1
|
Bedeer AE, El-Ghaffar Heabah NA. Evaluation of C-X-C chemokine receptor type 4 (CXCR4) and Peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in colorectal carcinoma: Relation to the available clinicopathological parameters. INDIAN J PATHOL MICR 2023; 66:465-471. [PMID: 37530325 DOI: 10.4103/ijpm.ijpm_481_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background Colorectal carcinoma (CRC) is the most common malignancy of the gastrointestinal tract, representing an incredible health problem. It is essential to develop drugs against novel targets--involved in CRC tumorigenesis and progression--to improve the management of the disease. The aim of this study was to evaluate C-X-C chemokine receptor type 4 (CXCR4) and Peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in CRC, and to associate their expression with the available clinicopathological parameters. Materials and Methods This study included 50 cases of primary CRC. All cases were stained by CXCR4 and PPAR-γ antibodies to assess their immunohistochemical expression. The relations between their expression and clinicopathological variables were assessed. Results CXCR4 expression was detected in 76% of studied cases. High CXCR4 expression showed significant associations with the depth of tumor invasion (P = 0.024), lymph node metastasis (P = 0.009), advanced tumor stage (P = 0.001) and the presence of vascular invasion (P = 0.035). PPAR-γ expression was detected in 78% of studied cases. PPAR-γ expression showed a statistically significant inverse relation with histologic types (P = 0.001), tumor grade (P = 0.005), depth of tumor invasion (P = 0.001), lymph node status (P = 0.001), TNM stage (P = 0.002), and vascular invasion (P = 0.001). Conclusions High CXCR4 and decreased PPAR-γ expressions are related to high tumor grade, advanced stage, and vascular invasion in colorectal carcinoma.
Collapse
Affiliation(s)
- Asmaa E Bedeer
- Department of Pathology, Faculty of Medicine, Tanta University, Egypt
| | | |
Collapse
|
2
|
Leo M, Muccillo L, Dugo L, Bernini R, Santi L, Sabatino L. Polyphenols Extracts from Oil Production Waste Products (OPWPs) Reduce Cell Viability and Exert Anti-Inflammatory Activity via PPARγ Induction in Colorectal Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11040624. [PMID: 35453308 PMCID: PMC9029425 DOI: 10.3390/antiox11040624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Olive oil production is associated with the generation of oil production waste products (OPWPs) rich in water-soluble polyphenols that represent serious environmental problems. Yet OPWPs can offer new opportunities by exploiting their bioactive properties. In this study, we chemically characterized OPWPs polyphenolic extracts and investigated their biological activities in normal and colorectal cancer cells. Hydroxytyrosol (HTyr), the major constituent of these extracts, was used as the control. We show that both HTyr and the extracts affect cell viability by inducing apoptosis and cell cycle arrest. They downregulate inflammation by impairing NF-κB phosphorylation and expression of responsive cytokine genes, as TNF-α and IL-8, at both mRNA and protein levels, and prevent any further increase elicited by external challenges. Mechanistically, HTyr and the extracts activate PPARγ while hampering pro-inflammatory genes expression, acting as a specific agonist, likely through a trans-repression process. Altogether, OPWPs polyphenolic extracts show stronger effects than HTyr, conceivably due to additive or synergistic effects of all polyphenols contained. They display anti-inflammatory properties and these results may pave the way for improving OPWPs extraction and enrichment methods to reduce the environmental impact and support their use to ameliorate the inflammation associated with diseases and tumors.
Collapse
Affiliation(s)
- Manuela Leo
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
| | - Livio Muccillo
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
| | - Laura Dugo
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (R.B.); (L.S.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences, University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (R.B.); (L.S.)
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy; (M.L.); (L.M.)
- Correspondence: ; Tel.: +39-0824-305149 or +39-0824-305167
| |
Collapse
|
3
|
An Integrated In Silico, In Vitro and Tumor Tissues Study Identified Selenoprotein S (SELENOS) and Valosin-Containing Protein (VCP/p97) as Novel Potential Associated Prognostic Biomarkers in Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030646. [PMID: 35158912 PMCID: PMC8833666 DOI: 10.3390/cancers14030646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Triple negative breast cancer (TNBC) represents a clinical challenge because its early relapse, poor overall survival and lack of effective treatments. Altered levels selenoproteins have been correlated with development and progression of some cancers, however, no consistent data are available about their involvement in TNBC. Here we analyzed the expression profile of all twenty-five human selenoproteins in TNBC cells and tissues by a systematic approach, integrating in silico and wet lab approaches. We showed that the expression profiles of five selenoproteins are specifically dysregulated in TNBC. Most importantly, by a bioinformatics analysis, we selected selenoprotein S and its interacting protein valosin-containing protein (VCP/p97) as inter-related with the others and whose coordinated over-expression is associated with poor prognosis in TNBC. Overall, we highlighted two mechanistically related novel proteins whose correlated expression could be exploited for a better definition of prognosis as well as suggested as novel therapeutic target in TNBC. Abstract Background. Triple negative breast cancer (TNBC) is a heterogeneous group of tumors with early relapse, poor overall survival, and lack of effective treatments. Hence, new prognostic biomarkers and therapeutic targets are needed. Methods. The expression profile of all twenty-five human selenoproteins was analyzed in TNBC by a systematic approach.In silicoanalysis was performed on publicly available mRNA expression datasets (Cancer Cell Line Encyclopedia, CCLE and Library of Integrated Network-based Cellular Signatures, LINCS). Reverse transcription quantitative PCR analysis evaluated selenoprotein mRNA expression in TNBC versus non-TNBC and normal breast cells, and in TNBC tissues versus normal counterparts. Immunohistochemistry was employed to study selenoproteins in TNBC tissues. STRING and Cytoscape tools were used for functional and network analysis. Results.GPX1, GPX4, SELENOS, TXNRD1 and TXNRD3 were specifically overexpressed in TNBC cells, tissues and CCLE/LINCS datasets. Network analysis demonstrated that SELENOS-binding valosin-containing protein (VCP/p97) played a critical hub role in the TNBCselenoproteins sub-network, being directly associated with SELENOS expression. The combined overexpression of SELENOS and VCP/p97 correlated with advanced stages and poor prognosis in TNBC tissues and the TCGA dataset. Conclusion. Combined evaluation of SELENOS and VCP/p97 might represent a novel potential prognostic signature and a therapeutic target to be exploited in TNBC.
Collapse
|
4
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). METHODS For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. RESULTS We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. CONCLUSIONS To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
5
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 10/11/2024] Open
Abstract
Objective This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). Methods For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. Results We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. Conclusions To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
6
|
Shademan M, Zare K, Zahedi M, Mosannen Mozaffari H, Bagheri Hosseini H, Ghaffarzadegan K, Goshayeshi L, Dehghani H. Promoter methylation, transcription, and retrotransposition of LINE-1 in colorectal adenomas and adenocarcinomas. Cancer Cell Int 2020; 20:426. [PMID: 32905102 PMCID: PMC7466817 DOI: 10.1186/s12935-020-01511-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The methylation of the CpG islands of the LINE-1 promoter is a tight control mechanism on the function of mobile elements. However, simultaneous quantification of promoter methylation and transcription of LINE-1 has not been performed in progressive stages of colorectal cancer. In addition, the insertion of mobile elements in the genome of advanced adenoma stage, a precancerous stage before colorectal carcinoma has not been emphasized. In this study, we quantify promoter methylation and transcripts of LINE-1 in three stages of colorectal non-advanced adenoma, advanced adenoma, and adenocarcinoma. In addition, we analyze the insertion of LINE-1, Alu, and SVA elements in the genome of patient tumors with colorectal advanced adenomas. METHODS LINE-1 hypomethylation status was evaluated by absolute quantitative analysis of methylated alleles (AQAMA) assay. To quantify the level of transcripts for LINE-1, quantitative RT-PCR was performed. To find mobile element insertions, the advanced adenoma tissue samples were subjected to whole genome sequencing and MELT analysis. RESULTS We found that the LINE-1 promoter methylation in advanced adenoma and adenocarcinoma was significantly lower than that in non-advanced adenomas. Accordingly, the copy number of LINE-1 transcripts in advanced adenoma was significantly higher than that in non-advanced adenomas, and in adenocarcinomas was significantly higher than that in the advanced adenomas. Whole-genome sequencing analysis of colorectal advanced adenomas revealed that at this stage polymorphic insertions of LINE-1, Alu, and SVA comprise approximately 16%, 51%, and 74% of total insertions, respectively. CONCLUSIONS Our correlative analysis showing a decreased methylation of LINE-1 promoter accompanied by the higher level of LINE-1 transcription, and polymorphic genomic insertions in advanced adenoma, suggests that the early and advanced polyp stages may host very important pathogenic processes concluding to cancer.
Collapse
Affiliation(s)
- Milad Shademan
- Graduate Program in Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khadijeh Zare
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974 Iran
| | - Morteza Zahedi
- Graduate Program in Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hooman Mosannen Mozaffari
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Bagheri Hosseini
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Ghaffarzadegan
- Pathology Department, Education and Research Department, Razavi Hospital, Mashhad, Iran
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesam Dehghani
- Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91779-48974 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
7
|
Long non-coding RNA TINCR as potential biomarker and therapeutic target for cancer. Life Sci 2020; 257:118035. [PMID: 32622950 DOI: 10.1016/j.lfs.2020.118035] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Despite the recent scientific advances made in cancer diagnostics and therapeutics, cancer still remains the second leading cause of death worldwide. Thus, there is a need to identify new potential biomarkers/molecular targets to improve the diagnosis and treatment of cancer patients. In this regard, long non-coding RNAs (lncRNAs), a type of non-coding RNA molecule, have been found to play important roles in diverse biological processes, including tumorigenesis, and may provide new biomarkers and/or molecular targets for the improved detection of treatment of cancer. For example, one lncRNA, tissue differentiation-inducing non-protein coding RNA (TINCR) has been found to be significantly dysregulated in many cancers, and has an impact on tumor development and progression through targeting pivotal molecules in cancer-associated signaling pathways. Hence, based on recent discoveries, herein, we discuss the regulatory functions and the underlying mechanisms of how TINCR regulates signaling pathways attributed to cancer hallmarks associated with the pathogenesis of various human cancers. We also highlight studies assessing its potential clinical utility as a biomarker/target for early detection, cancer risk stratification, and personalized cancer therapies.
Collapse
|
8
|
Wang D, Zhu X, Tang X, Li H, Yizhen X, Chen D. Auxiliary antitumor effects of fungal proteins from Hericium erinaceus by target on the gut microbiota. J Food Sci 2020; 85:1872-1890. [PMID: 32460371 DOI: 10.1111/1750-3841.15134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Cancer represents a major disease burden worldwide. Despite continuous advances obtained in medical therapies recently, resistance to standard drugs and adverse effects still represent important causes of therapeutic failure. There is growing evidence that the gut microbiota can affect the response to chemo- and immunotherapeutic drugs by modulating efficacy and/or toxicity, and diet is the most important factor affecting the gut microbiota. In this study, we assessed the auxiliary antitumor effects of immunomodulatory fungal proteins from Hericium erinaceus (HEP) administered with the chemotherapy drug 5-Fluorouracil (5-Fu), and we attempted to identify new potential prebiotic bacteria for auxiliary antitumor treatment. There were 1,455 proteins identified from H. erinaceus. In a xenografted mouse model of cancer, HEP with 5-Fu significantly suppressed tumor growth, inhibited inflammatory markers such as interferon (IFN)-γ, interleukin (IL)-1β, IL-2, IL-6, tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS), and regulated the expression of Akt, CCDN1, CKD4, FOXM1, MMP7, MYC, PPAR-α, and PPAR-γ. 16S rRNA sequencing showed that HEP ameliorated the dysbacteriosis induced by 5-Fu, as it inhibited certain aerobic and microaerobic bacteria including Parabacteroides, Flavobacteriaceae, Christensenellaceae, Anoxybacillus, Aggregatibacter, Comamonadaceae, Planococcaceae, Desulfovibrionaceae, Sporosarcina, Staphylococcus, Aerococcaceae, and Bilophila in the xenografted mice, and increase some probiotic bacteria such as Bifidobacterium, Gemellales, Blautia, Sutterella, Anaerostipes, Roseburia, Lachnobacterium, Lactobacillus, and Desulfovibrio. This demonstrates that HEP could promote the antitumor efficacy of 5-Fu by improving the microbiota composition, the immune inflammatory response, and homeostasis.
Collapse
Affiliation(s)
- Dongdong Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiangxiang Zhu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.,Academy of Life Sciences, Jinan Univ., Guangzhou, Guangdong Province, 510000, China
| | - Xiaocui Tang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Hongye Li
- Academy of Life Sciences, Jinan Univ., Guangzhou, Guangdong Province, 510000, China
| | - Xie Yizhen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Diling Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
9
|
Yaghoubizadeh M, Pishkar L, Basati G. Aberrant Expression of Peroxisome Proliferator-Activated Receptors in Colorectal Cancer and Their Association with Cancer Progression and Prognosis. Gastrointest Tumors 2020; 7:11-20. [PMID: 32399461 PMCID: PMC7206611 DOI: 10.1159/000503995] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs), PPARα, PPARγ, and PPARδ, are nuclear ligand-activated transcription factors which presumably contribute to a broad range of pathophysiological processes, such as tumorigenesis. Nevertheless, their exact role as tumor suppressors or promoters is not straightforward in colorectal cancer (CRC). Therefore, expression values of these PPARs and their relation with tumor progression and prognosis were examined in CRC patients. METHODS In this work, the relative expression values of the PPARs were measured by real-time polymerase chain reaction in 100 CRC tumor tissues paired with adjacent normal tissues. After that, the association between relative expression values of the PPARs in tumor tissues and the cancer progression-related clinicopathological characteristics as well as overall survival of patients were assessed. RESULTS While PPARα and PPARδ seemed to be overexpressed, PPARγ was suppressed in CRC tumor tissues compared with paired adjacent normal tissues (p = 0.0001). The relative expressions of PPARα and PPARδ were negatively associated with tumor size, tumor grade, TNM stage, metastasis, lymphatic invasion, and decreased overall survival time (p < 0.05). The same associations, but in reverse direction, were found for PPARγ. CONCLUSIONS It was found that PPARα and PPARδ were overexpressed while PPARγ was suppressed in CRC tumor tissues, and these deregulations are associated with cancer progression and poor prognosis.
Collapse
Affiliation(s)
- Musa Yaghoubizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Gholam Basati
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- *Gholam Basati, Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Banganjab Street, Ilam 693917143 (Iran), E-Mail
| |
Collapse
|
10
|
Telomere-associated genes and telomeric lncRNAs are biomarker candidates in lung squamous cell carcinoma (LUSC). Exp Mol Pathol 2019; 112:104354. [PMID: 31837325 DOI: 10.1016/j.yexmp.2019.104354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
In the past decade, research efforts were made to identify molecular biomarkers useful as therapeutic targets in Non-Small Cell Lung Cancer (NSCLC), the most frequent type of lung carcinoma. NSCLC presents different histological subtypes being the most prevalent LUSC (Lung Squamous Cell Cancer) and LUAD (Lung Adenocarcinoma), and only a subset of LUAD patients' present tumors expressing known targetable genetic alterations. Telomeres and its components, including telomerase, the enzyme that replenishes telomeres, have been considered potential cancer biomarkers due to their crucial role in cell proliferation and genome stability. Our study aims to quantify expression changes affecting telomere-associated genes and ncRNAs associated with telomere regulation and maintenance in NSCLC. We first assessed the transcriptome (RNA-Seq) data of NSCLC patients from The Cancer Genome Atlas (TCGA) and then we tested the expression of telomere-associated genes and telomeric ncRNAs (TERC, telomerase RNA component, and TERRA, telomere repeat-containing RNA) in Brazilian NCSLC patient samples by quantitative RT-PCR, using matched normal adjacent tissue samples as the control. We also estimated the mean size of terminal restriction fragments (TRF) of some Brazilian NSCLC patients using telomeric Southern blot. The TCGA analysis identified alterations in the expression profile of TERT and telomere damage repair genes, mainly in the LUSC subtype. The study of Brazilian NSCLC samples by RT-qPCR showed that LUSC and LUAD express high amounts of TERT and that although the mean TRF size of tumor samples was shorter compared to normal cells, telomeres in NSCLC are probably maintained by telomerase. Also, the expression analysis of Brazilian NSCLC samples identified statistically significant alterations in the expression of genes involved with telomere damage repair, as well as in TERC and TERRA, mainly in the LUSC subtype. We, therefore, concluded that telomere maintenance genes are significantly deregulated in NSCLC, representing potential biomarkers in the LUSC subtype.
Collapse
|
11
|
Activation and Expression of Peroxisome Proliferator-Activated Receptor Alpha Are Associated with Tumorigenesis in Colorectal Carcinoma. PPAR Res 2019; 2019:7486727. [PMID: 31354797 PMCID: PMC6636540 DOI: 10.1155/2019/7486727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/23/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPAR-α) belongs to the PPAR family and plays a critical role in inhibiting cell proliferation and tumorigenesis in various tumors. However, the role of PPAR-α in colorectal tumorigenesis is unclear. In the present study, we found that fenofibrate, a PPAR-α agonist, significantly inhibited cell proliferation and induced apoptosis in colorectal carcinoma cells. In addition, PPAR-α was expressed in the nucleus of colorectal carcinoma cells, and the expression of nuclear PPAR-α increased in colorectal carcinoma tissue compared with that of normal epithelium tissue (P<0.01). The correlation between the expression of nuclear PPAR-α and clinicopathological factors was evaluated in human colorectal carcinoma tissues, and the nuclear expression of PPAR-α was significantly higher in well-to-moderately differentiated adenocarcinoma than in mucinous adenocarcinoma (P<0.05). These findings indicate that activation of PPAR-α may be involved in anticancer effects in colorectal carcinomas, and nuclear expression of PPAR-α may be a therapeutic target for colorectal adenocarcinoma treatment.
Collapse
|
12
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
13
|
Zhang X, Yao J, Shi H, Gao B, Zhang L. LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. Biol Chem 2019; 400:663-675. [PMID: 30521471 DOI: 10.1515/hsz-2018-0236] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022]
Abstract
Abstract
The present study aims to determine the potential biomarkers and uncover the regulatory mechanisms of the long-noncoding RNA (lncRNA) TINCR/miR-107/CD36 axis in colorectal cancer (CRC). Aberrantly-expressed lncRNAs and differential-expressed genes were identified by analyzing the dataset GSE40967. Gene set enrichment analysis was employed, and Cytoscape software helped in establishing the co-expression network between lncRNAs and genes. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis contributes to examining the expression levels of lncRNA TINCR, miR-107 and CD36. The dual luciferase assay was used to validate the association between miR-107 and lncRNA TINCR or CD36. The EdU incorporation assay was employed, and flow cytometry was employed to detect cell apoptosis with the tumor xenograft model being utilized. Significantly dysregulated lncRNAs and mRNAs were identified. The peroxisome proliferator-activated receptor (PPAR) signaling pathway in CRC tissues was down-regulated. The loss of TINCR expression was associated with CRC progression. The expression levels of the TINCR and CD36 were down-regulated. We identified miR-107 as an inhibitory target of TINCR and CD36. Overexpression of TINCR could inhibit cell proliferation and promote apoptosis. MiR-107 overexpression in CRC cells induced proliferation and impeded apoptosis. A regulatory function of the lncRNA TINCR/miR-107/CD36 axis in CRC was revealed. LncRNA TINCR overexpression exerted suppressive influence on CRC progression through modulating the PPAR signaling pathway via the miR-107/CD36 axis.
Collapse
Affiliation(s)
- Xuexiu Zhang
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Jianning Yao
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Haoling Shi
- Department of General Surgery , The First People Hospital of Zhengzhou , Zhengzhou 450004, Henan , China
| | - Bing Gao
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| | - Lianfeng Zhang
- Department of Gastroenterology , The First Affiliated Hospital of Zhengzhou University , No. 1 Jianshe East Road of Erqi District , Zhengzhou 450052, Henan , China
| |
Collapse
|
14
|
Milone MR, Lombardi R, Roca MS, Bruzzese F, Addi L, Pucci B, Budillon A. Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells. J Cell Physiol 2018; 234:9077-9092. [DOI: 10.1002/jcp.27585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/18/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Rita Milone
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Laura Addi
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| |
Collapse
|
15
|
Mao YQ, Houry WA. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 2017; 4:58. [PMID: 28884116 PMCID: PMC5573869 DOI: 10.3389/fmolb.2017.00058] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Chemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
16
|
Milone MR, Pucci B, Colangelo T, Lombardi R, Iannelli F, Colantuoni V, Sabatino L, Budillon A. Proteomic characterization of peroxisome proliferator-activated receptor-γ (PPARγ) overexpressing or silenced colorectal cancer cells unveils a novel protein network associated with an aggressive phenotype. Mol Oncol 2016; 10:1344-62. [PMID: 27499265 DOI: 10.1016/j.molonc.2016.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor of the nuclear hormone receptor superfamily implicated in a wide range of processes, including tumorigenesis. Its role in colorectal cancer (CRC) is still debated; most reports support that PPARγ reduced expression is associated with poor prognosis. We employed 2-Dimensional Differential InGel Electrophoresis (2-D DIGE) followed by Liquid Chromatography (LC)-tandem Mass Spectrometry (MS/MS) to identify differentially expressed proteins and the molecular pathways underlying PPARγ expression in CRC progression. We identified several differentially expressed proteins in HT29 and HCT116 CRC cells and derived clones either silenced or overexpressing PPARγ, respectively. In Ingenuity Pathway Analysis (IPA) they showed reciprocal relation with PPARγ and a strong relationship with networks linked to cell death, growth and survival. Interestingly, five of the identified proteins, ezrin (EZR), isoform C of prelamin-A/C (LMNA), alpha-enolase (ENOA), prohibitin (PHB) and RuvB-like 2 (RUVBL2) were shared by the two cell models with opposite expression levels, suggesting a possible regulation by PPARγ. mRNA and western blot analysis were undertaken to obtain a technical validation and confirm the expression trend observed by 2-D DIGE data. We associated EZR upregulation with increased cell surface localization in PPARγ-overexpressing cells by flow cytometry and immunofluorescence staining. We also correlated EZR and PPARγ expression in our series of CRC specimens and the expression profiling of all five proteins levels in the publicly available colon cancer genomic data from Oncomine and Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) datasets. In summary, we identified a panel of proteins correlated with PPARγ expression that could be associated with CRC unveiling new pathways to be investigated for the selection of novel potential prognostic/predictive biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Tommaso Colangelo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Federica Iannelli
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy; Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.
| |
Collapse
|