3. It was also demonstrated that KLK6 overexpression and likely its proteolytic activity is associated with alterations in downstream miRNAs and their targets, and these differ with the molecular subtypes of breast cancer. The data partly explains the different characteristics of breast cancer subtypes. Importantly, we introduce a combined KLK6-CDKN1B+MYC+CDKN1C score for prediction of long-term patient survival outcomes, with higher scores indicating poor survival.
Collapse
Affiliation(s)
- Konstantinos G Sidiropoulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Qiang Ding
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada
| | | | - Nicole M A White
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Peter Boulos
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada
| | | | - George M Yousef
- The Keenan Research Center in the Li Ka Shing Knowledge Institute and Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|