1
|
Kong Y, Zheng Y. Complex Signaling Networks Underlying Blue-Light-Mediated Floral Transition in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1533. [PMID: 40431098 PMCID: PMC12115001 DOI: 10.3390/plants14101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Blue light (BL) is important in regulating floral transition. In a controlled environment production system, BL can be manipulated easily and precisely in aspects like peak wavelength, intensity, duration, and co-action with other wavelengths. However, the results of previous studies about BL-mediated floral transition are inconsistent, which implies that an in-depth critical examination of the relevant physiological mechanisms is necessary. This review consolidates the recent findings on the role of BL in mediating floral transition not only in model plants, such as Arabidopsis thaliana, but also in crops, especially horticultural crops. The photoreceptors, floral integrator proteins, signal pathways, and key network components involved in BL-mediated floral transition are critically reviewed. This review provides possible explanations for the contrasting results of previous studies on BL-mediated flowering; it provides valuable information to explain and develop BL manipulation strategies for mediating flowering, especially in horticultural plants. The review also identifies the knowledge gaps and outlines future directions for research in related fields.
Collapse
Affiliation(s)
| | - Youbin Zheng
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
2
|
Cheng X, Lei S, Li J, Tian B, Li C, Cao J, Lu J, Ma C, Chang C, Zhang H. In silico analysis of the wheat BBX gene family and identification of candidate genes for seed dormancy and germination. BMC PLANT BIOLOGY 2024; 24:334. [PMID: 38664603 PMCID: PMC11044412 DOI: 10.1186/s12870-024-04977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND B-box (BBX) proteins are a type of zinc finger proteins containing one or two B-box domains. They play important roles in development and diverse stress responses of plants, yet their roles in wheat remain unclear. RESULTS In this study, 96 BBX genes were identified in the wheat genome and classified into five subfamilies. Subcellular localization prediction results showed that 68 TaBBXs were localized in the nucleus. Protein interaction prediction analysis indicated that interaction was one way that these proteins exerted their functions. Promoter analysis indicated that TaBBXs may play important roles in light signal, hormone, and stress responses. qRT-PCR analysis revealed that 14 TaBBXs were highly expressed in seeds compared with other tissues. These were probably involved in seed dormancy and germination, and their expression patterns were investigated during dormancy acquisition and release in the seeds of wheat varieties Jing 411 and Hongmangchun 21, showing significant differences in seed dormancy and germination phenotypes. Subcellular localization analysis confirmed that the three candidates TaBBX2-2 A, TaBBX4-2 A, and TaBBX11-2D were nuclear proteins. Transcriptional self-activation experiments further demonstrated that TaBBX4-2A was transcriptionally active, but TaBBX2-2A and TaBBX11-2D were not. Protein interaction analysis revealed that TaBBX2-2A, TaBBX4-2A, and TaBBX11-2D had no interaction with each other, while TaBBX2-2A and TaBBX11-2D interacted with each other, indicating that TaBBX4-2A may regulate seed dormancy and germination by transcriptional regulation, and TaBBX2-2A and TaBBX11-2D may regulate seed dormancy and germination by forming a homologous complex. CONCLUSIONS In this study, the wheat BBX gene family was identified and characterized at the genomic level by bioinformatics analysis. These observations provide a theoretical basis for future studies on the functions of BBXs in wheat and other species.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuying Lei
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jin Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingbing Tian
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chunxiu Li
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jiajia Cao
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jie Lu
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chuanxi Ma
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Cheng Chang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| | - Haiping Zhang
- College of Agronomy, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
3
|
Wang P, Ma L, Li D, Zhang B, Zhou T, Zhou X, Xing Y. Fine mapping of the panicle length QTL qPL5 in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:6. [PMID: 38261843 PMCID: PMC10794681 DOI: 10.1007/s11032-024-01443-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024]
Abstract
Panicle length is a crucial trait tightly associated with spikelets per panicle and grain yield in rice. To dissect the genetic basis of panicle length, a population of 161 recombinant inbred lines (RILs) was developed from the cross between an aus variety Chuan 7 (C7) and a tropical Geng variety Haoboka (HBK). C7 has a panicle length of 30 cm, 7 cm longer than that of HBK, and the panicle length was normally distributed in the RIL population. A total of six quantitative trait loci (QTLs) for panicle length were identified, and single QTLs explained the phenotypic variance from 4.9 to 18.1%. Among them, three QTLs were mapped to the regions harbored sd1, DLT, and Ehd1, respectively. To validate the genetic effect of a minor QTL qPL5, a near-isogenic F2 (NIF2) population segregated at qPL5 was developed. Interestingly, panicle length displayed bimodal distribution, and heading date also exhibited significant variation in the NIF2 population. qPL5 accounted for 66.5% of the panicle length variance. The C7 allele at qPL5 increased panicle length by 2.4 cm and promoted heading date by 5 days. Finally, qPL5 was narrowed down to an 80-kb region flanked by markers M2197 and M2205 using a large NIF2 population of 7600 plants. LOC_Os05g37540, encoding a phytochrome signal protein whose homolog in Arabidopsis enlarges panicle length, is regarded as the candidate gene because a single-nucleotide mutation (C1099T) caused a premature stop codon in HBK. The characterization of qPL5 with enlarging panicle length but promoting heading date makes its great value in breeding early mature varieties without yield penalty in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01443-2.
Collapse
Affiliation(s)
- Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Daoyang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tianhao Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
4
|
Wang W, Chen W, Wang J. FRIZZLE PANICLE (FZP) regulates rice spikelets development through modulating cytokinin metabolism. BMC PLANT BIOLOGY 2023; 23:650. [PMID: 38102566 PMCID: PMC10724965 DOI: 10.1186/s12870-023-04671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The number of grains per panicle is an important factor in determining rice yield. The DST-OsCKX2 module has been demonstrated to regulate panicle development in rice by controlling cytokinin content. However, to date, how the function of DST-OsCKX2 module is regulated during panicle development remains obscure. RESULT In this study, the ABNORMAL PANICLE 1 (ABP1), a severely allele of FRIZZY PANICLE (FZP), exhibits abnormal spikelets morphology. We show that FZP can repress the expression of DST via directly binding to its promotor. Consistently, the expression level of OsCKX2 increased and the cytokinin content decreased in the fzp mutant, suggesting that the FZP acts upstream of the DST-OsCKX2 to maintain cytokinin homeostasis in the inflorescence meristem. CONCLUSIONS Our results indicate that FZP plays an important role in regulating spikelet development and grain number through mediating cytokinin metabolism.
Collapse
Affiliation(s)
- Wei Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wenqiang Chen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junmin Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
5
|
Song J, Sajad S, Xia D, Jiang S. Identification of F-box gene family in Brassica oleracea and expression analysis in response to low-temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107717. [PMID: 37150011 DOI: 10.1016/j.plaphy.2023.107717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/09/2023]
Abstract
Unfavorable climatic conditions, such as low temperatures, often hinder the growth and production of crops worldwide. The F-box protein-encoding gene family performs an essential role in plant stress resistance. However, a comprehensive analysis of the F-box gene family in cabbage (Brassica oleracea var capitata L.) has not been reported yet. In this study, genome-wide characterization of F-box proteins in cabbage yielded 303 BoFBX genes and 224 BoFBX genes unevenly distributed on 9 chromosomes of cabbage. Phylogenetic analysis of 303 BoFBX genes was classified into nine distinct subfamily groups (GI-GIX). Analysis of the gene structure of BoFBX genes indicated that most genes within the same clade are highly conserved. In addition, tissue-specific expression analysis revealed that six F-box genes in cabbage showed the highest expression in rosette leaves, followed by roots and stems and the lowest expression was observed in the BoFBX156 gene. In contrast, the expression of the other five genes, BoFBX100, BoFBX117, BoFBX136, BoFBX137 and BoFBX213 was observed to be upregulated in response to low-temperature stress. Moreover, we found that the expression level of the BoFBX gene in the cold-tolerant cultivar "ZG" was higher than that in cold-sensitive "YC" with the extension of stress duration, while expression levels of each gene in "ZG" were higher than "YC" at 24 h. Knowledge of the various functions provided by BoFBXs genes and their expression patterns provides a firm theoretical foundation for explaining the functions of BoFBXs, thereby contributing to the molecular breeding process of cabbage.
Collapse
Affiliation(s)
- Jianghua Song
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China.
| | - Shoukat Sajad
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| | - Dongjian Xia
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| | - Shuhan Jiang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, 230036, Hefei, Anhui, China
| |
Collapse
|
6
|
Krishnamurthy P, Kumar PP. Rare alleles from tolerant cultivars are useful for generating salt-tolerant rice. MOLECULAR PLANT 2023; 16:306-307. [PMID: 36503864 DOI: 10.1016/j.molp.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Pannaga Krishnamurthy
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences and Research Centre on Sustainable Urban Farming, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
7
|
Xiang YH, Yu JJ, Liao B, Shan JX, Ye WW, Dong NQ, Guo T, Kan Y, Zhang H, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Lin HX. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. MOLECULAR PLANT 2022; 15:1908-1930. [PMID: 36303433 DOI: 10.1016/j.molp.2022.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/09/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Ongoing soil salinization drastically threatens crop growth, development, and yield worldwide. It is therefore crucial that we improve salt tolerance in rice by exploiting natural genetic variation. However, many salt-responsive genes confer undesirable phenotypes and therefore cannot be effectively applied to practical agricultural production. In this study, we identified a quantitative trait locus for salt tolerance from the African rice species Oryza glaberrima and named it as Salt Tolerance and Heading Date 1 (STH1). We found that STH1 regulates fatty acid metabolic homeostasis, probably by catalyzing the hydrolytic degradation of fatty acids, which contributes to salt tolerance. Meanwhile, we demonstrated that STH1 forms a protein complex with D3 and a vital regulatory factor in salt tolerance, OsHAL3, to regulate the protein abundance of OsHAL3 via the 26S proteasome pathway. Furthermore, we revealed that STH1 also serves as a co-activator with the floral integrator gene Heading date 1 to balance the expression of the florigen gene Heading date 3a under different circumstances, thus coordinating the regulation of salt tolerance and heading date. Notably, the allele of STH1 associated with enhanced salt tolerance and high yield is found in some African rice accessions but barely in Asian cultivars. Introgression of the STH1HP46 allele from African rice into modern rice cultivars is a desirable approach for boosting grain yield under salt stress. Collectively, our discoveries not only provide conceptual advances on the mechanisms of salt tolerance and synergetic regulation between salt tolerance and flowering time but also offer potential strategies to overcome the challenges resulted from increasingly serious soil salinization that many crops are facing.
Collapse
Affiliation(s)
- You-Huang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Jun Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hai Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Chao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences and Collaborative Innovation Center of Genetics & Development, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; University of the Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
8
|
Wang Z, Zhang B, Chen Z, Wu M, Chao D, Wei Q, Xin Y, Li L, Ming Z, Xia J. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. THE PLANT CELL 2022; 34:2948-2968. [PMID: 35543496 PMCID: PMC9338812 DOI: 10.1093/plcell/koac140] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/16/2022] [Indexed: 05/14/2023]
Abstract
Plants have evolved a lignin-based Casparian strip (CS) in roots that restricts passive diffusion of mineral elements from the soil to the stele. However, the molecular mechanisms underlying CS formation in rice (Oryza sativa), which contains a CS at both the exodermis and endodermis, are poorly understood. Here, we demonstrate that CS formation at the rice endodermis is redundantly regulated by three MYELOBLASTOSIS (MYB) transcription factors, OsMYB36a, OsMYB36b, and OsMYB36c, that are highly expressed in root tips. Knockout of all three genes resulted in a complete absence of CS at the endodermis and retarded plant growth in hydroponic conditions and in soil. Compared with the wild-type, the triple mutants showed higher calcium (Ca) levels and lower Mn, Fe, Zn, Cu, and Cd levels in shoots. High Ca supply further inhibited mutant growth and increased Ca levels in shoots. Transcriptome analysis identified 1,093 downstream genes regulated by OsMYB36a/b/c, including the key CS formation gene OsCASP1 and other genes that function in CS formation at the endodermis. Three OsMYB36s regulate OsCASP1 and OsESB1 expression by directly binding to MYB-binding motifs in their promoters. Our findings thus provide important insights into the mechanism of CS formation at the endodermis and the selective uptake of mineral elements in roots.
Collapse
Affiliation(s)
| | | | - Zhiwei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Mingjuan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dong Chao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Qiuxing Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yafeng Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Longying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | | |
Collapse
|
9
|
Liu H, Zhang Z, Yan W, Xing Y. Meeting partners at the right time promises varied flowering. MOLECULAR PLANT 2022; 15:1092-1094. [PMID: 35754175 DOI: 10.1016/j.molp.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hongshan Laboratory, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
10
|
Yang J, Song J, Jeong BR. Low-Intensity Blue Light Supplemented during Photoperiod in Controlled Environment Induces Flowering and Antioxidant Production in Kalanchoe. Antioxidants (Basel) 2022; 11:811. [PMID: 35624675 PMCID: PMC9137757 DOI: 10.3390/antiox11050811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Kalanchoe (Kalanchoe blossfeldiana) is a qualitative short-day plant with a high aesthetic value. When the night length is less than a specified cultivar-dependent critical value, however, it does not develop flowers. This study investigated the effects of low-intensity supplementary or night interrupting (NI) blue (B) light on the plant performance and flower induction in kalanchoe 'Rudak'. During the photoperiod in a closed-type plant factory with day/night temperatures of 23 °C/18 °C, white (W) LEDs were utilized to produce a photosynthetic photon flux density (PPFD) of 300 μmol m-2 s-1, and B LEDs were used to give supplementary/NI light at a PPFD of 10 μmol m-2 s-1. The control plants were exposed to a 10-h short day (SD, positive control) or a 13-h long day (LD, negative control) treatment without any B light. The B light was used for 4 h either (1) to supplement the W LEDs at the end of the SD (SD + 4B) and LD (LD + 4B), or (2) to provide night interruption (NI) in the SD (SD + NI-4B) and LD (LD + NI-4B). The LD + 4B and LD + NI-4B significantly enhanced plant growth and development, followed by the SD + 4B and SD + NI-4B treatments. In addition, the photosynthesis, physiological parameters, and activity of antioxidant systems were improved in those treatments. Except in the LD and LD + NI-4B, all plants flowered. It is noteworthy that kalanchoe 'Rudak' flowered in the LD + 4B treatment and induced the greatest number of flowers, followed by SD + NI-4B and SD + 4B. Plants grown in the LD + 4B treatment had the highest expression levels of certain monitored genes related to flowering. The results indicate that a 4-h supplementation of B light during the photoperiod in both the SD and LD treatments increased flower bud formation, promoted flowering, and enhanced plant performance. Kalanchoe 'Rudak' flowered especially well in the LD + 4B, presenting a possibility of practically inducing flowering in long-day seasons with B light application.
Collapse
Affiliation(s)
- Jingli Yang
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
| | - Jinnan Song
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Korea; (J.Y.); (J.S.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
11
|
Sun K, Huang M, Zong W, Xiao D, Lei C, Luo Y, Song Y, Li S, Hao Y, Luo W, Xu B, Guo X, Wei G, Chen L, Liu YG, Guo J. Hd1, Ghd7, and DTH8 synergistically determine rice heading date and yield-related agronomic traits. J Genet Genomics 2022; 49:437-447. [DOI: 10.1016/j.jgg.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
|
12
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
13
|
Sharma S, Sanyal SK, Sushmita K, Chauhan M, Sharma A, Anirudhan G, Veetil SK, Kateriya S. Modulation of Phototropin Signalosome with Artificial Illumination Holds Great Potential in the Development of Climate-Smart Crops. Curr Genomics 2021; 22:181-213. [PMID: 34975290 PMCID: PMC8640849 DOI: 10.2174/1389202922666210412104817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
Changes in environmental conditions like temperature and light critically influence crop production. To deal with these changes, plants possess various photoreceptors such as Phototropin (PHOT), Phytochrome (PHY), Cryptochrome (CRY), and UVR8 that work synergistically as sensor and stress sensing receptors to different external cues. PHOTs are capable of regulating several functions like growth and development, chloroplast relocation, thermomorphogenesis, metabolite accumulation, stomatal opening, and phototropism in plants. PHOT plays a pivotal role in overcoming the damage caused by excess light and other environmental stresses (heat, cold, and salinity) and biotic stress. The crosstalk between photoreceptors and phytohormones contributes to plant growth, seed germination, photo-protection, flowering, phototropism, and stomatal opening. Molecular genetic studies using gene targeting and synthetic biology approaches have revealed the potential role of different photoreceptor genes in the manipulation of various beneficial agronomic traits. Overexpression of PHOT2 in Fragaria ananassa leads to the increase in anthocyanin content in its leaves and fruits. Artificial illumination with blue light alone and in combination with red light influence the growth, yield, and secondary metabolite production in many plants, while in algal species, it affects growth, chlorophyll content, lipid production and also increases its bioremediation efficiency. Artificial illumination alters the morphological, developmental, and physiological characteristics of agronomic crops and algal species. This review focuses on PHOT modulated signalosome and artificial illumination-based photo-biotechnological approaches for the development of climate-smart crops.
Collapse
Affiliation(s)
- Sunita Sharma
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sibaji K. Sanyal
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kumari Sushmita
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manisha Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Amit Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi-110025, India
| | - Gireesh Anirudhan
- Integrated Science Education and Research Centre (ISERC), Institute of Science (Siksha Bhavana), Visva Bharati (A Central University), Santiniketan (PO), West Bengal, 731235, India
| | - Sindhu K. Veetil
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Lab of Optobiology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Zhou S, Zhu S, Cui S, Hou H, Wu H, Hao B, Cai L, Xu Z, Liu L, Jiang L, Wang H, Wan J. Transcriptional and post-transcriptional regulation of heading date in rice. THE NEW PHYTOLOGIST 2021; 230:943-956. [PMID: 33341945 PMCID: PMC8048436 DOI: 10.1111/nph.17158] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Rice is a facultative short day (SD) plant. In addition to serving as a model plant for molecular genetic studies of monocots, rice is a staple crop for about half of the world's population. Heading date is a critical agronomic trait, and many genes controlling heading date have been cloned over the last 2 decades. The mechanism of flowering in rice from recognition of day length by leaves to floral activation in the shoot apical meristem has been extensively studied. In this review, we summarise current progress on transcriptional and post-transcriptional regulation of heading date in rice, with emphasis on post-translational modifications of key regulators, including Heading date 1 (Hd1), Early heading date 1 (Ehd1), Grain number, plant height, and heading date7 (Ghd7). The contribution of heading date genes to heterosis and the expansion of rice cultivation areas from low-latitude to high-latitude regions are also discussed. To overcome the limitations of diverse genetic backgrounds used in heading date studies and to gain a clearer understanding of flowering in rice, we propose a systematic collection of genetic resources in a common genetic background. Strategies in breeding adapted cultivars by rational design are also discussed.
Collapse
Affiliation(s)
- Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Haigang Hou
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Haoqin Wu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Benyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Liang Cai
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Zhuang Xu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
15
|
Zong W, Ren D, Huang M, Sun K, Feng J, Zhao J, Xiao D, Xie W, Liu S, Zhang H, Qiu R, Tang W, Yang R, Chen H, Xie X, Chen L, Liu Y, Guo J. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. THE NEW PHYTOLOGIST 2021; 229:1635-1649. [PMID: 33089895 PMCID: PMC7821112 DOI: 10.1111/nph.16946] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/05/2020] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa) is a short-day (SD) plant originally having strong photoperiod sensitivity (PS), with SDs promoting and long days (LDs) suppressing flowering. Although the evolution of PS in rice has been extensively studied, there are few studies that combine the genetic effects and underlying mechanism of different PS gene combinations with variations in PS. We created a set of isogenic lines among the core PS-flowering genes Hd1, Ghd7 and DTH8 using CRISPR mutagenesis, to systematically dissect their genetic relationships under different day-lengths. We investigated their monogenic, digenic, and trigenic effects on target gene regulation and PS variation. We found that Hd1 and Ghd7 have the primary functions for promoting and repressing flowering, respectively, regardless of day-length. However, under LD conditions, Hd1 promotes Ghd7 expression and is recruited by Ghd7 and/or DTH8 to form repressive complexes that collaboratively suppress the Ehd1-Hd3a/RFT1 pathway to block heading, but under SD conditions Hd1 competes with the complexes to promote Hd3a/RFT1 expression, playing a tradeoff relationship with PS flowering. Natural allelic variations of Hd1, Ghd7 and DTH8 in rice populations have resulted in various PS performances. Our findings reveal that rice PS flowering is controlled by crosstalk of two modules - Hd1-Hd3a/RFT1 in SD conditions and (Hd1/Ghd7/DTH8)-Ehd1-Hd3a/RFT1 in LD conditions - and the divergences of these genes provide the basis for rice adaptation to broad regions.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Ding Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Minghui Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Jinglei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Wenhao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Shiqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Han Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Rong Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Wenjing Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Ruqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Hongyi Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| |
Collapse
|
16
|
Xiang XJ, Sun LP, Yu P, Yang ZF, Zhang PP, Zhang YX, Wu WX, Chen DB, Zhan XD, Khan RM, Abbas A, Cheng SH, Cao LY. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:453-471. [PMID: 33089345 DOI: 10.1007/s00122-020-03706-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.
Collapse
Affiliation(s)
- Xiao-Jiao Xiang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Ping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zheng-Fu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei-Pei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying-Xin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Wei-Xun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Dai-Bo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Xiao-Deng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Riaz-Muhammad Khan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shi-Hua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Li-Yong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
17
|
Yang S, Zhang F, Wang Y, Xue H, Jiang Q, Shi J, Dai H, Zhang Z, Li L, He P, Li Y, Ma Y. MdHAL3, a 4'-phosphopantothenoylcysteine decarboxylase, is involved in the salt tolerance of autotetraploid apple. PLANT CELL REPORTS 2020; 39:1479-1491. [PMID: 32761275 DOI: 10.1007/s00299-020-02576-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
MdHAL3 has PPCDC activity and is involved in the salt tolerance of autotetraploid apple. Apple (Malus × domestica) is the most widely planted fruit tree species worldwide. However, the growth and development of apple have been increasingly affected by abiotic stress, such as high salinity. In our previous study, RNA sequencing (RNA-seq) analysis revealed that the expression level of the MdHAL3 gene was significantly upregulated in the autotetraploid apple cultivar Hanfu. In the present study, we first isolated HAL3, whose product was shown to exert 4'-phosphopantothenoylcysteine decarboxylase (PPCDC) activity, from apple. MdHAL3 was expressed in all organs of apple, and its expression was rapidly induced by salt stress. The MdHAL3 protein was localized to the cytomembrane and cytoplasm. Five MdHAL3 overexpression (OE) lines and five MdHAL3-RNAi apple lines were obtained. We found that MdHAL3 enhanced the salt stress tolerance of apple and that the OE plants rooted more easily than the wild-type (WT) plants. The coenzyme A (CoA) content in the leaves of the OE plants was greater than that in the leaves of the WT plants, and the CoA content in the MdHAL3-RNAi plants was lower than that in the WT plants. Taken together, our findings indicate that MdHAL3 plays an essential role in the response to salt stress in apple.
Collapse
Affiliation(s)
- Shuang Yang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Feng Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yangshu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hao Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Qiu Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Jiajun Shi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Linguang Li
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, People's Republic of China
| | - Ping He
- Shandong Institute of Pomology, Tai'an, Shandong, 271000, People's Republic of China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, People's Republic of China
| | - Yue Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
18
|
Song Z, Bian Y, Liu J, Sun Y, Xu D. B-box proteins: Pivotal players in light-mediated development in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1293-1309. [PMID: 32237198 DOI: 10.1111/jipb.12935] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Light signals mediate a number of physiological and developmental processes in plants, such as flowering, photomorphogenesis, and pigment accumulation. Emerging evidence has revealed that a group of B-box proteins (BBXs) function as central players in these light-mediated developmental processes. B-box proteins are a class of zinc-coordinated transcription factors or regulators that not only directly mediate the transcription of target genes but also interact with various other factors to create a complex regulatory network involved in the precise control of plant growth and development. This review summarizes and highlights the recent findings concerning the critical regulatory functions of BBXs in photoperiodic flowering, light signal transduction and light-induced pigment accumulation and their molecular modes of action at the transcriptional and post-translational levels in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
19
|
Li GZ, Li HX, Xu MJ, Wang PF, Xiao XH, Kang GZ. Functional characterization and regulatory mechanism of wheat CPK34 kinase in response to drought stress. BMC Genomics 2020; 21:577. [PMID: 32831009 PMCID: PMC7444251 DOI: 10.1186/s12864-020-06985-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Drought is one of the most adverse environmental factors limiting crop productions and it is important to identify key genetic determinants for food safety. Calcium-dependent protein kinases (CPKs) are known to be involved in plant growth, development, and environmental stresses. However, biological functions and regulatory mechanisms of many plant CPKs have not been explored. In our previous study, abundance of the wheat CPK34 (TaCPK34) protein was remarkably upregulated in wheat plants suffering from drought stress, inferring that it could be involved in this stress. Therefore, here we further detected its function and mechanism in response to drought stress. RESULTS Transcripts of the TaCPK34 gene were significantly induced after PEG-stimulated water deficiency (20% PEG6000) or 100 μM abscisic acid (ABA) treatments. The TaCPK34 gene was transiently silenced in wheat genome by using barley stripe mosaic virus-induced silencing (BSMV-VIGS) method. After 14 days of drought stress, the transiently TaCPK34-silenced wheat seedlings showed more sensitivity compared with control, and the plant biomasses and relative water contents significantly decreased, whereas soluble sugar and MDA contents increased. The iTRAQ-based quantitative proteomics was employed to measure the protein expression profiles in leaves of the transiently TaCPK34-silenced wheat plants after drought stress. There were 6103 proteins identified, of these, 51 proteins exhibited significantly altered abundance, they were involved in diverse function. And sequence analysis on the promoters of genes, which encoded the above identified proteins, indicated that some promoters harbored some ABA-responsive elements. We determined the interactions between TaCPK34 and three identified proteins by using bimolecular fluorescent complementation (BiFC) method and our data indicated that TaCPK34directly interacted with the glutathione S-transferase 1 and prx113, respectively. CONCLUSIONS Our study suggested that the TaCPK34 gene played positive roles in wheat response to drought stress through directly or indirectly regulating the expression of ABA-dependent manner genes, which were encoding identified proteins from iTRAQ-based quantitative proteomics. And it could be used as one potential gene to develop crop cultivars with improved drought tolerance.
Collapse
Affiliation(s)
- Ge-Zi Li
- National Engineering Research Centre for Wheat, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Han-Xiao Li
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Meng-Jun Xu
- National Engineering Research Centre for Wheat, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Peng-Fei Wang
- National Engineering Research Centre for Wheat, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Xiang-Hong Xiao
- National Engineering Research Centre for Wheat, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, Henan Province, People's Republic of China
| | - Guo-Zhang Kang
- National Engineering Research Centre for Wheat, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, Henan Province, People's Republic of China. .,National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzihu College District, Zhengzhou, 450046, Henan Province, People's Republic of China.
| |
Collapse
|
20
|
Liu H, Zhou X, Li Q, Wang L, Xing Y. CCT domain-containing genes in cereal crops: flowering time and beyond. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1385-1396. [PMID: 32006055 DOI: 10.1007/s00122-020-03554-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
The review summarizes the functions of the plant special transcription factors CCT family genes in multiple traits and discusses the molecular breeding strategies with CCT family genes in the future. Plants integrate circadian clock and external signals such as temperature and photoperiod to synchronize flowering with seasonal environmental changes. This process makes cereal crops including short-day crops, such as rice and maize, and long-day crops, such as wheat and barley, better adapt to varied growth zones from temperate to tropical regions. CCT family genes involve circadian clock and photoperiodic flowering pathways and help plants set a suitable flowering time to produce offspring. Beyond the flowering time, CCT family genes in cereal crops are associated with biomass and grain yield. Moreover, recent studies showed that they also associate with photosynthesis, nutrition use efficiency and stress tolerance. Here, we systematically review the progress in functional characterization of CCT family genes in flowering, geographical adaptation and grain yield formation, raise the core questions related to their molecular mechanisms and discuss how to practice them in genetic improvement in cereal crops by combining gene diagnosis and top-level design.
Collapse
Affiliation(s)
- Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Qiuping Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
21
|
Yang Z, Sun L, Zhang P, Zhang Y, Yu P, Liu L, Abbas A, Xiang X, Wu W, Zhan X, Cao L, Cheng S. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:844-861. [PMID: 31021015 PMCID: PMC6852570 DOI: 10.1111/tpj.14365] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice. The tip3 mutant displayed smaller and pale yellow anthers without mature pollen grains, abnormal Ubisch body morphology, no pollen wall formation, as well as delayed tapetum degeneration. Map-based cloning demonstrated that TIP3 encodes a conserved PHD-finger protein and further study confirmed that TIP3 functioned as a transcription factor with transcriptional activation activity. TIP3 is preferentially expressed in the tapetum and microspores during anther development. Moreover, TIP3 can physically interact with TDR, which is a key component of the transcriptional cascade in regulating tapetum development and pollen wall formation. Furthermore, disruption of TIP3 changed the expression of several genes involved in tapetum development and degradation, biosynthesis and transport of lipid monomers of sporopollenin in tip3 mutant. Taken together, our results revealed an unprecedented role for TIP3 in regulating Ubisch bodies and pollen exine formation, and presents a potential tool to manipulate male fertility for hybrid rice breeding.
Collapse
Affiliation(s)
- Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Ling Liu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| |
Collapse
|
22
|
Zhang ZH, Zhu YJ, Wang SL, Fan YY, Zhuang JY. Importance of the Interaction between Heading Date Genes Hd1 and Ghd7 for Controlling Yield Traits in Rice. Int J Mol Sci 2019; 20:ijms20030516. [PMID: 30691093 PMCID: PMC6387254 DOI: 10.3390/ijms20030516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Appropriate flowering time is crucial for successful grain production, which relies on not only the action of individual heading date genes, but also the gene-by-gene interactions. In this study, influences of interaction between Hd1 and Ghd7 on flowering time and yield traits were analyzed using near isogenic lines derived from a cross between indica rice cultivars ZS97 and MY46. In the non-functional ghd7ZS97 background, the functional Hd1ZS97 allele promoted flowering under both the natural short-day (NSD) conditions and natural long-day (NLD) conditions. In the functional Ghd7MY46 background, Hd1ZS97 remained to promote flowering under NSD conditions, but repressed flowering under NLD conditions. For Ghd7, the functional Ghd7MY46 allele repressed flowering under both conditions, which was enhanced in the functional Hd1ZS97 background under NLD conditions. With delayed flowering, spikelet number and grain weight increased under both conditions, but spikelet fertility and panicle number fluctuated. Rice lines carrying non-functional hd1MY46 and functional Ghd7MY46 alleles had the highest grain yield under both conditions. These results indicate that longer growth duration for a larger use of available temperature and light does not always result in higher grain production. An optimum heading date gene combination needs to be carefully selected for maximizing grain yield in rice.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yu-Jun Zhu
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shi-Lin Wang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ye-Yang Fan
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Jie-Yun Zhuang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
23
|
Chen SH, Zhou LJ, Xu P, Xue HW. SPOC domain-containing protein Leaf inclination3 interacts with LIP1 to regulate rice leaf inclination through auxin signaling. PLoS Genet 2018; 14:e1007829. [PMID: 30496185 PMCID: PMC6289470 DOI: 10.1371/journal.pgen.1007829] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/11/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022] Open
Abstract
Leaf angle is an important agronomic trait and influences crop architecture and yield. Studies have demonstrated the roles of phytohormones, particularly auxin and brassinosteroids, and various factors in controlling leaf inclination. However, the underlying mechanism especially the upstream regulatory networks still need being clarified. Here we report the functional characterization of rice leaf inclination3 (LC3), a SPOC domain-containing transcription suppressor, in regulating leaf inclination through interacting with LIP1 (LC3-interacting protein 1), a HIT zinc finger domain-containing protein. LC3 deficiency results in increased leaf inclination and enhanced expressions of OsIAA12 and OsGH3.2. Being consistent, transgenic plants with OsIAA12 overexpression or deficiency of OsARF17 which interacts with OsIAA12 do present enlarged leaf inclination. LIP1 directly binds to promoter regions of OsIAA12 and OsGH3.2, and interacts with LC3 to synergistically suppress auxin signaling. Our study demonstrate the distinct effects of IAA12-ARF17 interactions in leaf inclination regulation, and provide informative clues to elucidate the functional mechanism of SPOC domain-containing transcription suppressor and fine-controlled network of lamina joint development by LC3-regulated auxin homeostasis and auxin signaling through.
Collapse
Affiliation(s)
- Su-Hui Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Function of the ERFL1a Transcription Factor in Wheat Responses to Water Deficiency. Int J Mol Sci 2018; 19:ijms19051465. [PMID: 29762476 PMCID: PMC5983727 DOI: 10.3390/ijms19051465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/05/2018] [Accepted: 05/09/2018] [Indexed: 11/17/2022] Open
Abstract
The APETALA2/ethylene response factor (AP2/ERF) superfamily is involved in the responses of plants to biotic and abiotic stresses; however, the functions and mechanisms of some members of this family in plants are unclear. In our previous study, expression of TaERFL1a, a member of the AP2/ERF family, was remarkably induced in wheat seedlings suffering freezing stress. In this study, we show that its expression was rapidly upregulated in response to salt, cold, and water deficiency, suggesting roles in the responses to abiotic stresses. Further, transient barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) resulted in significantly reduced tolerance to 20% PEG6000-stimulated water deficiency. Subcellular localization and transcriptional activation assays separately showed that TaERFL1a was targeted to the nucleus and possessed transcriptional activation activity. Yeast two-hybrid library screening identified six interacting proteins, and of these, the interactions between TaERFL1a and TaSGT1, and TaERFL1a and TaDAD2 proteins were further confirmed by yeast co-transformation and bimolecular fluorescent complementation (BiFC). Collectively, our results suggest that TaERFL1a is a stress-responsive transcription factor, which could be functionally related to proteins involved in the abiotic stress responses of plants.
Collapse
|
25
|
E Z, Li T, Zhang H, Liu Z, Deng H, Sharma S, Wei X, Wang L, Niu B, Chen C. A group of nuclear factor Y transcription factors are sub-functionalized during endosperm development in monocots. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2495-2510. [PMID: 29514259 PMCID: PMC5920288 DOI: 10.1093/jxb/ery087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/23/2018] [Indexed: 05/18/2023]
Abstract
Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor that consists of three subunits, NF-YA, NF-YB, and NF-YC. Gene functions of NF-Ys during endosperm development are not well understood. In this study, we identified eight rice NF-Y-encoding genes, namely OsNF-YA8, OsNF-YB1,9, and OsNF-YC8,9,10,11,12, that are predominantly expressed in the endosperm. Interestingly, the close homologs of these OsNF-Ys are present only in monocot species and are also preferentially expressed in the endosperm, suggesting that they have roles in the regulation of endosperm development. A systemic analysis of interactions between rice endosperm-preferential NF-Ys in yeast revealed that OsNF-YBs and OsNF-YCs could interact with each other. We also found that the endosperm-preferential OsNF-YBs and OsNF-YCs could interact with some ethylene response factors (ERFs) of rice. Unlike OsNF-YC8,9,10, the members of OsNF-YB1,9 or OsNF-YC 11,12 showed no transcriptional activation when present alone. However, they displayed functional activity while in dimer form. In addition, OsNF-YB1-knockout lines showed significant changes in seed morphology, further confirming its role in endosperm development. Our findings provide evidence that a group of phylogenetically conserved NF-Ys is probably differentiated in monocots to regulate endosperm development.
Collapse
Affiliation(s)
- Zhiguo E
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Li
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Huaya Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zehou Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hui Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Sandeep Sharma
- Marine Biotechnology and Ecology Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Xuefeng Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Lei Wang
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
- Correspondence:
| |
Collapse
|
26
|
Alternative functions of Hd1 in repressing or promoting heading are determined by Ghd7 status under long-day conditions. Sci Rep 2017; 7:5388. [PMID: 28710485 PMCID: PMC5511259 DOI: 10.1038/s41598-017-05873-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/05/2017] [Indexed: 11/12/2022] Open
Abstract
Previous studies suggested that Hd1 promoted heading under short-day conditions (SD) and delayed heading under long-day conditions (LD). However in this study, Hd1 was demonstrated to consistently promote heading date in Zhenshan 97 (ZS97) background by upregulating Ehd1, Hd3a and RFT1 expression under both SD and LD. While the high photoperiod sensitivity of Hd1 was observed in Minghui 63 (MH63) background, with heading being suppressed in LD but promoted in SD. Comparative analysis of two sets of near isogenic lines of Hd1 in MH63 and ZS97 backgrounds indicated that the alternative functions of Hd1 in promoting or suppressing heading under LD are dependent on the previously cloned flowering repressor gene Ghd7. The interaction between proteins Ghd7 and Hd1 occurred through binding of the CCT domain of Ghd7 to the transcription-activating domain of Hd1, resulting in suppression of Ehd1 and florigen gene expression. The involvement of the transcription-activating domain of Hd1 in this protein-protein interaction probably blocked or weakened its transcriptional activity. These findings suggest that Hd1 alone essentially acts as a promoter of heading date, and the protein interaction between Ghd7 and Hd1 determines photoperiod sensitivity and integrated Hd1-mediated and Ehd1-mediated flowering pathways in rice.
Collapse
|
27
|
Ye S, Shao Q, Xu M, Li S, Wu M, Tan X, Su L. Effects of Light Quality on Morphology, Enzyme Activities, and Bioactive Compound Contents in Anoectochilus roxburghii. FRONTIERS IN PLANT SCIENCE 2017; 8:857. [PMID: 28588604 PMCID: PMC5440764 DOI: 10.3389/fpls.2017.00857] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/08/2017] [Indexed: 05/20/2023]
Abstract
The aim of this study was to investigate the effects of light quality on the morphological traits, leaf anatomical characteristics, antioxidant enzyme (superoxide dismutase, catalase, and peroxidase) activities, photosynthetic pigments content, and bioactive compounds (phenols, flavonoids, and polysaccharides) content in Anoectochilus roxburghii. Plants of A. roxburghii were grown under light filtered through four differently colored films for 8 months. The four treatments were red film (RF), blue film (BF), yellow film (YF), and colorless plastic film (control, CK). Compared with the A. roxburghii plants in CK, those in the BF treatment showed significantly greater stem diameter, fresh weight, leaf area, stomatal frequency, chlorophyll content (Chl a, Chl b, Chl a+b), antioxidant enzyme activities, and active compound (polysaccharides, flavones) content. The plants in the RF treatment showed the greatest plant height and phenolics contents. These results show that growing A. roxburghii plants under blue film is a useful technique to improve quality. This technique is conducive to achieving large-scale sustainable production of high-quality plant materials.
Collapse
Affiliation(s)
- Shenyi Ye
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityHangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A & F UniversityHangzhou, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityHangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A & F UniversityHangzhou, China
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang ProvinceHangzhou, China
- *Correspondence: Qingsong Shao,
| | - Mengjie Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityHangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A & F UniversityHangzhou, China
| | - Shuailing Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F UniversityHangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A & F UniversityHangzhou, China
| | - Mei Wu
- Flower Research Institute, Jinhua Academy of Agricultural SciencesJinhua, China
| | - Xin Tan
- Department of Traditional Chinese Medicine, Zhejiang A & F UniversityHangzhou, China
| | - Liyang Su
- Department of Traditional Chinese Medicine, Zhejiang A & F UniversityHangzhou, China
| |
Collapse
|