1
|
Zhou HR, Qian F, Du JL, Lin J, Liu ZZ, Yuan DY, Huang HW, Cai T, Li L, Chen S, Li QQ, He XJ. The conserved Pre-mRNA PROCESSING FACTOR 21 regulates the abscisic acid response and seed germination in Arabidopsis. PLANT PHYSIOLOGY 2025; 198:kiaf189. [PMID: 40344190 DOI: 10.1093/plphys/kiaf189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/06/2025] [Indexed: 05/11/2025]
Abstract
Seed germination is a critical developmental stage in the lifecycle of plants, and its regulation is essential for ensuring crop productivity, particularly under adverse environmental conditions. Here, we find that the Arabidopsis thaliana Pre-mRNA PROCESSING FACTOR 21 (PRP21) is crucial for regulating the abscisic acid (ABA) response and seed germination. Our RNA deep sequencing and poly(A) tag sequencing analyses reveal that PRP21 is involved in pre-mRNA splicing, genome-wide gene expression, and mRNA 3' end processing, highlighting its multifunctional role in gene regulation. Furthermore, PRP21 interacts with various splicing factors and small nuclear ribonucleoproteins, confirming its involvement in spliceosome assembly. Additionally, we demonstrate that PRP21 negatively regulates the expression of ABA-responsive genes, such as ABA INSENSITIVE 3 (ABI3), ABA INSENSITIVE 5 (ABI5), EARLY METHIONINE-LABELED 1 (EM1), and EM6, thereby modulating ABA response and seed germination. Our findings underscore the importance of PRP21 in coordinating transcriptional and post-transcriptional processes and provide insights into the molecular mechanisms underlying seed germination, potentially guiding crop improvement for stress tolerance.
Collapse
Affiliation(s)
- Hao-Ran Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Feng Qian
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jin-Lu Du
- National Institute of Biological Sciences, Beijing 102206, China
| | - Juncheng Lin
- Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Huan-Wei Huang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingshun Quinn Li
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China
| |
Collapse
|
2
|
Ma J, Li S, Wang T, Tao Z, Huang S, Lin N, Zhao Y, Wang C, Li P. Cooperative condensation of RNA-DIRECTED DNA METHYLATION 16 splicing isoforms enhances heat tolerance in Arabidopsis. Nat Commun 2025; 16:433. [PMID: 39762263 PMCID: PMC11704304 DOI: 10.1038/s41467-025-55850-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Dissecting the mechanisms underlying heat tolerance is important for understanding how plants acclimate to heat stress. Here, we identify a heat-responsive gene in Arabidopsis thaliana, RNA-DIRECTED DNA METHYLATION 16 (RDM16), which encodes a pre-mRNA splicing factor. Knockout mutants of RDM16 are hypersensitive to heat stress, which is associated with impaired splicing of the mRNAs of 18 out of 20 HEAT SHOCK TRANSCRIPTION FACTOR (HSF) genes. RDM16 forms condensates upon exposure to heat. The arginine residues in intrinsically disordered region 1 (IDR1) of RDM16 are responsible for RDM16 condensation and its function in heat stress tolerance. Notably, RDM16 produces two alternatively spliced transcripts designated RDM16-LONG (RDL) and RDM16-SHORT (RDS). RDS also forms condensates and can promote RDL condensation to improve heat tolerance. Our findings provide insight into the cooperative condensation of the two RDM16 isoforms encoded by RDM16 splice variants in enhancing heat tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Jing Ma
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shuai Li
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Tengyue Wang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhen Tao
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shijie Huang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ning Lin
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yibing Zhao
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Chuanhong Wang
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.
| | - Peijin Li
- The National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
3
|
Liu J, Chen H, Liu L, Meng X, Liu Q, Ye Q, Wen J, Wang T, Dong J. A cargo sorting receptor mediates chloroplast protein trafficking through the secretory pathway. THE PLANT CELL 2024; 36:3770-3786. [PMID: 38963880 PMCID: PMC11371137 DOI: 10.1093/plcell/koae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Nucleus-encoded chloroplast proteins can be transported via the secretory pathway. The molecular mechanisms underlying the trafficking of chloroplast proteins between the intracellular compartments are largely unclear, and a cargo sorting receptor has not previously been identified in the secretory pathway. Here, we report a cargo sorting receptor that is specifically present in Viridiplantae and mediates the transport of cargo proteins to the chloroplast. Using a forward genetic analysis, we identified a gene encoding a transmembrane protein (MtTP930) in barrel medic (Medicago truncatula). Mutation of MtTP930 resulted in impaired chloroplast function and a dwarf phenotype. MtTP930 is highly expressed in the aerial parts of the plant and is localized to the endoplasmic reticulum (ER) exit sites and Golgi. MtTP930 contains typical cargo sorting receptor motifs, interacts with Sar1, Sec12, and Sec24, and participates in coat protein complex II vesicular transport. Importantly, MtTP930 can recognize the cargo proteins plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase (MtNPP) and α-carbonic anhydrase (MtCAH) in the ER and then transport them to the chloroplast via the secretory pathway. Mutation of a homolog of MtTP930 in Arabidopsis (Arabidopsis thaliana) resulted in a similar dwarf phenotype. Furthermore, MtNPP-GFP failed to localize to chloroplasts when transgenically expressed in Attp930 protoplasts, implying that these cargo sorting receptors are conserved in plants. These findings fill a gap in our understanding of the mechanism by which chloroplast proteins are sorted and transported via the secretory pathway.
Collapse
Affiliation(s)
- Jinling Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangzhao Meng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Zhao R, Wu WA, Huang YH, Li XK, Han JQ, Jiao W, Su YN, Zhao H, Zhou Y, Cao WQ, Zhang X, Wei W, Zhang WK, Song QX, He XJ, Ma B, Chen SY, Tao JJ, Yin CC, Zhang JS. An RRM domain protein SOE suppresses transgene silencing in rice. THE NEW PHYTOLOGIST 2024; 243:1724-1741. [PMID: 38509454 DOI: 10.1111/nph.19686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Gene expression is regulated at multiple levels, including RNA processing and DNA methylation/demethylation. How these regulations are controlled remains unclear. Here, through analysis of a suppressor for the OsEIN2 over-expressor, we identified an RNA recognition motif protein SUPPRESSOR OF EIN2 (SOE). SOE is localized in nuclear speckles and interacts with several components of the spliceosome. We find SOE associates with hundreds of targets and directly binds to a DNA glycosylase gene DNG701 pre-mRNA for efficient splicing and stabilization, allowing for subsequent DNG701-mediated DNA demethylation of the transgene promoter for proper gene expression. The V81M substitution in the suppressor mutant protein mSOE impaired its protein stability and binding activity to DNG701 pre-mRNA, leading to transgene silencing. SOE mutation enhances grain size and yield. Haplotype analysis in c. 3000 rice accessions reveals that the haplotype 1 (Hap 1) promoter is associated with high 1000-grain weight, and most of the japonica accessions, but not indica ones, have the Hap 1 elite allele. Our study discovers a novel mechanism for the regulation of gene expression and provides an elite allele for the promotion of yield potentials in rice.
Collapse
Affiliation(s)
- Rui Zhao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Ai Wu
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Hua Huang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin-Kai Li
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Qi Han
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Jiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - He Zhao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Zhou
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wu-Qiang Cao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wei
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan-Ke Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Xin Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Biao Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shou-Yi Chen
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Jun Tao
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- Key Lab of Seed Innovation, State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
6
|
Liu Y, Do S, Huynh H, Li JX, Liu YG, Du ZY, Chen MX. Importance of pre-mRNA splicing and its study tools in plants. ADVANCED BIOTECHNOLOGY 2024; 2:4. [PMID: 39883322 PMCID: PMC11740881 DOI: 10.1007/s44307-024-00009-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2025]
Abstract
Alternative splicing (AS) significantly enriches the diversity of transcriptomes and proteomes, playing a pivotal role in the physiology and development of eukaryotic organisms. With the continuous advancement of high-throughput sequencing technologies, an increasing number of novel transcript isoforms, along with factors related to splicing and their associated functions, are being unveiled. In this review, we succinctly summarize and compare the different splicing mechanisms across prokaryotes and eukaryotes. Furthermore, we provide an extensive overview of the recent progress in various studies on AS covering different developmental stages in diverse plant species and in response to various abiotic stresses. Additionally, we discuss modern techniques for studying the functions and quantification of AS transcripts, as well as their protein products. By integrating genetic studies, quantitative methods, and high-throughput omics techniques, we can discover novel transcript isoforms and functional splicing factors, thereby enhancing our understanding of the roles of various splicing modes in different plant species.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Sally Do
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Henry Huynh
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jing-Xin Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ying-Gao Liu
- National Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Zhi-Yan Du
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.
| |
Collapse
|
7
|
Ji T, Zheng L, Wu J, Duan M, Liu Q, Liu P, Shen C, Liu J, Ye Q, Wen J, Dong J, Wang T. The thioesterase APT1 is a bidirectional-adjustment redox sensor. Nat Commun 2023; 14:2807. [PMID: 37198152 PMCID: PMC10192129 DOI: 10.1038/s41467-023-38464-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
The adjustment of cellular redox homeostasis is essential in when responding to environmental perturbations, and the mechanism by which cells distinguish between normal and oxidized states through sensors is also important. In this study, we found that acyl-protein thioesterase 1 (APT1) is a redox sensor. Under normal physiological conditions, APT1 exists as a monomer through S-glutathionylation at C20, C22 and C37, which inhibits its enzymatic activity. Under oxidative conditions, APT1 senses the oxidative signal and is tetramerized, which makes it functional. Tetrameric APT1 depalmitoylates S-acetylated NAC (NACsa), and NACsa relocates to the nucleus, increases the cellular glutathione/oxidized glutathione (GSH/GSSG) ratio through the upregulation of glyoxalase I expression, and resists oxidative stress. When oxidative stress is alleviated, APT1 is found in monomeric form. Here, we describe a mechanism through which APT1 mediates a fine-tuned and balanced intracellular redox system in plant defence responses to biotic and abiotic stresses and provide insights into the design of stress-resistant crops.
Collapse
Affiliation(s)
- Tuo Ji
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiale Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Mei Duan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chen Shen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jinling Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Li Y, Guo L, Wang Z, Zhao D, Guo D, Carlson JE, Yin W, Hou X. Genome-wide association study of 23 flowering phenology traits and 4 floral agronomic traits in tree peony ( Paeonia section Moutan DC.) reveals five genes known to regulate flowering time. HORTICULTURE RESEARCH 2023; 10:uhac263. [PMID: 36793754 PMCID: PMC9926158 DOI: 10.1093/hr/uhac263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Tree peony is a unique traditional flower in China, with large, fragrant, and colorful flowers. However, a relatively short and concentrated flowering period limits the applications and production of tree peony. A genome-wide association study (GWAS) was conducted to accelerate molecular breeding for the improvement of flowering phenology traits and ornamental phenotypes in tree peony. A diverse panel of 451 tree peony accessions was phenotyped for 23 flowering phenology traits and 4 floral agronomic traits over 3 years. Genotyping by sequencing (GBS) was used to obtain a large number of genome-wide single-nucleotide polymorphisms (SNPs) (107 050) for the panel genotypes, and 1047 candidate genes were identified by association mapping. Eighty-two related genes were observed during at least 2 years for flowering, and seven SNPs repeatedly identified for multiple flowering phenology traits over multiple years were highly significantly associated with five genes known to regulate flowering time. We validated the temporal expression profiles of these candidate genes and highlighted their possible roles in the regulation of flower bud differentiation and flowering time in tree peony. This study shows that GWAS based on GBS can be used to identify the genetic determinants of complex traits in tree peony. The results expand our understanding of flowering time control in perennial woody plants. Identification of markers closely related to these flowering phenology traits can be used in tree peony breeding programs for important agronomic traits.
Collapse
Affiliation(s)
| | | | - Zhanying Wang
- Luoyang Academy of Agricultural and Forestry Sciences, Luoyang, Henan, 471000, China
| | - Dehui Zhao
- College of Agronomy/College of Tree Peony, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Dalong Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - John E. Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Weilun Yin
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | | |
Collapse
|
9
|
Yang Z, Zhang H, Tan X, Wei Z, Wen C, Sun Z, Sun B, Chen J. Insights Into the Effect of Rice Stripe Virus P2 on Rice Defense by Comparative Proteomic Analysis. Front Microbiol 2022; 13:897589. [PMID: 35747367 PMCID: PMC9209781 DOI: 10.3389/fmicb.2022.897589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Rice stripe virus (RSV) has a serious effect on rice production. Our previous research had shown that RSV P2 plays important roles in RSV infection, so in order to further understand the effect of P2 on rice, we used Tandem Mass Tag (TMT) quantitative proteomics experimental system to analyze the changes of protein in transgenic rice expressing P2 for the first time. The results of proteomics showed that a total of 4,767 proteins were identified, including 198 up-regulated proteins and 120 down-regulated proteins. Functional classification results showed that differentially expressed proteins (DEPs) were mainly localized in chloroplasts and mainly involved in the metabolic pathways. Functional enrichment results showed that DEPs are mainly involved in RNA processing and splicing. We also verified the expression of several DEPs at the mRNA level and the interaction of a transcription factor (B7EPB8) with RSV P2. This research is the first time to use proteomics technology to explore the mechanism of RSV infection in rice with the RSV P2 as breakthrough point. Our findings provide valuable information for the study of RSV P2 and RSV infection mechanism.
Collapse
Affiliation(s)
- Zihang Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiaoxiang Tan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Bingjian Sun,
| | - Jianping Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Jianping Chen,
| |
Collapse
|
10
|
The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses. Cells 2022; 11:cells11111796. [PMID: 35681491 PMCID: PMC9180459 DOI: 10.3390/cells11111796] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Abiotic stresses profoundly affect plant growth and development and limit crop productivity. Pre-mRNA splicing is a major form of gene regulation that helps plants cope with various stresses. Serine/arginine (SR)-rich splicing factors play a key role in pre-mRNA splicing to regulate different biological processes under stress conditions. Alternative splicing (AS) of SR transcripts and other transcripts of stress-responsive genes generates multiple splice isoforms that contribute to protein diversity, modulate gene expression, and affect plant stress tolerance. Here, we investigated the function of the plant-specific SR protein RS33 in regulating pre-mRNA splicing and abiotic stress responses in rice. The loss-of-function mutant rs33 showed increased sensitivity to salt and low-temperature stresses. Genome-wide analyses of gene expression and splicing in wild-type and rs33 seedlings subjected to these stresses identified multiple splice isoforms of stress-responsive genes whose AS are regulated by RS33. The number of RS33-regulated genes was much higher under low-temperature stress than under salt stress. Our results suggest that the plant-specific splicing factor RS33 plays a crucial role during plant responses to abiotic stresses.
Collapse
|
11
|
Wang L, Xu D, Scharf K, Frank W, Leister D, Kleine T. The RNA-binding protein RBP45D of Arabidopsis promotes transgene silencing and flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1397-1415. [PMID: 34919766 DOI: 10.1111/tpj.15637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
RNA-directed DNA methylation (RdDM) helps to defend plants against invasive nucleic acids. In the canonical form of RdDM, 24-nt small interfering RNAs (siRNAs) are produced by DICER-LIKE 3 (DCL3). The siRNAs are loaded onto ARGONAUTE (AGO) proteins leading ultimately to de novo DNA methylation. Here, we introduce the Arabidopsis thaliana prors1 (LUC) transgenic system, in which 24-nt siRNAs are generated to silence the promoter-LUC construct. A forward genetic screen performed with this system identified, besides known components of RdDM (NRPD2A, RDR2, AGO4 and AGO6), the RNA-binding protein RBP45D. RBP45D is involved in CHH (where H is A, C or T) DNA methylation, and maintains siRNA production originating from the LUC transgene. RBP45D is localized to the nucleus, where it is associated with small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). RNA-Seq analysis showed that in CRISPR/Cas-mediated rbp-ko lines FLOWERING LOCUS C (FLC) mRNA levels are upregulated and several loci differentially spliced, among them FLM. In consequence, loss of RBP45D delays flowering, presumably mediated by the release of FLC levels and/or alternative splicing of FLM. Moreover, because levels and processing of transcripts of known RdDM genes are not altered in rbp-ko lines, RBP45D should have a more direct function in transgene silencing, probably independent of the canonical RdDM pathway. We suggest that RBP45D facilitates siRNA production by stabilizing either the precursor RNA or the slicer protein. Alternatively, RBP45D could be involved in chromatin modifications, participate in retention of Pol IV transcripts and/or in Pol V-dependent lncRNA retention in chromatin to enable their scaffold function.
Collapse
Affiliation(s)
- Liangsheng Wang
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Duorong Xu
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Kristin Scharf
- Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Wolfgang Frank
- Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Singh A, Roychoudhury A. Gene regulation at transcriptional and post-transcriptional levels to combat salt stress in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1556-1572. [PMID: 34260753 DOI: 10.1111/ppl.13502] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Soil salinity is a major challenge that will be faced more and more by human population in the near future. Higher salt concentrations in the soil limit the growth and production of crops, which poses serious threats to global food production. Various plant breeding approaches have been followed in the past which are reported to reduce the effect of salt stress by inducing the level of protective metabolites like osmolytes and antioxidants. Conventional breeding approaches are time-consuming and not cost-effective. In recent times, genetic engineering has been largely followed to confer salt tolerance through introgressions of single transgenes or stacking multiple transgenes. However, most of such works are limited only at the laboratory level and field trials are still awaited to prove the long-term efficacy of such transgenics. In this review, we attempt to present a broad overview of the current strategies undertaken to develop halophytic and salt-tolerant crops. The salt-induced damages in the plants are highlighted, followed by representing the novel traits, associated with salt stress, which can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of transcriptional and epigenetic regulation in plants for amelioration of salt-induced damages has been reviewed. The role of post-transcriptional mechanisms such as microRNA regulation, genome editing and alternative splicing, during salt stress, and their implications in the development of salt-tolerant crops are also discussed. Finally, we present a short overview about the role of ion transporters and rhizobacteria in the engineering of salt tolerance in crop species.
Collapse
Affiliation(s)
- Ankur Singh
- Post-Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| | - Aryadeep Roychoudhury
- Post-Graduate Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| |
Collapse
|
13
|
Zhu P, Lister C, Dean C. Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression. Nature 2021; 599:657-661. [PMID: 34732891 PMCID: PMC8612926 DOI: 10.1038/s41586-021-04062-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Plants use seasonal temperature cues to time the transition to reproduction. In Arabidopsis thaliana, winter cold epigenetically silences the floral repressor locus FLOWERING LOCUS C (FLC) through POLYCOMB REPRESSIVE COMPLEX 2 (PRC2)1. This vernalization process aligns flowering with spring. A prerequisite for silencing is transcriptional downregulation of FLC, but how this occurs in the fluctuating temperature regimes of autumn is unknown2-4. Transcriptional repression correlates with decreased local levels of histone H3 trimethylation at K36 (H3K36me3) and H3 trimethylation at K4 (H3K4me3)5,6, which are deposited during FRIGIDA (FRI)-dependent activation of FLC7-10. Here we show that cold rapidly promotes the formation of FRI nuclear condensates that do not colocalize with an active FLC locus. This correlates with reduced FRI occupancy at the FLC promoter and FLC repression. Warm temperature spikes reverse this process, buffering FLC shutdown to prevent premature flowering. The accumulation of condensates in the cold is affected by specific co-transcriptional regulators and cold induction of a specific isoform of the antisense RNA COOLAIR5,11. Our work describes the dynamic partitioning of a transcriptional activator conferring plasticity in response to natural temperature fluctuations, thus enabling plants to effectively monitor seasonal progression.
Collapse
Affiliation(s)
- Pan Zhu
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Clare Lister
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
14
|
Dikaya V, El Arbi N, Rojas-Murcia N, Nardeli SM, Goretti D, Schmid M. Insights into the role of alternative splicing in plant temperature response. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab234. [PMID: 34105719 DOI: 10.1093/jxb/erab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 05/21/2023]
Abstract
Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.
Collapse
Affiliation(s)
- Varvara Dikaya
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nabila El Arbi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nelson Rojas-Murcia
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Chen M, Mei L, Wang F, Boyagane Dewayalage IKW, Yang J, Dai L, Yang G, Gao B, Cheng C, Liu Y, Zhang J, Hao G. PlantSPEAD: a web resource towards comparatively analysing stress-responsive expression of splicing-related proteins in plant. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:227-229. [PMID: 33010087 PMCID: PMC7868970 DOI: 10.1111/pbi.13486] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Affiliation(s)
- Mo‐Xian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Research and Development Center for Fine ChemicalsGuizhou UniversityGuiyangChina
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Long‐Can Mei
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhanChina
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhanChina
| | | | - Jing‐Fang Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhanChina
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Guang‐Fu Yang
- Key Laboratory of Pesticide & Chemical BiologyMinistry of EducationCollege of ChemistryCentral China Normal UniversityWuhanChina
| | - Bei Gao
- Department of BiologyHong Kong Baptist University and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinChina
| | - Chao‐Lin Cheng
- Department of BiologyHong Kong Baptist University and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinChina
| | - Ying‐Gao Liu
- State Key Laboratory of Crop BiologyCollege of Life ScienceShandong Agricultural UniversityTaianChina
| | - Jianhua Zhang
- Department of BiologyHong Kong Baptist University and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinChina
| | - Ge‐Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural BioengineeringKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Research and Development Center for Fine ChemicalsGuizhou UniversityGuiyangChina
| |
Collapse
|
16
|
Huang J, Lu X, Wu H, Xie Y, Peng Q, Gu L, Wu J, Wang Y, Reddy ASN, Dong S. Phytophthora Effectors Modulate Genome-wide Alternative Splicing of Host mRNAs to Reprogram Plant Immunity. MOLECULAR PLANT 2020; 13:1470-1484. [PMID: 32693165 DOI: 10.1016/j.molp.2020.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Alternative splicing (AS) of pre-mRNAs increases transcriptome and proteome diversity, regulates gene expression through multiple mechanisms, and plays important roles in plant development and stress responses. However, the prevalence of genome-wide plant AS changes during infection and the mechanisms by which pathogens modulate AS remain poorly understood. Here, we examined the global AS changes in tomato leaves infected with Phytophthora infestans, the infamous Irish famine pathogen. We show that more than 2000 genes exhibiting significant changes in AS are not differentially expressed, indicating that AS is a distinct layer of transcriptome reprogramming during plant-pathogen interactions. Furthermore, our results show that P. infestans subverts host immunity by repressing the AS of positive regulators of plant immunity and promoting the AS of susceptibility factors. To study the underlying mechanism, we established a luminescence-based AS reporter system in Nicotiana benthamiana to screen pathogen effectors modulating plant AS. We identified nine splicing regulatory effectors (SREs) from 87 P. infestans effectors. Further studies revealed that SRE3 physically binds U1-70K to manipulate the plant AS machinery and subsequently modulates AS-mediated plant immunity. Our study not only unveils genome-wide plant AS reprogramming during infection but also establishes a novel AS screening tool to identify SREs from a wide range of plant pathogens, providing opportunities to understand the splicing regulatory mechanisms through which pathogens subvert plant immunity.
Collapse
Affiliation(s)
- Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xinyu Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongwei Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuchen Xie
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Peng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juyou Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Anireddy S N Reddy
- Colorado State University, Program in Cell and Molecular Biology, Fort Collins, CO 80523, USA
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
17
|
Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. Engineering salinity tolerance in plants: progress and prospects. PLANTA 2020; 251:76. [PMID: 32152761 DOI: 10.1007/s00425-020-03366-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, 1053, Hungary
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, 522 213, India
| |
Collapse
|
18
|
Su W, Ye C, Zhang Y, Hao S, Li QQ. Identification of putative key genes for coastal environments and cold adaptation in mangrove Kandelia obovata through transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:191-201. [PMID: 31103657 DOI: 10.1016/j.scitotenv.2019.05.127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 05/28/2023]
Abstract
Mangrove forests are an important contributor to the coastal marine environment. They have developed unique adaptations to the harsh coastal wetland, yet their geographic distribution is limited by environmental temperature. The adaptive strategies of mangrove at the molecular level, however, have not been addressed. In the present work, transcriptome analyses were performed on different cold damaged plants of a mangrove species, Kandelia obovata. From the samples collected in the field after a cold stress, we found that distinct expression profiles of many key genes are related to extreme temperature responses. These include transcription factors such as WRKY and bHLH, and other genes encoding proteins like SnRK2, PR-1, KCS, involving in the pathways of plant hormones, plant-pathogen interactions, and long chain fatty acid synthesis. We also examined the transcriptomes of eight tissues of K. obovata to identify candidate genes involved in adaptation and development. While stress-responsive genes were globally expressed, tissue-specific genes with diverse functions might be involved in tissue development and adaptability. For examples, genes encoding CYP724B1 and ABCB1 were specifically expressed in the fruit and root, respectively. Additionally, 26 genes were identified as positively selected genes in K. obovata, six of them were found to be involved in chilling stress response, seed germination and oxidation-reduction processes, suggesting their roles in stressful environment adaptation. Together, these results shed light into the K. obovata's natural responses to cold snaps at the molecular level, and reveal a global gene expression portrait across different tissues. It also provides a transcriptome resource for further molecular ecology studies and conservation planning of this and other mangrove plants in their native and adopted environments.
Collapse
Affiliation(s)
- Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Saiqi Hao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
19
|
Identification of Genes Differentially Expressed in Response to Cold in Pisum sativum Using RNA Sequencing Analyses. PLANTS 2019; 8:plants8080288. [PMID: 31443248 PMCID: PMC6724123 DOI: 10.3390/plants8080288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.
Collapse
|
20
|
Gu J, Xia Z, Luo Y, Jiang X, Qian B, Xie H, Zhu JK, Xiong L, Zhu J, Wang ZY. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana. Nucleic Acids Res 2019; 46:1777-1792. [PMID: 29228330 PMCID: PMC5829640 DOI: 10.1093/nar/gkx1229] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5′ splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants.
Collapse
Affiliation(s)
- Jinbao Gu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Zhiqiang Xia
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Yuehua Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Bilian Qian
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jian-Kang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47906, USA.,Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liming Xiong
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Zhen-Yu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
21
|
Chen MX, Wijethunge BDIK, Zhou SM, Yang JF, Dai L, Wang SS, Chen C, Fu LJ, Zhang J, Hao GF, Yang GF. Chemical Modulation of Alternative Splicing for Molecular-Target Identification by Potential Genetic Control in Agrochemical Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5072-5084. [PMID: 30986354 DOI: 10.1021/acs.jafc.9b02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Alternative splicing (AS), the process of removing introns from pre-mRNA and the rearrangement of exons to produce several types of mature transcripts, is a remarkable step preceding protein synthesis. In particular, it has now been conclusively shown that up to ∼95% of genes are alternatively spliced to generate a complex and diverse proteome in eukaryotic organisms. Consequently, AS is one of the determinants of the functional repertoire of cells. Many studies have revealed that AS in plants can be regulated by cell type, developmental stage, environmental stress, and the circadian clock. Moreover, increasing amounts of evidence reveal that chemical compounds can affect various steps during splicing to induce major effects on plant physiology. Hence, the chemical modulation of AS can serve as a good strategy for molecular-target identification in attempts to potentially control plant genetics. However, the kind of mechanisms involved in the chemical modulation of AS that can be used in agrochemical research remain largely unknown. This review introduces recent studies describing the specific roles AS plays in plant adaptation to environmental stressors and in the regulation of development. We also discuss recent advances in small molecules that induce alterations of AS and the possibility of using this strategy in agrochemical-target identification, giving a new direction for potential genetic control in agrochemical research.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals , Guizhou University , Guiyang 550025 , PR China
- Division of Gastroenterology , Shenzhen Children's Hospital , Shenzhen 518038 , PR China
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , PR China
- School of Life Sciences and Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518063 , PR China
| | - Boyagane D I K Wijethunge
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Shao-Ming Zhou
- Division of Gastroenterology , Shenzhen Children's Hospital , Shenzhen 518038 , PR China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| | - Lei Dai
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , PR China
| | - Shan-Shan Wang
- School of Life Sciences and Shenzhen Research Institute , The Chinese University of Hong Kong , Shenzhen 518063 , PR China
| | - Chen Chen
- Department of Infectious Disease, Nanjing Second Hospital , Nanjing University of Chinese Medicine , Nanjing 210003 , PR China
| | - Li-Jun Fu
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants , Putian University , Putian , Fujian 351100 , PR China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong , PR China
| | - Ge-Fei Hao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Research and Development Center for Fine Chemicals , Guizhou University , Guiyang 550025 , PR China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry , Central China Normal University , Wuhan 430079 , PR China
| |
Collapse
|
22
|
Nakaminami K, Seki M. RNA Regulation in Plant Cold Stress Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1081:23-44. [PMID: 30288702 DOI: 10.1007/978-981-13-1244-1_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to plants, all organisms react to environmental stimuli via the perception of signals and subsequently respond through alterations of gene expression. However, genes/mRNAs are usually not the functional unit themselves, and instead, resultant protein products with individual functions result in various acquired phenotypes. In order to fully characterize the adaptive responses of plants to environmental stimuli, it is essential to determine the level of proteins, in addition to the regulation of mRNA expression. This regulatory step, which is referred to as "mRNA posttranscriptional regulation," occurs subsequent to mRNA transcription and prior to translation. Although these RNA regulatory mechanisms have been well-studied in many organisms, including plants, it is not fully understood how plants respond to environmental stimuli, such as cold stress, via these RNA regulations.A recent study described several RNA regulatory factors in relation to environmental stress responses, including plant cold stress tolerance. In this chapter, the functions of RNA regulatory factors and comprehensive analyses related to the RNA regulations involved in cold stress response are summarized, such as mRNA maturation, including capping, splicing, polyadenylation of mRNA, and the quality control system of mRNA; mRNA degradation, including the decapping step; and mRNA stabilization. In addition, the putative roles of messenger ribonucleoprotein (mRNP) granules, such as processing bodies (PBs) and stress granules (SGs), which are cytoplasmic particles, are described in relation to RNA regulations under stress conditions. These RNA regulatory systems are important for adjusting or fine-tuning and determining the final levels of mRNAs and proteins in order to adapt or respond to environmental stresses. Collectively, these new areas of study revealed that plants possess precise novel regulatory mechanisms which specifically function in the response to cold stress.
Collapse
Affiliation(s)
- Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
23
|
Philips JG, Dudley KJ, Waterhouse PM, Hellens RP. The Rapid Methylation of T-DNAs Upon Agrobacterium Inoculation in Plant Leaves. FRONTIERS IN PLANT SCIENCE 2019; 10:312. [PMID: 30930927 PMCID: PMC6428780 DOI: 10.3389/fpls.2019.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 05/10/2023]
Abstract
Agrobacterium tumefaciens has been foundational in the development of transgenic plants for both agricultural biotechnology and plant molecular research. However, the transformation efficiency and level of transgene expression obtained for any given construct can be highly variable. These inefficiencies often require screening of many lines to find one with consistent and heritable transgene expression. Transcriptional gene silencing is known to affect transgene expression, and is associated with DNA methylation, especially of cytosines in symmetric CG and CHG contexts. While the specificity, heritability and silencing-associated effects of DNA methylation of transgene sequences have been analyzed in many stably transformed plants, the methylation status of transgene sequences in the T-DNA during the transformation process has not been well-studied. Here we used agro-infiltration of the eGFP reporter gene in Nicotiana benthamiana leaves driven by either an AtEF1α-A4 or a CaMV-35S promoter to study early T-DNA methylation patterns of these promoter sequences. The T-DNA was examined by amplicon sequencing following sodium bisulfite treatment using three different sequencing platforms: Sanger sequencing, Ion Torrent PGM, and the Illumina MiSeq. Rapid DNA methylation was detectable in each promoter region just 2-3 days post-infiltration and the levels continued to rapidly accumulate over the first week, then steadily up to 21 days later. Cytosines in an asymmetric context (CHH) were the most heavily and rapidly methylated. This suggests that early T-DNA methylation may be important in determining the epigenetic and transcriptional fate of integrated transgenes. The Illumina MiSeq platform was the most sensitive and robust way of detecting and following the methylation profiles of the T-DNA promoters. The utility of the methods was then used to show a subtle but significant difference in promoter methylation during intron-mediated enhancement. In addition, the method was able to detect an increase in promoter methylation when the eGFP reporter gene was targeted by siRNAs generated by co-infiltration of a hairpin RNAi construct.
Collapse
Affiliation(s)
- Joshua G. Philips
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Joshua G. Philips,
| | - Kevin J. Dudley
- Institute for Future Environments, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Roger P. Hellens
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Cao Y, Ma L. To Splice or to Transcribe: SKIP-Mediated Environmental Fitness and Development in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1222. [PMID: 31632433 PMCID: PMC6785753 DOI: 10.3389/fpls.2019.01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/04/2019] [Indexed: 05/04/2023]
Abstract
Gene expression in eukaryotes is controlled at multiple levels, including transcriptional and post-transcriptional levels. The transcriptional regulation of gene expression is complex and includes the regulation of the initiation and elongation phases of transcription. Meanwhile, the post-transcriptional regulation of gene expression includes precursor messenger RNA (pre-mRNA) splicing, 5' capping, and 3' polyadenylation. Among these events, pre-mRNA splicing, conducted by the spliceosome, plays a key role in the regulation of gene expression, and the efficiency and precision of pre-mRNA splicing are critical for gene function. Ski-interacting protein (SKIP) is an evolutionarily conserved protein from yeast to humans. In plants, SKIP is a bifunctional regulator that works as a splicing factor as part of the spliceosome and as a transcriptional regulator via interactions with the transcriptional regulatory complex. Here, we review how the functions of SKIP as a splicing factor and a transcriptional regulator affect environmental fitness and development in plants.
Collapse
|
25
|
Catalá R, Carrasco-López C, Perea-Resa C, Hernández-Verdeja T, Salinas J. Emerging Roles of LSM Complexes in Posttranscriptional Regulation of Plant Response to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:167. [PMID: 30873189 PMCID: PMC6401655 DOI: 10.3389/fpls.2019.00167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 05/04/2023]
Abstract
It has long been assumed that the wide reprogramming of gene expression that modulates plant response to unfavorable environmental conditions is mainly controlled at the transcriptional level. A growing body of evidence, however, indicates that posttranscriptional regulatory mechanisms also play a relevant role in this control. Thus, the LSMs, a family of proteins involved in mRNA metabolism highly conserved in eukaryotes, have emerged as prominent regulators of plant tolerance to abiotic stress. Arabidopsis contains two main LSM ring-shaped heteroheptameric complexes, LSM1-7 and LSM2-8, with different subcellular localization and function. The LSM1-7 ring is part of the cytoplasmic decapping complex that regulates mRNA stability. On the other hand, the LSM2-8 complex accumulates in the nucleus to ensure appropriate levels of U6 snRNA and, therefore, correct pre-mRNA splicing. Recent studies reported unexpected results that led to a fundamental change in the assumed consideration that LSM complexes are mere components of the mRNA decapping and splicing cellular machineries. Indeed, these data have demonstrated that LSM1-7 and LSM2-8 rings operate in Arabidopsis by selecting specific RNA targets, depending on the environmental conditions. This specificity allows them to actively imposing particular gene expression patterns that fine-tune plant responses to abiotic stresses. In this review, we will summarize current and past knowledge on the role of LSM rings in modulating plant physiology, with special focus on their function in abiotic stress responses.
Collapse
|
26
|
Feng H, Li X, Chen H, Deng J, Zhang C, Liu J, Wang T, Zhang X, Dong J. GhHUB2, a ubiquitin ligase, is involved in cotton fiber development via the ubiquitin-26S proteasome pathway. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5059-5075. [PMID: 30053051 PMCID: PMC6184758 DOI: 10.1093/jxb/ery269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/12/2018] [Indexed: 05/02/2023]
Abstract
Cotton fibers, which are extremely elongated single cells of epidermal seed trichomes and have highly thickened cell walls, constitute the most important natural textile material worldwide. However, the regulation of fiber development is not well understood. Here, we report that GhHUB2, a functional homolog of AtHUB2, controls fiber elongation and secondary cell wall (SCW) deposition. GhHUB2 is ubiquitously expressed, including within fibers. Overexpression of GhHUB2 in cotton increased fiber length and SCW thickness, while RNAi knockdown of GhHUB2 resulted in shortened fibers and thinner cell walls. We found that GhHUB2 interacted with GhKNL1, a transcriptional repressor predominantly expressed in developing fibers, and that GhHUB2 ubiquitinated and degraded GhKNL1 via the ubiquitin-26S proteasome pathway. GhHUB2 negatively regulated GhKNL1 protein levels and lead to the disinhibition of genes such as GhXTH1, Gh1,3-β-G, GhCesA4, GhAGP4, GhCTL1, and GhCOBL4, thus promoting fiber elongation and enhancing SCW biosynthesis. We found that GhREV-08, a transcription factor that participates in SCW deposition and auxin signaling pathway, was a direct target of GhKNL1. In conclusion, our study uncovers a novel function of HUB2 in plants in addition to its monoubiquitination of H2B. Moreover, we provide evidence for control of the fiber development by the ubiquitin-26S proteasome pathway.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
27
|
Carrasco-López C, Hernández-Verdeja T, Perea-Resa C, Abia D, Catalá R, Salinas J. Environment-dependent regulation of spliceosome activity by the LSM2-8 complex in Arabidopsis. Nucleic Acids Res 2017; 45:7416-7431. [PMID: 28482101 PMCID: PMC5499552 DOI: 10.1093/nar/gkx375] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/25/2017] [Indexed: 11/20/2022] Open
Abstract
Spliceosome activity is tightly regulated to ensure adequate splicing in response to internal and external cues. It has been suggested that core components of the spliceosome, such as the snRNPs, would participate in the control of its activity. The experimental indications supporting this proposition, however, remain scarce, and the operating mechanisms poorly understood. Here, we present genetic and molecular evidence demonstrating that the LSM2–8 complex, the protein moiety of the U6 snRNP, regulates the spliceosome activity in Arabidopsis, and that this regulation is controlled by the environmental conditions. Our results show that the complex ensures the efficiency and accuracy of constitutive and alternative splicing of selected pre-mRNAs, depending on the conditions. Moreover, miss-splicing of most targeted pre-mRNAs leads to the generation of nonsense mediated decay signatures, indicating that the LSM2–8 complex also guarantees adequate levels of the corresponding functional transcripts. Interestingly, the selective role of the complex has relevant physiological implications since it is required for adequate plant adaptation to abiotic stresses. These findings unveil an unanticipated function for the LSM2–8 complex that represents a new layer of posttranscriptional regulation in response to external stimuli in eukaryotes.
Collapse
Affiliation(s)
- Cristian Carrasco-López
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Tamara Hernández-Verdeja
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Carlos Perea-Resa
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - David Abia
- Unidad de Bioinformática, Centro de Biología Molecular Severo Ochoa, CSIC, 28049 Madrid, Spain
| | - Rafael Catalá
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| |
Collapse
|
28
|
Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants. Int J Mol Sci 2017; 18:ijms18020432. [PMID: 28230724 PMCID: PMC5343966 DOI: 10.3390/ijms18020432] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
Gene expression can be regulated through transcriptional and post-transcriptional mechanisms. Transcription in eukaryotes produces pre-mRNA molecules, which are processed and spliced post-transcriptionally to create translatable mRNAs. More than one mRNA may be produced from a single pre-mRNA by alternative splicing (AS); thus, AS serves to diversify an organism’s transcriptome and proteome. Previous studies of gene expression in plants have focused on the role of transcriptional regulation in response to environmental changes. However, recent data suggest that post-transcriptional regulation, especially AS, is necessary for plants to adapt to a changing environment. In this review, we summarize recent advances in our understanding of AS during plant development in response to environmental changes. We suggest that alternative gene splicing is a novel means of regulating the environmental fitness of plants.
Collapse
|
29
|
Wong MM, Chong GL, Verslues PE. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol Biol 2017; 1631:3-21. [PMID: 28735388 DOI: 10.1007/978-1-4939-7136-7_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There have been great research advances in epigenetics, RNA splicing, and mRNA processing over recent years. In parallel, there have been many advances in abiotic stress and Abscisic Acid (ABA) signaling. Here we overview studies that have examined stress-induced changes in the epigenome and RNA processing as well as cases where disrupting these processes changes the plant response to abiotic stress. We also highlight some examples where specific connections of stress or ABA signaling to epigenetics or RNA processing have been found. By implication, this also points out cases where such mechanistic connections are likely to exist but are yet to be characterized. In the absence of such specific connections to stress signaling, it should be kept in mind that stress sensitivity phenotypes of some epigenetic or RNA processing mutants maybe the result of indirect, pleiotropic effects and thus may perhaps not indicate a direct function in stress acclimation.
Collapse
Affiliation(s)
- Min May Wong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Geeng Loo Chong
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Academia Road, Taipei, 11529, Taiwan. .,Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
30
|
Abstract
Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.
Collapse
|