1
|
Villa F, Ainsworth J, Labib KPM. USP37 protects mammalian cells during DNA replication stress by counteracting CUL2 LRR1 and TRAIP. Cell Rep 2025; 44:115739. [PMID: 40411782 DOI: 10.1016/j.celrep.2025.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/09/2025] [Accepted: 05/02/2025] [Indexed: 05/26/2025] Open
Abstract
The USP37 deubiquitylase is essential for mammalian cells to survive DNA replication stress, but the underlying mechanisms are unknown. Here, we demonstrate that USP37 binds the CDC45-MCM-GINS (CMG) helicase, which forms the stable core of the replisome until DNA replication termination when CMG is ubiquitylated and disassembled. USP37 contacts CDC45, and structure-guided mutations that displace USP37 from CMG cause sensitivity to DNA synthesis defects or topological stress. Binding to CDC45 at replication forks enables USP37 to counteract CMG ubiquitylation by the CUL2LRR1 ligase, which subsequently induces replisome disassembly during termination. Correspondingly, depletion of CUL2LRR1 suppresses the sensitivity of Usp37 mutants to DNA synthesis defects and ATR checkpoint kinase inhibitors. In contrast, mutation of the TRAIP ubiquitin ligase specifically suppresses the sensitivity of Usp37 mutants to topological stress. We propose that USP37 protects mammalian cells from replication stress by reversing the untimely action of the CUL2LRR1 and TRAIP ubiquitin ligases.
Collapse
Affiliation(s)
- Fabrizio Villa
- Division of Genome Integrity, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Johanna Ainsworth
- Division of Genome Integrity, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Karim P M Labib
- Division of Genome Integrity, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
2
|
Bolhuis DL, Fleifel D, Bonacci T, Wang X, Mouery BL, Cook JG, Brown NG, Emanuele MJ. USP37 prevents unscheduled replisome unloading through MCM complex deubiquitination. Nat Commun 2025; 16:4575. [PMID: 40379725 PMCID: PMC12084625 DOI: 10.1038/s41467-025-59770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 05/02/2025] [Indexed: 05/19/2025] Open
Abstract
The CMG helicase (CDC45-MCM2-7-GINS) unwinds DNA as a component of eukaryotic replisomes. Replisome (dis)assembly is tightly coordinated with cell cycle progression to ensure genome stability. However, factors that prevent premature CMG unloading and replisome disassembly are poorly described. Since disassembly is catalyzed by ubiquitination, deubiquitinases (DUBs) represent attractive candidates for safeguarding against untimely and deleterious CMG unloading. We combined a targeted loss-of-function screen with quantitative, single-cell analysis to identify human USP37 as a key DUB preventing replisome disassembly. We demonstrate that USP37 maintains active replisomes on S phase chromatin and promotes normal cell cycle progression. Proteomics and biochemical assays revealed USP37 interacts with the CMG complex to deubiquitinate MCM7, antagonizing replisome disassembly. Significantly, USP37 protects normal epithelial cells from oncoprotein-induced replication stress. Our findings reveal USP37 to be critical to the maintenance of replisomes in S phase and suggest USP37-targeting as a potential strategy for treating malignancies with defective DNA replication control.
Collapse
Affiliation(s)
- Derek L Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thomas Bonacci
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Xianxi Wang
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Brandon L Mouery
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Cui W, Wang H, Gao Y, Zhang X, Xin J, Li Z, Li G, Gao W, Zhang W. Deubiquitinase USP37 enhances the anti-HIV-2/SIV ability of the host restriction factor SAMHD1. J Virol 2025; 99:e0185824. [PMID: 39655951 PMCID: PMC11784012 DOI: 10.1128/jvi.01858-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 02/01/2025] Open
Abstract
The Vpx protein encoded by HIV-2/simian immunodeficiency virus (SIV) can antagonize the restriction of the host intrinsic restriction factor, SAMHD1, in nondividing cells by promoting its polyubiquitination and subsequent degradation, thereby facilitating viral replication and immune evasion. However, the role of deubiquitinating enzymes (DUBs) in the dynamics of virus and host remains poorly understood. Here, we demonstrate that DUB USP37 significantly reverses the Vpx-mediated degradation of SAMHD1 in various HIV-2/SIV subtypes by interacting with SAMHD1 and removing its ubiquitin chains. Notably, USP37 deubiquitinates SAMHD1 by directly recognizing SAMHD1 rather than by targeting the E3 ubiquitin ligase. The deubiquitinase activity of USP37 and its ubiquitin interacting motifs are essential for the deubiquitination of SAMHD1, whereas the phosphorylation state of USP37 does not influence its activity. Additionally, USP37 enhances the suppression of the retrotransposition of LINE-1 elements by SAMHD1 via stabilizing SAMHD1. Our findings provide important evidence that enhancing the deubiquitinating activity of some DUBs results in the stability of the host restriction factor and might be a viable strategy against HIV/SIV infections.IMPORTANCESAMHD1 is a multifunctional protein, including restricting virus replication, maintaining genomic integrity through DNA repair, modulating the immune response by influencing the production of type I interferons and other cytokines, and affecting cancer cell proliferation and sensitivity to chemotherapy. However, HIV-2/simian immunodeficiency virus (SIV)-encoded Vpx and the host E3 ligase TRIM21 can induce the degradation of SAMHD1 via the ubiquitin-proteasome pathway. Therefore, it is necessary to find the strategy to stabilize SAMHD1. Our study demonstrates that the deubiquitinase USP37 reverses Vpx- and TRIM21-mediated degradation of SAMHD1, thereby inhibiting SIV replication and LINE-1 activity by stabilizing SAMHD1. Thus, we report a novel role of USP37, which represents a potentially useful target for the development of new drugs.
Collapse
Affiliation(s)
- Wenzhe Cui
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Hongfei Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Yuan Gao
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xue Zhang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Jingguo Xin
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhaolong Li
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Wenying Gao
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Wenyan Zhang
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Li Y, Wang W, Sun L, Huang J, Ma X, Li S, Shi X. USP37 promotes diffuse large B-cell lymphoma progression by deubiquitinating and stabilizing c-myc. J Mol Histol 2024; 56:54. [PMID: 39722070 DOI: 10.1007/s10735-024-10323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
A poorer prognosis is thought to be associated with "double expressor lymphomas," which are a subtype of diffuse large B cell lymphomas (DLBCL) that co-express MYC and BCL2. While the role of ubiquitin-specific peptidase 37 (USP37) in lung cancer, where it mediates the deubiquitination and stabilization of c-myc, has been well-documented, its involvement in DLBCL remains unexplored. The use of RT-PCR, immunohistochemistry, or WB test allowed for the detection of elevated USP37 in DLBCL tissues and cells. In order to understand the function of USP37 in DLBCL, keloid DLBCL cells were transfected with si-USP37 using Lipofectamine 3000. When tested on DLBCL cells, USP37 increased cell proliferation and inhibited cell cycle progression. USP37 controls the process of deubiquitination to stabilise c-myc proteins. The overexpression of c-Myc facilitated cell proliferation and prevented the cell cycle of DLBCL cells stimulated by si-USP37, which should be taken into consideration. Furthermore, USP37 depletion consistently hinders the development of tumour xenografts in mouse models. Overexpressing c-myc, however, may partially counteract this impact. The data show that USP37 may be a potential therapeutic target for DLBCL, and that it may enhance the course of the disease by deubiquitinating c-myc via direct interactions with c-myc.
Collapse
Affiliation(s)
- Ying Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Lingjie Sun
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Junxia Huang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Xiaolin Ma
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Saisai Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China
| | - Xue Shi
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
5
|
Kochenova OV, D’Alessandro G, Pilger D, Schmid E, Richards SL, Garcia MR, Jhujh SS, Voigt A, Gupta V, Carnie CJ, Wu RA, Gueorguieva N, Stewart GS, Walter JC, Jackson SP. USP37 prevents premature disassembly of stressed replisomes by TRAIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611025. [PMID: 39282314 PMCID: PMC11398331 DOI: 10.1101/2024.09.03.611025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated. Here, we demonstrate that human cells lacking the de-ubiquitylating enzyme USP37 are hypersensitive to topoisomerase poisons and other replication stress-inducing agents. We further show that TRAIP loss rescues the hypersensitivity of USP37 knockout cells to topoisomerase inhibitors. In Xenopus egg extracts depleted of USP37, TRAIP promotes premature CMG ubiquitylation and disassembly when converging replisomes stall. Finally, guided by AlphaFold-Multimer, we discovered that binding to CDC45 mediates USP37's response to topological stress. In conclusion, we propose that USP37 protects genome stability by preventing TRAIP-dependent CMG unloading when replication stress impedes timely termination.
Collapse
Affiliation(s)
- Olga V. Kochenova
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Giuseppina D’Alessandro
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Domenic Pilger
- The Gurdon Institute and Department of Biochemistry, University of Cambridge
| | - Ernst Schmid
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Sean L. Richards
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Marcos Rios Garcia
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Satpal S. Jhujh
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrea Voigt
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Vipul Gupta
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Christopher J. Carnie
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - R. Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
| | - Nadia Gueorguieva
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute; Boston, MA 02115, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Stephen P. Jackson
- Cancer Research UK Cambridge Institute, Li Ka Shing Building, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
6
|
Bolhuis DL, Fleifel D, Bonacci T, Wang X, Mouery BL, Cook JG, Brown NG, Emanuele MJ. USP37 prevents unscheduled replisome unloading through MCM complex deubiquitination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610997. [PMID: 39282338 PMCID: PMC11398414 DOI: 10.1101/2024.09.03.610997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The CMG helicase (CDC45-MCM2-7-GINS) unwinds DNA as a component of eukaryotic replisomes. Replisome (dis)assembly is tightly coordinated with cell cycle progression to ensure genome stability. However, factors that prevent premature CMG unloading and replisome disassembly are poorly described. Since disassembly is catalyzed by ubiquitination, deubiquitinases (DUBs) represent attractive candidates for safeguarding against untimely and deleterious CMG unloading. We combined a targeted loss-of-function screen with quantitative, single-cell analysis to identify human USP37 as a key DUB preventing replisome disassembly. We demonstrate that USP37 maintains active replisomes on S-phase chromatin and promotes normal cell cycle progression. Proteomics and enzyme assays revealed USP37 interacts with the CMG complex to deubiquitinate MCM7, thus antagonizing replisome disassembly. Significantly, USP37 protects normal epithelial cells from oncoprotein-induced replication stress. Our findings reveal USP37 to be critical to the maintenance of replisomes in S-phase and suggest USP37-targeting as a potential strategy for treating malignancies with defective DNA replication control.
Collapse
Affiliation(s)
- Derek L. Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dalia Fleifel
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Thomas Bonacci
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xianxi Wang
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brandon L. Mouery
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicholas G. Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael J. Emanuele
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Cui J, Liu X, Shang Q, Sun S, Chen S, Dong J, Zhu Y, Liu L, Xia Y, Wang Y, Xiang L, Fan B, Zhan J, Zhou Y, Chen P, Zhao R, Liu X, Xing N, Wu D, Shi B, Zou Y. Deubiquitination of CDC6 by OTUD6A promotes tumour progression and chemoresistance. Mol Cancer 2024; 23:86. [PMID: 38685067 PMCID: PMC11057083 DOI: 10.1186/s12943-024-01996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND CDC6 is an oncogenic protein whose expression level fluctuates during the cell cycle. Although several E3 ubiquitin ligases responsible for the ubiquitin-mediated proteolysis of CDC6 have been identified, the deubiquitination pathway for CDC6 has not been investigated. METHODS The proteome-wide deubiquitinase (DUB) screening was used to identify the potential regulator of CDC6. Immunofluorescence, protein half-life and deubiquitination assays were performed to determine the protein stability of CDC6. Gain- and loss-of-function experiments were implemented to analyse the impacts of OUTD6A-CDC6 axis on tumour growth and chemosensitivity in vitro. N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced conditional Otud6a knockout (CKO) mouse model and tumour xenograft model were performed to analyse the role of OTUD6A-CDC6 axis in vivo. Tissue specimens were used to determine the association between OTUD6A and CDC6. RESULTS OTUD6A interacts with, depolyubiquitinates and stabilizes CDC6 by removing K6-, K33-, and K48-linked polyubiquitination. Moreover, OTUD6A promotes cell proliferation and decreases sensitivity to chemotherapy by upregulating CDC6. CKO mice are less prone to BCa tumorigenesis induced by BBN, and knockdown of OTUD6A inhibits tumour progression in vivo. Furthermore, OTUD6A protein level has a positive correlation with CDC6 protein level, and high protein levels of OTUD6A and CDC6 are associated with poor prognosis in patients with bladder cancer. CONCLUSIONS We reveal an important yet missing piece of novel DUB governing CDC6 stability. In addition, our findings propose a model for the OTUD6A-CDC6 axis that provides novel insights into cell cycle and chemosensitivity regulation, which may become a potential biomarker and promising drug target for cancer treatment.
Collapse
Affiliation(s)
- Jianfeng Cui
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Clinical laboratory, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Qinghong Shang
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jianping Dong
- Department of Urology, Shouguang People's Hospital, Weifang, Shandong, 262750, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lei Liu
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Lu Xiang
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Bowen Fan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Jiafeng Zhan
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Yadi Zhou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Renchang Zhao
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaofei Liu
- Departement of Breast and Thyroid Surgery, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Dalei Wu
- Helmholtz International Lab, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
9
|
Zhao Y, Tabet D, Rubio Contreras D, Lao L, Kousholt AN, Weile J, Melo H, Hoeg L, Feng S, Coté AG, Lin ZY, Setiaputra D, Jonkers J, Gingras AC, Gómez Herreros F, Roth FP, Durocher D. Genome-scale mapping of DNA damage suppressors through phenotypic CRISPR-Cas9 screens. Mol Cell 2023; 83:2792-2809.e9. [PMID: 37478847 PMCID: PMC10530064 DOI: 10.1016/j.molcel.2023.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.
Collapse
Affiliation(s)
- Yichao Zhao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Daniel Tabet
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | - Linjiang Lao
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Arne Nedergaard Kousholt
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Jochen Weile
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Department of Computer Science, University of Toronto, 160 College Street, Toronto M5S 3E1, Canada
| | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Lisa Hoeg
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Sumin Feng
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Atina G Coté
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jos Jonkers
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | | | - Frederick P Roth
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Donnelly Centre and Department of Computer Science, University of Toronto, 160 College Street, Toronto M5S 3E1, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Chauhan R, Gupta A, Malhotra L, Bhat AA, Pandita RK, Masoodi T, Dagar G, Sadida HQ, Al-Marzooqi SK, Batra A, Bakhshi S, Sharma MC, Tanwar P, Khan SA, Samath EA, Uddin S, Akil ASAS, Haris M, Macha MA, Pandita TK, Singh M. Ubiquitin specific peptidase 37 and PCNA interaction promotes osteosarcoma pathogenesis by modulating replication fork progression. J Transl Med 2023; 21:286. [PMID: 37118828 PMCID: PMC10142227 DOI: 10.1186/s12967-023-04126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Osteosarcoma is a type of bone cancer that predominantly affects young individuals, including children and adolescents. The disease progresses through heterogeneous genetic alterations, and patients often develop pulmonary metastases even after the primary tumors have been surgically removed. Ubiquitin-specific peptidases (USPs) regulate several critical cellular processes, such as cell cycle progression, transcriptional activation, and signal transduction. Various studies have revealed the significance of USP37 in the regulation of replication stress and oncogenesis. METHODS In this study, the Cancer Genome Atlas (TCGA) database was analyzed to investigate USP37 expression. RNA sequencing was utilized to assess the impact of USP37 overexpression and depletion on gene expression in osteosarcoma cells. Various molecular assays, including colony formation, immunofluorescence, immunoprecipitation, and DNA replication restart, were employed to examine the physical interaction between USP37 and PCNA, as well as its physiological effects in osteosarcoma cells. Additionally, molecular docking studies were conducted to gain insight into the nature of the interaction between USP37 and PCNA. Furthermore, immunohistochemistry was performed on archived tissue blocks from osteosarcoma patients to establish a correlation between USP37 and PCNA expression. RESULTS Analysis of the TCGA database revealed that increased expression of USP37 was linked to decreased progression-free survival (PFS) in osteosarcoma patients. Next-generation sequencing analysis of osteosarcoma cells demonstrated that overexpression or knockdown of USP37 led to the expression of different sets of genes. USP37 overexpression provided a survival advantage, while its depletion heightened sensitivity to replication stress in osteosarcoma cells. USP37 was found to physically interact with PCNA, and molecular docking studies indicated that the interaction occurs through unique residues. In response to genotoxic stress, cells that overexpressed USP37 resolved DNA damage foci more quickly than control cells or cells in which USP37 was depleted. The expression of USP37 varied in archived osteosarcoma tissues, with intermediate expression seen in 52% of cases in the cohort examined. CONCLUSION The results of this investigation propose that USP37 plays a vital role in promoting replication stress tolerance in osteosarcoma cells. The interaction between USP37 and PCNA is involved in the regulation of replication stress, and disrupting it could potentially trigger synthetic lethality in osteosarcoma. This study has expanded our knowledge of the mechanism through which USP37 regulates replication stress, and its potential as a therapeutic target in osteosarcoma merits additional exploration.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Gunjan Dagar
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Sara K Al-Marzooqi
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Atul Batra
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Department of Lab Oncology, Dr. BRAIRCH. All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shah Alam Khan
- Department of Orthopaedics, Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX, USA
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| |
Collapse
|
11
|
Qin S, Yuan Y, Huang X, Tan Z, Hu X, Liu H, Pu Y, Ding YQ, Su Z, He C. Topoisomerase IIA in adult NSCs regulates SVZ neurogenesis by transcriptional activation of Usp37. Nucleic Acids Res 2022; 50:9319-9338. [PMID: 36029179 PMCID: PMC9458435 DOI: 10.1093/nar/gkac731] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase IIA (TOP2a) has traditionally been known as an important nuclear enzyme that resolves entanglements and relieves torsional stress of DNA double strands. However, its function in genomic transcriptional regulation remains largely unknown, especially during adult neurogenesis. Here, we show that TOP2a is preferentially expressed in neurogenic niches in the brain of adult mice, such as the subventricular zone (SVZ). Conditional knockout of Top2a in adult neural stem cells (NSCs) of the SVZ significantly inhibits their self-renewal and proliferation, and ultimately reduces neurogenesis. To gain insight into the molecular mechanisms by which TOP2a regulates adult NSCs, we perform RNA-sequencing (RNA-Seq) plus chromatin immunoprecipitation sequencing (ChIP-Seq) and identify ubiquitin-specific protease 37 (Usp37) as a direct TOP2a target gene. Importantly, overexpression of Usp37 is sufficient to rescue the impaired self-renewal ability of adult NSCs caused by Top2a knockdown. Taken together, this proof-of-principle study illustrates a TOP2a/Usp37-mediated novel molecular mechanism in adult neurogenesis, which will significantly expand our understanding of the function of topoisomerase in the adult brain.
Collapse
Affiliation(s)
- Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xiao Huang
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zijian Tan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Xin Hu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yu-qiang Ding
- Department of Laboratory Animal Science, and State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Wang C, Che J, Jiang Y, Chen P, Bao G, Li C. CDT1 facilitates metastasis in prostate cancer and correlates with cell cycle regulation. Cancer Biomark 2022; 34:459-469. [PMID: 35253732 DOI: 10.3233/cbm-210389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND: CDT1 is the essential regulator of the initiation of DNA replication. Overexpressed CDT1 can cause DNA damage through re-replication. However, the function of CDT1 in prostate cancer (PCa) development has not been established. METHODS: Through bioinformatics, expression levels of CDT1 were found to be higher in metastatic PCa when compared to primary PCa. Then, immunohistochemical staining confirmed that the expression of CDT1 was significantly correlated with the occurrence of distant metastasis. For PCa cells, we established a stable clones knockdown CDT1. MTT was used in analyzing the proliferation ability of cells. Migration as well as invasion assays were performed. Effects of CDT1 knockdown on the cell cycle were evaluated by flow cytometry. Expression levels of EMT-associated markers in PCa cells were determined by Western blotting. And PI3K/AKT/GSK3β, a signaling molecule recognized in PCa that can regulate EMT, was detected in protein level. RESULTS: Over expression of CDT1 in PCa cells enhanced cell migration, invasion, tumor metastasis and was correlated with cell cycle regulation. Our results showed that knockdown of CDT1 inhibited G1 to S phase transition and induced the G1 phase cell cycle arrest in PCa cells. Moreover, it upregulated the expressions of epithelial markers (E-cadherin) and down-regulated mesenchymal markers (including Slug, N-cadherin, MMP2, vimentin, Snail, and MMP9) via regulating the phosphorylation level of PI3K, AKT and GSK3β. CONCLUSIONS: CDT1 promotes PCa cell metastasis by promoting cell cycle and PI3K/AKT/GSK3β mediated epithelial-mesenchymal transition (EMT) progression and may be a therapeutic target for metastatic PCa.
Collapse
Affiliation(s)
- Chunhui Wang
- Departments of Urology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
- Urology Research Center, Chifeng University, Chifeng, Inner Mongolia, China
- Departments of Urology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Jizhong Che
- Departments of Urology, Yan Tai Affiliated Hospital of Bin Zhou Medical University, Binzhou, Shandong, China
- Departments of Urology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Ying Jiang
- Medical Reproductive Center, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
- Departments of Urology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Ping Chen
- Physical Examination Center, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
| | - Guochang Bao
- Departments of Urology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
- Urology Research Center, Chifeng University, Chifeng, Inner Mongolia, China
| | - Chunsheng Li
- Departments of Urology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia, China
- Urology Research Center, Chifeng University, Chifeng, Inner Mongolia, China
| |
Collapse
|
13
|
Chauhan R, Bhat AA, Masoodi T, Bagga P, Reddy R, Gupta A, Sheikh ZA, Macha MA, Haris M, Singh M. Ubiquitin-specific peptidase 37: an important cog in the oncogenic machinery of cancerous cells. J Exp Clin Cancer Res 2021; 40:356. [PMID: 34758854 PMCID: PMC8579576 DOI: 10.1186/s13046-021-02163-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023] Open
Abstract
Protein ubiquitination is one of the most crucial posttranslational modifications responsible for regulating the stability and activity of proteins involved in homeostatic cellular function. Inconsistencies in the ubiquitination process may lead to tumorigenesis. Ubiquitin-specific peptidases are attractive therapeutic targets in different cancers and are being evaluated for clinical development. Ubiquitin-specific peptidase 37 (USP37) is one of the least studied members of the USP family. USP37 controls numerous aspects of oncogenesis, including stabilizing many different oncoproteins. Recent work highlights the role of USP37 in stimulating the epithelial-mesenchymal transition and metastasis in lung and breast cancer by stabilizing SNAI1 and stimulating the sonic hedgehog pathway, respectively. Several aspects of USP37 biology in cancer cells are yet unclear and are an active area of research. This review emphasizes the importance of USP37 in cancer and how identifying its molecular targets and signalling networks in various cancer types can help advance cancer therapeutics.
Collapse
Affiliation(s)
- Ravi Chauhan
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode, Mumbai, India
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ashna Gupta
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India
| | - Zahoor Ahmad Sheikh
- Department of Surgical Oncology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab), All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
14
|
Stromberg BR, Singh M, Torres AE, Burrows AC, Pal D, Insinna C, Rhee Y, Dickson AS, Westlake CJ, Summers MK. The deubiquitinating enzyme USP37 enhances CHK1 activity to promote the cellular response to replication stress. J Biol Chem 2021; 297:101184. [PMID: 34509474 PMCID: PMC8487067 DOI: 10.1016/j.jbc.2021.101184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/29/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
The deubiquitinating enzyme USP37 is known to contribute to timely onset of S phase and progression of mitosis. However, it is not clear if USP37 is required beyond S-phase entry despite expression and activity of USP37 peaking within S phase. We have utilized flow cytometry and microscopy to analyze populations of replicating cells labeled with thymidine analogs and monitored mitotic entry in synchronized cells to determine that USP37-depleted cells exhibited altered S-phase kinetics. Further analysis revealed that cells depleted of USP37 harbored increased levels of the replication stress and DNA damage markers γH2AX and 53BP1 in response to perturbed replication. Depletion of USP37 also reduced cellular proliferation and led to increased sensitivity to agents that induce replication stress. Underlying the increased sensitivity, we found that the checkpoint kinase 1 is destabilized in the absence of USP37, attenuating its function. We further demonstrated that USP37 deubiquitinates checkpoint kinase 1, promoting its stability. Together, our results establish that USP37 is required beyond S-phase entry to promote the efficiency and fidelity of replication. These data further define the role of USP37 in the regulation of cell proliferation and contribute to an evolving understanding of USP37 as a multifaceted regulator of genome stability.
Collapse
Affiliation(s)
- Benjamin R Stromberg
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Mayank Singh
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Adrian E Torres
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Amy C Burrows
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Debjani Pal
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Christine Insinna
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Yosup Rhee
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew S Dickson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher J Westlake
- NCI-Frederick National Laboratory, Laboratory of Cellular and Developmental Signaling, Frederick, Maryland, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
15
|
Snyder NA, Silva GM. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem 2021; 297:101077. [PMID: 34391779 PMCID: PMC8424594 DOI: 10.1016/j.jbc.2021.101077] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitin signaling is a conserved, widespread, and dynamic process in which protein substrates are rapidly modified by ubiquitin to impact protein activity, localization, or stability. To regulate this process, deubiquitinating enzymes (DUBs) counter the signal induced by ubiquitin conjugases and ligases by removing ubiquitin from these substrates. Many DUBs selectively regulate physiological pathways employing conserved mechanisms of ubiquitin bond cleavage. DUB activity is highly regulated in dynamic environments through protein-protein interaction, posttranslational modification, and relocalization. The largest family of DUBs, cysteine proteases, are also sensitive to regulation by oxidative stress, as reactive oxygen species (ROS) directly modify the catalytic cysteine required for their enzymatic activity. Current research has implicated DUB activity in human diseases, including various cancers and neurodegenerative disorders. Due to their selectivity and functional roles, DUBs have become important targets for therapeutic development to treat these conditions. This review will discuss the main classes of DUBs and their regulatory mechanisms with a particular focus on DUB redox regulation and its physiological impact during oxidative stress.
Collapse
Affiliation(s)
- Nathan A Snyder
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
16
|
Coordinating DNA Replication and Mitosis through Ubiquitin/SUMO and CDK1. Int J Mol Sci 2021; 22:ijms22168796. [PMID: 34445496 PMCID: PMC8395760 DOI: 10.3390/ijms22168796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Post-translational modification of the DNA replication machinery by ubiquitin and SUMO plays key roles in the faithful duplication of the genetic information. Among other functions, ubiquitination and SUMOylation serve as signals for the extraction of factors from chromatin by the AAA ATPase VCP. In addition to the regulation of DNA replication initiation and elongation, we now know that ubiquitination mediates the disassembly of the replisome after DNA replication termination, a process that is essential to preserve genomic stability. Here, we review the recent evidence showing how active DNA replication restricts replisome ubiquitination to prevent the premature disassembly of the DNA replication machinery. Ubiquitination also mediates the removal of the replisome to allow DNA repair. Further, we discuss the interplay between ubiquitin-mediated replisome disassembly and the activation of CDK1 that is required to set up the transition from the S phase to mitosis. We propose the existence of a ubiquitin–CDK1 relay, where the disassembly of terminated replisomes increases CDK1 activity that, in turn, favors the ubiquitination and disassembly of more replisomes. This model has important implications for the mechanism of action of cancer therapies that induce the untimely activation of CDK1, thereby triggering premature replisome disassembly and DNA damage.
Collapse
|
17
|
Bodrug T, Welsh KA, Hinkle M, Emanuele MJ, Brown NG. Intricate Regulatory Mechanisms of the Anaphase-Promoting Complex/Cyclosome and Its Role in Chromatin Regulation. Front Cell Dev Biol 2021; 9:687515. [PMID: 34109183 PMCID: PMC8182066 DOI: 10.3389/fcell.2021.687515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin (Ub)-proteasome system is vital to nearly every biological process in eukaryotes. Specifically, the conjugation of Ub to target proteins by Ub ligases, such as the Anaphase-Promoting Complex/Cyclosome (APC/C), is paramount for cell cycle transitions as it leads to the irreversible destruction of cell cycle regulators by the proteasome. Through this activity, the RING Ub ligase APC/C governs mitosis, G1, and numerous aspects of neurobiology. Pioneering cryo-EM, biochemical reconstitution, and cell-based studies have illuminated many aspects of the conformational dynamics of this large, multi-subunit complex and the sophisticated regulation of APC/C function. More recent studies have revealed new mechanisms that selectively dictate APC/C activity and explore additional pathways that are controlled by APC/C-mediated ubiquitination, including an intimate relationship with chromatin regulation. These tasks go beyond the traditional cell cycle role historically ascribed to the APC/C. Here, we review these novel findings, examine the mechanistic implications of APC/C regulation, and discuss the role of the APC/C in previously unappreciated signaling pathways.
Collapse
Affiliation(s)
- Tatyana Bodrug
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kaeli A Welsh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Megan Hinkle
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Michael J Emanuele
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Nicholas G Brown
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Wu RA, Pellman DS, Walter JC. The Ubiquitin Ligase TRAIP: Double-Edged Sword at the Replisome. Trends Cell Biol 2021; 31:75-85. [PMID: 33317933 PMCID: PMC7856240 DOI: 10.1016/j.tcb.2020.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.
Collapse
Affiliation(s)
- R Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA
| | - David S Pellman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, MA 02115, USA; Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.
| |
Collapse
|
19
|
Qin T, Cui XY, Xiu H, Huang C, Sun ZN, Xu XM, Li LH, Yue L. USP37 downregulation elevates the Chemical Sensitivity of Human Breast Cancer Cells to Adriamycin. Int J Med Sci 2021; 18:325-334. [PMID: 33390801 PMCID: PMC7757157 DOI: 10.7150/ijms.54301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023] Open
Abstract
Background: The evolution of adriamycin (ADR) resistance in the treatment of breast cancer often leads to a poor prognosis in patients. Ubiquitin-specific peptidase 37 (USP37) has been recently identified as a modulator in regulating the stemness of breast cancer cells, but its underlying mechanism remains unclear. In this study, we investigated whether USP37 knockdown could hamper the chemical resistance of MCF-7 and MCF-7/ADR cells to adriamycin and elucidated the potential mechanism. Methods: Immunohistochemistry, western blotting, and RT-qPCR assays were performed to detect the USP37 expression in MCF-7 and MCF-7/ADR cells. The efficiency of USP37 knockdown in breast cancer cells was confirmed by western blotting and RT-qPCR assays. We also performed CCK-8 assay, flow cytometry, western blotting, and TUNEL assays to evaluate cell viability and apoptosis in breast cancer cells. In vivo study was performed to detect the tumorigenicity of MCF-7/ADR cells transfected with shScramble or shUSP37#1 under adriamycin treatment. Results: Bioinformatic analysis indicated that USP37 overexpression was positively correlated with adriamycin resistance. The expression levels of USP37 in both MCF-7 and MCF-7/ADR cells increased significantly with the exposure to adriamycin in a dose-dependent manner. It was verified by the observation that USP37 downregulation elevated the inhibitory effects of adriamycin on breast cancer cells, suppressed cell proliferation caused by cell cycle arrest in G1/S transition, as well as induced apoptosis. Furthermore, in vivo study showed that knockdown of USP37 expression also decreased tumorigenicity of MCF-7/ADR cells in mice. TUNEL assay and observation of cell morphology magnified USP37 knockdown synergized with Adriamycin could elevate the apoptosis of MCF-7 and MCF-7/ADR cells. Western blotting assay illustrated that the combination of USP37 knockdown with adriamycin treatment significantly upregulated the expression levels of cleaved caspase 3 and Bax, whereas the expression level of Bcl-2 was inhibited. Conclusion: Knockdown of USP37 gene expression can reverse the resistance of breast cancer cells to adriamycin, and down-regulating USP37 might be a valuable strategy against ADR resistance in breast cancer therapy.
Collapse
Affiliation(s)
- Tao Qin
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xin-Ye Cui
- Department of General Surgery, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, P.R. China
| | - Hao Xiu
- Department of Traditional Chinese Medicine, The West District of Qingdao Municipal Hospital Group (Qingdao Ninth People's Hospital), Qingdao, Shandong 266071, P.R. China
| | - Chao Huang
- Department of Pathology, Dalian Medical University, Dalian 116044, P.R. China
| | - Zhen-Ni Sun
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xiao-Mei Xu
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Lian-Hong Li
- Department of Pathology, Dalian Medical University, Dalian 116044, P.R. China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian 116044, P.R. China
| | - Lu Yue
- Department of Oncology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
20
|
Intermittent hypoxia-induced downregulation of microRNA-320b promotes lung cancer tumorigenesis by increasing CDT1 via USP37. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:528-541. [PMID: 33898105 PMCID: PMC8056179 DOI: 10.1016/j.omtn.2020.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/19/2020] [Indexed: 12/25/2022]
Abstract
Obstructive sleep apnea-hypopnea (OSAH) is correlated with an increased incidence of lung cancer. In our study, we explored the functional roles of microRNAs (miRNAs) in lung cancer patients that were complicated with OSAH involving the deubiquitination enzyme. The miR-320b expression pattern in lung cancer tissues and cells was determined. The interactions between ubiquitin-specific peptidase 37 (USP37) and miR-320b were evaluated by a dual-luciferase reporter gene assay, whereas USP37 and Cdc10-dependent transcript 1 (CDT1) was assessed by co-immunoprecipitation and immunofluorescence. After the induction of intermittent hypoxia (IH), a gain-of function approach was performed to investigate roles of miR-320b, USP37, and CDT1 in lung cancer cell proliferation and invasion. In addition, nude mouse xenograft models were used to study their effects on tumor growth in vivo. miR-320b was poorly expressed in lung cancer patients with OSAH. IH treatment downregulated the expression of miR-320b but promoted the proliferation and invasion capabilities of lung cancer cells, both of which were suppressed by the overexpression of miR-320b through decreasing USP37. USP37 interacted with and deubiquitinated CDT1 to protect it from proteasomal degradation. Our study uncovered that IH-induced downregulation of miR-320b promoted the tumorigenesis of lung cancer by the USP37-mediated deubiquitination of CDT1.
Collapse
|
21
|
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by loss of tumor suppressor Von Hippel Lindau (VHL) function, which leads to accumulation of hypoxia inducible factor α (including HIF1α and HIF2α). HIF2α was previously reported to be one of the major oncogenic drivers in ccRCC, however, its therapeutic targets remain challenging. Here we performed a deubiquitinase (DUB) complementary DNA (cDNA) library binding screen and discovered that ubiquitin-specific peptidase 37 (USP37) is a DUB that binds HIF2α and promotes HIF2α deubiquitination. As a result, USP37 promotes HIF2α protein stability in an enzymatically dependent manner, and depletion of USP37 leads to HIF2α down-regulation in ccRCC. Functionally, USP37 depletion causes decreased cell proliferation measured by MTS, two-dimensional (2D) colony formation as well as three-dimensional (3D) anchorage- independent growth. USP37 is also essential for maintaining kidney tumorigenesis in an orthotopic xenograft model and its depletion leads to both decreased primary kidney tumorigenesis and spontaneous lung metastasis. Our results suggest that USP37 is a potential therapeutic target in ccRCC.
Collapse
|
22
|
Cai J, Li M, Wang X, Li L, Li Q, Hou Z, Jia H, Liu S. USP37 Promotes Lung Cancer Cell Migration by Stabilizing Snail Protein via Deubiquitination. Front Genet 2020; 10:1324. [PMID: 31998374 PMCID: PMC6967296 DOI: 10.3389/fgene.2019.01324] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Snail is a prominent epithelial–mesenchymal transition (EMT) transcription factor and promotes metastasis. However, Snail protein is unstable and is quickly degraded through ubiquitination-mediated proteasome pathway. Deubiquitinases prevent Snail degradation by regulating the ubiquitination-mediated hydrolysis process. Our studies demonstrate that a deubiquitinating enzyme (DUB) family member, USP37, can deubiquitinate Snail and prevent degradation of Snail. USP37 is co-localized with Snail in the nucleus. Biologically, upregulated expression of USP37 promotes lung cancer cell migration, while depletion of Snail abolishes the effect of USP37. These data demonstrate that USP37 is a Snail-specific deubiquitinase and also indicate a potential therapeutic target for metastasis.
Collapse
Affiliation(s)
- Jiali Cai
- Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Mengying Li
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Li
- Department of Thoracic Surgery, Lanling People's Hospital, Lanling County, Linyi, China
| | - Qi Li
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Thoracic Surgery, Lanling People's Hospital, Lanling County, Linyi, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hao Jia
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Xiao Z, Chang L, Kim J, Zhang P, Hang Q, Yap S, Guo Y, Zhou Z, Zeng L, Hu X, Siverly A, Sun Y, Ma L. USP37 is a SNAI1 deubiquitinase. Am J Cancer Res 2019; 9:2749-2759. [PMID: 31911859 PMCID: PMC6943346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
SNAI1, an epithelial-mesenchymal transition (EMT)-inducing transcription factor, promotes tumor metastasis and resistance to apoptosis and chemotherapy. SNAI1 protein levels are tightly regulated by proteolytic ubiquitination. Here, we identified USP37 as a SNAI1 deubiquitinase that removes the polyubiquitination chain from SNAI1 and prevents its proteasomal degradation. USP37 directly binds, deubiquitinates, and stabilizes SNAI1. Overexpression of wild-type USP37, but not its catalytically inactive mutant C350S, promotes cancer cell migration. Importantly, depletion of USP37 downregulates endogenous SNAI1 protein and suppresses cell migration, which can be reversed by re-expression of SNAI1. Taken together, our findings suggest that USP37 is a SNAI1 deubiquitinase and a potential therapeutic target to inhibit tumor metastasis.
Collapse
Affiliation(s)
- Zhenna Xiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHouston 77030, Texas, USA
| | - Liang Chang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Jongchan Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
- Present address: Department of Life Sciences, College of Natural Sciences, Sogang UniversitySeoul 04107, Republic of Korea
| | - Peijing Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
- Present address: Key Laboratory of Molecular Biophysics of The Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan 430074, Hubei, China
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Shannon Yap
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Youming Guo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Zhicheng Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Liyong Zeng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Xiaoyu Hu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Ashley Siverly
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHouston 77030, Texas, USA
| |
Collapse
|
24
|
Qin T, Li B, Feng X, Fan S, Liu L, Liu D, Mao J, Lu Y, Yang J, Yu X, Zhang Q, Zhang J, Song B, Li M, Li L. Abnormally elevated USP37 expression in breast cancer stem cells regulates stemness, epithelial-mesenchymal transition and cisplatin sensitivity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:287. [PMID: 30482232 PMCID: PMC6258492 DOI: 10.1186/s13046-018-0934-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/18/2018] [Indexed: 01/04/2023]
Abstract
Background Recent studies have indicated that deubiquitinating enzymes (DUBs) are related to the stem-cell pathway network and chemo-resistance in cancer. Ubiquitin-specific peptidase 37 (USP37), a novel DUB, was identified to be a potential factor associated with tumor progression. However, the biological functions of USP37 in breast cancer remain unclear. Methods The distribution of USP37 expression in breast cancer and the correlation between USP37 expression and the overall survival rate were detected by The Cancer Genome Atlas (TCGA) database. Gene set enrichment analysis (GSEA) was utilized to evaluate potential mechanism of USP37 in breast cancer. The USP37 expression in breast cancer tissues and breast cancer cell lines were detected by immunohistochemistry and western blotting. Sorting of breast cancer stem cells (BCSCs) were by using MACS assay. In vitro and in vivo assays were performed to examine the biological functions of USP37 in breast cancer cells. MG132, CHX chase, immunofluorescence staining and co-immunoprecipitation assays were used to test the interaction between USP37 and Gli-1. Results Bioinformatics analysis demonstrated that USP37 gene was elevated in breast cancer tissues and its overexpression was strongly correlated with the increased mortality rate. GSEA analysis showed that USP37 expression was positively associated with cell growth and metastasis while negatively related to cell apoptosis in the TCGA breast cancer samples. USP37 expression was elevated in breast cancer tissues and breast cancer cell lines. Moreover, we also detected that USP37 was overexpressed in BCSCs. USP37 regulated the ability of cell invasion, epithelial-mesenchymal transition (EMT), stemness and cisplatin sensitivity in breast cancer cell lines. Additionally, USP37 knockdown inhibited tumorigenicity and increased anticancer effect of cisplatin in vivo. Knockdown of USP37 significantly decreased hedgehog (Hh) pathway components Smo and Gli-1. Gli-1 was stabilized by USP37 and they interacted with each other. Further studies indicated that USP37 knockdown could inhibit the stemness, cell invasion and EMT in breast cancer via downregulation of Hh pathway. Conclusions These findings reveal that USP37 is highly expressed in BCSCs and is correlated with poor prognosis in breast cancer patients. USP37 can regulate the stemness, cell invasion and EMT via Hh pathway, and decreased USP37 confers sensitivity to cisplatin in breast cancer cells. USP37 is required for the regulation of breast cancer progression, as well as a critical target for clinical treatment of breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-018-0934-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Qin
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bai Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaoyue Feng
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Lei Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Dandan Liu
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Ying Lu
- Teaching Laboratory of Morphology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jinfeng Yang
- Department of Pathology, Xiangyang Central Hospital, Xiangyang, 441000, People's Republic of China
| | - Xiaotang Yu
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jun Zhang
- Department of Dean, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bo Song
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, People's Republic of China.
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China. .,The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
25
|
Hernández-Carralero E, Cabrera E, Alonso-de Vega I, Hernández-Pérez S, Smits VAJ, Freire R. Control of DNA Replication Initiation by Ubiquitin. Cells 2018; 7:E146. [PMID: 30241373 PMCID: PMC6211026 DOI: 10.3390/cells7100146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells divide by accomplishing a program of events in which the replication of the genome is a fundamental part. To ensure all cells have an accurate copy of the genome, DNA replication occurs only once per cell cycle and is controlled by numerous pathways. A key step in this process is the initiation of DNA replication in which certain regions of DNA are marked as competent to replicate. Moreover, initiation of DNA replication needs to be coordinated with other cell cycle processes. At the molecular level, initiation of DNA replication relies, among other mechanisms, upon post-translational modifications, including the conjugation and hydrolysis of ubiquitin. An example is the precise control of the levels of the DNA replication initiation protein Cdt1 and its inhibitor Geminin by ubiquitin-mediated proteasomal degradation. This control ensures that DNA replication occurs with the right timing during the cell cycle, thereby avoiding re-replication events. Here, we review the events that involve ubiquitin signalling during DNA replication initiation, and how they are linked to human disease.
Collapse
Affiliation(s)
- Esperanza Hernández-Carralero
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Ignacio Alonso-de Vega
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Santiago Hernández-Pérez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Ofra s/n, 38320 La Laguna, Tenerife, Spain.
| |
Collapse
|
26
|
Dobson THW, Hatcher RJ, Swaminathan J, Das CM, Shaik S, Tao RH, Milite C, Castellano S, Taylor PH, Sbardella G, Gopalakrishnan V. Regulation of USP37 Expression by REST-Associated G9a-Dependent Histone Methylation. Mol Cancer Res 2017; 15:1073-1084. [PMID: 28483947 DOI: 10.1158/1541-7786.mcr-16-0424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/16/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
The deubiquitylase (DUB) USP37 is a component of the ubiquitin system and controls cell proliferation by regulating the stability of the cyclin-dependent kinase inhibitor 1B, (CDKN1B/p27Kip1). The expression of USP37 is downregulated in human medulloblastoma tumor specimens. In the current study, we show that USP37 prevents medulloblastoma growth in mouse orthotopic models, suggesting that it has tumor-suppressive properties in this neural cancer. Here, we also report on the mechanism underlying USP37 loss in medulloblastoma. Previously, we observed that the expression of USP37 is transcriptionally repressed by the RE1 silencing transcription factor (REST), which requires chromatin remodeling factors for its activity. Genetic and pharmacologic approaches were employed to identify a specific role for G9a, a histone methyltransferase (HMT), in promoting methylation of histone H3 lysine-9 (H3K9) mono- and dimethylation, and surprisingly trimethylation, at the USP37 promoter to repress its gene expression. G9a inhibition also blocked the tumorigenic potential of medulloblastoma cells in vivo Using isogenic low- and high-REST medulloblastoma cells, we further showed a REST-dependent elevation in G9a activity, which further increased mono- and trimethylation of histone H3K9, accompanied by downregulation of USP37 expression. Together, these findings reveal a role for REST-associated G9a and histone H3K9 methylation in the repression of USP37 expression in medulloblastoma.Implications: Reactivation of USP37 by G9a inhibition has the potential for therapeutic applications in REST-expressing medulloblastomas. Mol Cancer Res; 15(8); 1073-84. ©2017 AACR.
Collapse
Affiliation(s)
- Tara H W Dobson
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rashieda J Hatcher
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | | | - Chandra M Das
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Shavali Shaik
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rong-Hua Tao
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ciro Milite
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Sabrina Castellano
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Pete H Taylor
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Gianluca Sbardella
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
27
|
Hernández-Pérez S, Cabrera E, Salido E, Lim M, Reid L, Lakhani SR, Khanna KK, Saunus JM, Freire R. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene 2017; 36:4802-4809. [PMID: 28288134 DOI: 10.1038/onc.2017.21] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Correct control of DNA replication is crucial to maintain genomic stability in dividing cells. Inappropriate re-licensing of replicated origins is associated with chromosomal instability (CIN), a hallmark of cancer progression that at the same time provides potential opportunities for therapeutic intervention. Geminin is a critical inhibitor of the DNA replication licensing factor Cdt1. To properly achieve its functions, Geminin levels are tightly regulated through the cell cycle by ubiquitin-dependent proteasomal degradation, but the de-ubiquitinating enzymes (DUBs) involved had not been identified. Here we report that DUB3 and USP7 control human Geminin. Overexpression of either DUB3 or USP7 increases Geminin levels through reduced ubiquitination. Conversely, depletion of DUB3 or USP7 reduces Geminin levels, and DUB3 knockdown increases re-replication events, analogous to the effect of Geminin depletion. In exploring potential clinical implications, we found that USP7 and Geminin are strongly correlated in a cohort of invasive breast cancers (P<1.01E-08). As expected, Geminin expression is highly prognostic. Interestingly, we found a non-monotonic relationship between USP7 and breast cancer-specific survival, with both very low or high levels of USP7 associated with poor outcome, independent of estrogen receptor status. Altogether, our data identify DUB3 and USP7 as factors that regulate DNA replication by controlling Geminin protein stability, and suggest that USP7 may be involved in Geminin dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- S Hernández-Pérez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - E Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - E Salido
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - M Lim
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - L Reid
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - S R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,The University of Queensland, School of Medicine, Herston, QLD, Australia
| | - K K Khanna
- Signal Transduction Laboratory, QIMR Berghofer Institute of Medical Research, Brisbane, QLD, Australia
| | - J M Saunus
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - R Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| |
Collapse
|
28
|
Dewar JM, Low E, Mann M, Räschle M, Walter JC. CRL2 Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination. Genes Dev 2017; 31:275-290. [PMID: 28235849 PMCID: PMC5358724 DOI: 10.1101/gad.291799.116] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/30/2017] [Indexed: 01/26/2023]
Abstract
Here, Dewar et al. use a proteomic screen in Xenopus egg extracts to identify factors that are enriched on chromatin when CMG unloading from chromatin, which is a key event during eukaryotic replication termination, is blocked. Their results show that CRL2Lrr1 is a master regulator of replisome disassembly during vertebrate DNA replication termination. A key event during eukaryotic replication termination is the removal of the CMG helicase from chromatin. CMG unloading involves ubiquitylation of its Mcm7 subunit and the action of the p97 ATPase. Using a proteomic screen in Xenopus egg extracts, we identified factors that are enriched on chromatin when CMG unloading is blocked. This approach identified the E3 ubiquitin ligase CRL2Lrr1, a specific p97 complex, other potential regulators of termination, and many replisome components. We show that Mcm7 ubiquitylation and CRL2Lrr1 binding to chromatin are temporally linked and occur only during replication termination. In the absence of CRL2Lrr1, Mcm7 is not ubiquitylated, CMG unloading is inhibited, and a large subcomplex of the vertebrate replisome that includes DNA Pol ε is retained on DNA. Our data identify CRL2Lrr1 as a master regulator of replisome disassembly during vertebrate DNA replication termination.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Emily Low
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
30
|
Villa-Hernández S, Bueno A, Bermejo R. The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:395-419. [PMID: 29357068 DOI: 10.1007/978-981-10-6955-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.
Collapse
Affiliation(s)
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
31
|
Pozo PN, Cook JG. Regulation and Function of Cdt1; A Key Factor in Cell Proliferation and Genome Stability. Genes (Basel) 2016; 8:genes8010002. [PMID: 28025526 PMCID: PMC5294997 DOI: 10.3390/genes8010002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/30/2022] Open
Abstract
Successful cell proliferation requires efficient and precise genome duplication followed by accurate chromosome segregation. The Cdc10-dependent transcript 1 protein (Cdt1) is required for the first step in DNA replication, and in human cells Cdt1 is also required during mitosis. Tight cell cycle controls over Cdt1 abundance and activity are critical to normal development and genome stability. We review here recent advances in elucidating Cdt1 molecular functions in both origin licensing and kinetochore–microtubule attachment, and we describe the current understanding of human Cdt1 regulation.
Collapse
Affiliation(s)
- Pedro N Pozo
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jeanette Gowen Cook
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Abstract
DNA replication is both highly conserved and controlled. Problematic DNA replication can lead to genomic instability and therefore carcinogenesis. Numerous mechanisms work together to achieve this tight control and increasing evidence suggests that post-translational modifications (phosphorylation, ubiquitination, SUMOylation) of DNA replication proteins play a pivotal role in this process. Here we discuss such modifications in the light of a recent article that describes a novel role for the deubiquitinase (DUB) USP7/HAUSP in the control of DNA replication. USP7 achieves this function by an unusual and novel mechanism, namely deubiquitination of SUMOylated proteins at the replication fork, making USP7 also a SUMO DUB (SDUB). This work extends previous observations of increased levels of SUMO and low levels of ubiquitin at the on-going replication fork. Here, we discuss this novel study, its contribution to the DNA replication and genomic stability field and what questions arise from this work.
Collapse
Affiliation(s)
- Veronique A J Smits
- Unidad de Investigación, Hosptial Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Tenerife, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hosptial Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Tenerife, Spain
| |
Collapse
|
33
|
USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication. Mol Oncol 2016; 10:1196-206. [PMID: 27296872 DOI: 10.1016/j.molonc.2016.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/25/2023] Open
Abstract
DNA replication control is a key process in maintaining genomic integrity. Monitoring DNA replication initiation is particularly important as it needs to be coordinated with other cellular events and should occur only once per cell cycle. Crucial players in the initiation of DNA replication are the ORC protein complex, marking the origin of replication, and the Cdt1 and Cdc6 proteins, that license these origins to replicate by recruiting the MCM2-7 helicase. To accurately achieve its functions, Cdt1 is tightly regulated. Cdt1 levels are high from metaphase and during G1 and low in S/G2 phases of the cell cycle. This control is achieved, among other processes, by ubiquitination and proteasomal degradation. In an overexpression screen for Cdt1 deubiquitinating enzymes, we isolated USP37, to date the first ubiquitin hydrolase controlling Cdt1. USP37 overexpression stabilizes Cdt1, most likely a phosphorylated form of the protein. In contrast, USP37 knock down destabilizes Cdt1, predominantly during G1 and G1/S phases of the cell cycle. USP37 interacts with Cdt1 and is able to de-ubiquitinate Cdt1 in vivo and, USP37 is able to regulate the loading of MCM complexes onto the chromatin. In addition, downregulation of USP37 reduces DNA replication fork speed. Taken together, here we show that the deubiquitinase USP37 plays an important role in the regulation of DNA replication. Whether this is achieved via Cdt1, a central protein in this process, which we have shown to be stabilized by USP37, or via additional factors, remains to be tested.
Collapse
|