1
|
Jin X, Li X, Teixeira da Silva JA, Liu X. Functions and mechanisms of non-histone protein acetylation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2087-2101. [PMID: 39136630 DOI: 10.1111/jipb.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 10/19/2024]
Abstract
Lysine acetylation, an evolutionarily conserved post-translational protein modification, is reversibly catalyzed by lysine acetyltransferases and lysine deacetylases. Lysine acetylation, which was first discovered on histones, mainly functions to configure the structure of chromatin and regulate gene transcriptional activity. Over the past decade, with advances in high-resolution mass spectrometry, a vast and growing number of non-histone proteins modified by acetylation in various plant species have been identified. Lysine acetylation of non-histone proteins is widely involved in regulating biological processes in plants such as photosynthesis, energy metabolism, hormone signal transduction and stress responses. Moreover, in plants, lysine acetylation plays crucial roles in regulating enzyme activity, protein stability, protein interaction and subcellular localization. This review summarizes recent progress in our understanding of the biological functions and mechanisms of non-histone protein acetylation in plants. Research prospects in this field are also noted.
Collapse
Affiliation(s)
- Xia Jin
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830000, China
| | | | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
2
|
Eirich J, Boyer JB, Armbruster L, Ivanauskaite A, De La Torre C, Meinnel T, Wirtz M, Mulo P, Finkemeier I, Giglione C. Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks. Mol Cell Proteomics 2024; 23:100845. [PMID: 39321874 PMCID: PMC11546460 DOI: 10.1016/j.mcpro.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.
Collapse
Affiliation(s)
- Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Jia K, Yang M, Liu X, Zhang Q, Cao G, Ge F, Zhao J. Deciphering the structure, function, and mechanism of lysine acetyltransferase cGNAT2 in cyanobacteria. PLANT PHYSIOLOGY 2024; 194:634-661. [PMID: 37770070 DOI: 10.1093/plphys/kiad509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Lysine acetylation is a conserved regulatory posttranslational protein modification that is performed by lysine acetyltransferases (KATs). By catalyzing the transfer of acetyl groups to substrate proteins, KATs play critical regulatory roles in all domains of life; however, no KATs have yet been identified in cyanobacteria. Here, we tested all predicted KATs in the cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) and demonstrated that A1596, which we named cyanobacterial Gcn5-related N-acetyltransferase (cGNAT2), can catalyze lysine acetylation in vivo and in vitro. Eight amino acid residues were identified as the key residues in the putative active site of cGNAT2, as indicated by structural simulation and site-directed mutagenesis. The loss of cGNAT2 altered both growth and photosynthetic electron transport in Syn7002. In addition, quantitative analysis of the lysine acetylome identified 548 endogenous substrates of cGNAT2 in Syn7002. We further demonstrated that cGNAT2 can acetylate NAD(P)H dehydrogenase J (NdhJ) in vivo and in vitro, with the inability to acetylate K89 residues, thus decreasing NdhJ activity and affecting both growth and electron transport in Syn7002. In summary, this study identified a KAT in cyanobacteria and revealed that cGNAT2 regulates growth and photosynthesis in Syn7002 through an acetylation-mediated mechanism.
Collapse
Affiliation(s)
- Kun Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430070, China
| | - Qi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Giese J, Eirich J, Walther D, Zhang Y, Lassowskat I, Fernie AR, Elsässer M, Maurino VG, Schwarzländer M, Finkemeier I. The interplay of post-translational protein modifications in Arabidopsis leaves during photosynthesis induction. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1172-1193. [PMID: 37522418 DOI: 10.1111/tpj.16406] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Diurnal dark to light transition causes profound physiological changes in plant metabolism. These changes require distinct modes of regulation as a unique feature of photosynthetic lifestyle. The activities of several key metabolic enzymes are regulated by light-dependent post-translational modifications (PTM) and have been studied at depth at the level of individual proteins. In contrast, a global picture of the light-dependent PTMome dynamics is lacking, leaving the response of a large proportion of cellular function undefined. Here, we investigated the light-dependent metabolome and proteome changes in Arabidopsis rosettes in a time resolved manner to dissect their kinetic interplay, focusing on phosphorylation, lysine acetylation, and cysteine-based redox switches. Of over 24 000 PTM sites that were detected, more than 1700 were changed during the transition from dark to light. While the first changes, as measured 5 min after onset of illumination, occurred mainly in the chloroplasts, PTM changes at proteins in other compartments coincided with the full activation of the Calvin-Benson cycle and the synthesis of sugars at later timepoints. Our data reveal connections between metabolism and PTM-based regulation throughout the cell. The comprehensive multiome profiling analysis provides unique insight into the extent by which photosynthesis reprograms global cell function and adds a powerful resource for the dissection of diverse cellular processes in the context of photosynthetic function.
Collapse
Affiliation(s)
- Jonas Giese
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Dirk Walther
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
| | - Youjun Zhang
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Ines Lassowskat
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology (MPIMP), Am Mühlenberg 1, Potsdam, D-14476, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Veronica G Maurino
- Institute of Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, Bonn, D-53115, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 7-8, Münster, D-48149, Germany
| |
Collapse
|
5
|
Zhang N, Wang S, Tian H, Li S, Liu L, Li J, Chen D, Zhao S, Yan X, Niaz M, Zhao L, Ren Y, Chen F. Functions of lysine 2-hydroxyisobutyrylation and future perspectives on plants. Proteomics 2023; 23:e2300045. [PMID: 37338329 DOI: 10.1002/pmic.202300045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a novel protein post-translational modifications (PTMs) observed in both eukaryotes and prokaryotes. Recent studies suggested that this novel PTM has the potential to regulate different proteins in various pathways. Khib is regulated by lysine acyltransferases and deacylases. This novel PTM reveals interesting connections between modifications and protein physiological functions, including gene transcription, glycolysis and cell growth, enzymic activity, sperm motility, and aging. Here, we review the discovery and the current understanding of this PTM. Then, we outline the networks of complexity of interactions among PTMs in plants, and raise possible directions of this novel PTM for future investigations in plants.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Sisheng Wang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Hongyan Tian
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Songgang Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lulu Liu
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jiaqi Li
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Daiying Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Simin Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Ivanauskaite A, Rantala M, Laihonen L, Konert MM, Schwenner N, Mühlenbeck JS, Finkemeier I, Mulo P. Loss of Chloroplast GNAT Acetyltransferases Results in Distinct Metabolic Phenotypes in Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:549-563. [PMID: 37026998 DOI: 10.1093/pcp/pcad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Acetylation is one of the most common chemical modifications found on a variety of molecules ranging from metabolites to proteins. Although numerous chloroplast proteins have been shown to be acetylated, the role of acetylation in the regulation of chloroplast functions has remained mainly enigmatic. The chloroplast acetylation machinery in Arabidopsis thaliana consists of eight General control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT)-family enzymes that catalyze both N-terminal and lysine acetylation of proteins. Additionally, two plastid GNATs have also been reported to be involved in the biosynthesis of melatonin. Here, we have characterized six plastid GNATs (GNAT1, GNAT2, GNAT4, GNAT6, GNAT7 and GNAT10) using a reverse genetics approach with an emphasis on the metabolomes and photosynthesis of the knock-out plants. Our results reveal the impact of GNAT enzymes on the accumulation of chloroplast-related compounds, such as oxylipins and ascorbate, and the GNAT enzymes also affect the accumulation of amino acids and their derivatives. Specifically, the amount of acetylated arginine and proline was significantly decreased in the gnat2 and gnat7 mutants, respectively, as compared to the wild-type Col-0 plants. Additionally, our results show that the loss of the GNAT enzymes results in increased accumulation of Rubisco and Rubisco activase (RCA) at the thylakoids. Nevertheless, the reallocation of Rubisco and RCA did not have consequent effects on carbon assimilation under the studied conditions. Taken together, our results show that chloroplast GNATs affect diverse aspects of plant metabolism and pave way for future research into the role of protein acetylation.
Collapse
Affiliation(s)
- Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Marjaana Rantala
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Laura Laihonen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Minna M Konert
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Naike Schwenner
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jens S Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
7
|
Recent developments in the engineering of Rubisco activase for enhanced crop yield. Biochem Soc Trans 2023; 51:627-637. [PMID: 36929563 DOI: 10.1042/bst20221281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Rubisco activase (RCA) catalyzes the release of inhibitory sugar phosphates from ribulose-1,6-biphosphate carboxylase/oxygenase (Rubisco) and can play an important role in biochemical limitations of photosynthesis under dynamic light and elevated temperatures. There is interest in increasing RCA activity to improve crop productivity, but a lack of understanding about the regulation of photosynthesis complicates engineering strategies. In this review, we discuss work relevant to improving RCA with a focus on advances in understanding the structural cause of RCA instability under heat stress and the regulatory interactions between RCA and components of photosynthesis. This reveals substantial variation in RCA thermostability that can be influenced by single amino acid substitutions, and that engineered variants can perform better in vitro and in vivo under heat stress. In addition, there are indications RCA activity is controlled by transcriptional, post-transcriptional, post-translational, and spatial regulation, which may be important for balancing between carbon fixation and light capture. Finally, we provide an overview of findings from recent field experiments and consider the requirements for commercial validation as part of efforts to increase crop yields in the face of global climate change.
Collapse
|
8
|
Jin K, Chen G, Yang Y, Zhang Z, Lu T. Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C 3 photosynthesis: Prospects on modern crop improvement. PLANT, CELL & ENVIRONMENT 2023; 46:363-378. [PMID: 36444099 DOI: 10.1111/pce.14500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a process that uses solar energy to fix CO2 in the air and converts it into sugar, and ultimately powers almost all life activities on the earth. C3 photosynthesis is the most common form of photosynthesis in crops. Current efforts of increasing crop yields in response to growing global food requirement are mostly focused on improving C3 photosynthesis. In this review, we summarized the strategies of C3 photosynthesis improvement in terms of Rubisco properties and photorespiratory limitation. Potential engineered targets include Rubisco subunits and their catalytic sites, Rubisco assembly chaperones, and Rubisco activase. In addition, we reviewed multiple photorespiratory bypasses built by strategies of synthetic biology to reduce the release of CO2 and ammonia and minimize energy consumption by photorespiration. The potential strategies are suggested to enhance C3 photosynthesis and boost crop production.
Collapse
Affiliation(s)
- Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, The Netherlands
| | - Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yirong Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
9
|
Lu J, Fang X, Liang H, Guo Z, Zou H. Lysine acetylation plays a role in the allograft-induced stress response of the pearl oyster (Pinctada fucata martensii). FISH & SHELLFISH IMMUNOLOGY 2022; 130:223-232. [PMID: 36126836 DOI: 10.1016/j.fsi.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Implanting a spherical nucleus into a recipient oyster is a critical step in artificial pearl production using the pearl oyster Pinctada fucata martensii. However, little is known about the role of post-translational modifications (PTMs) in the response of the pearl oyster to this operation. Lysine acetylation, a highly conserved PTM, may be an essential adaptive strategy to manage multiple biotic or abiotic stresses. We conducted the first lysine acetylome analysis of the P. f. martensii gill 12 h after nucleus implantation, using tandem mass tags (TMT) labeling and Kac affinity enrichment. We identified 2443 acetylated sites in 1301 proteins, and 1511 sites on 895 proteins were quantitatively informative. We found 25 conserved motifs from all of the identified lysine sites, particularly motifs Kac H, Kac S, and Kac Y were strikingly conserved, of which Kac Y, Kac H, Y Kac, Kac K, Kac *K, Kac R, and Kac F which have been observed in other species and are therefore highly conserved. We identified 58 sites that were significantly differently acetylated in P. f. martensii in response to allograft (|fold change|>1.2, P-value ≤ 0.05); 38 newly acetylated and 20 deacetylated. According to GO functional analysis, subcellar location, and KOG classIfication, these proteins were divided into four categories: cytoskeleton, response to stimulus, metabolism, and other. The differentially acetylated proteins (DAPs) enriched pathways include aminoacyl-tRNA biosynthesis, salmonella infection, and longevity regulating pathway-worm-Caenorhabditis elegans (nematode). Parallel reaction-monitoring (PRM) validation of the differential acetylation of 10 randomly selected differentially acetylated sites from the acetylome analysis. These results indicated that our acetylome analysis results were sufficiently reliable and reproducible. These results provide an essential resource for in-depth exploration of the stress responses and adaptation mechanisms associated with lysine acetylation in marine invertebrates and P. f. martensii.
Collapse
Affiliation(s)
- Jinzhao Lu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xiaochen Fang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangzhou Marine Geological Survey, Guangzhou, Guangdong, 510075, China
| | - Haiying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, Guangdong, 524088, China.
| | - Zhijie Guo
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hexin Zou
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
10
|
Song L, Zhan H, Wang Y, Lin Z, Li B, Shen L, Jiao Y, Li Y, Wang F, Yang J. Cross-Talk of Protein Expression and Lysine Acetylation in Response to TMV Infection in Nicotiana benthamiana. ACS OMEGA 2022; 7:32496-32511. [PMID: 36120045 PMCID: PMC9475610 DOI: 10.1021/acsomega.2c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Lysine acetylation (Kac), a reversible PTM, plays an essential role in various biological processes, including those involving metabolic pathways, pathogen resistance, and transcription, in both prokaryotes and eukaryotes. TMV, the major factor that causes the poor quality of Solanaceae crops worldwide, directly alters many metabolic processes in tobacco. However, the extent and function of Kac during TMV infection have not been determined. The validation test to detect Kac level and viral expression after TMV infection and Nicotinamide (NAM) treatment clarified that acetylation was involved in TMV infection. Furthermore, we comprehensively analyzed the changes in the proteome and acetylome of TMV-infected tobacco (Nicotiana benthamiana) seedlings via LC-MS/MS in conjunction with highly sensitive immune-affinity purification. In total, 2082 lysine-acetylated sites on 1319 proteins differentially expressed in response to TMV infection were identified. Extensive bioinformatic studies disclosed changes in acetylation of proteins engaged in cellular metabolism and biological processes. The vital influence of Kac in fatty acid degradation and alpha-linolenic acid metabolism was also revealed in TMV-infected seedlings. This study first revealed Kac information in N. benthamiana under TMV infection and expanded upon the existing landscape of acetylation in pathogen infection.
Collapse
Affiliation(s)
- Liyun Song
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Huaixu Zhan
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate
School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yujie Wang
- Luoyang
Branch of Henan Tobacco Company, Luoyang 471000, China
| | - Zhonglong Lin
- Yunnan
Tobacco Company of the China National Tobacco Corporation, Kunming 650011, China
| | - Bin Li
- Sichuan
Tobacco Company, Chengdu 610017, China
| | - Lili Shen
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yubing Jiao
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ying Li
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Fenglong Wang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jinguang Yang
- Key
Laboratory of Tobacco Pest Monitoring, Controlling & Integrated
Management, Tobacco Research Institute of
the Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
11
|
Zhang N, Zhang L, Li L, Geng J, Zhao L, Ren Y, Dong Z, Chen F. Global Profiling of 2-hydroxyisobutyrylome in Common Wheat. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:688-701. [PMID: 33581340 PMCID: PMC9880814 DOI: 10.1016/j.gpb.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/17/2020] [Accepted: 08/15/2020] [Indexed: 01/31/2023]
Abstract
As a novel post-translational modification (PTM), lysine 2-hydroxyisobutyrylation (Khib) is considered to regulate gene transcriptional activities in eukaryotic cells; however, the functions of Khib-modified proteins in plants remain unknown. Here, we report that Khib is an evolutionarily-conserved PTM in wheat and its progenitors. A total of 3348 Khib sites on 1074 proteins are identified in common wheat (Triticum aestivum L.) by using affinity purification and mass spectroscopy of 2-hydroxyisobutyrylome. Bioinformatic data indicate that Khib-modified proteins participate in a wide variety of biological and metabolic pathways. Immunoprecipitation confirms that Khib-modified proteins are present endogenously. A comparison of Khib and other main PTMs shows that Khib-modified proteins are simultaneously modified by multiple PTMs. Using mutagenesis experiments and co-immunoprecipitation assays, we demonstrate that Khib on K206 of phosphoglycerate kinase (PGK) is a key regulatory modification for its enzymatic activity, and mutation on K206 affects the interactions of PGK with its substrates. Furthermore, Khib modification of low-molecular-weight proteins is a response to the deacetylase inhibitors nicotinamide and trichostatin. This study provides evidence to promote our current understanding of Khib in wheat plants, including the cooperation between Khib and its metabolic regulation.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Lingran Zhang
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Linjie Li
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Junyou Geng
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongdong Dong
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / Agronomy College, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Pawloski W, Komiyama T, Kougentakis C, Majumdar A, Fushman D. Site-Specific Detection and Characterization of Ubiquitin Carbamylation. Biochemistry 2022; 61:712-721. [PMID: 35380792 PMCID: PMC9173829 DOI: 10.1021/acs.biochem.2c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physiological consequences of varying in vivo CO2 levels point to a general mechanism for CO2 to influence cellular homeostasis beyond regulating pH. Aside from a few instances where CO2 has been observed to cause post-translational protein modification, by forming long-lived carbamates, little is known about how transitory and ubiquitous carbamylation events could induce a physiological response. Ubiquitin is a versatile protein involved in a multitude of cellular signaling pathways as polymeric chains of various lengths formed through one of the seven lysines or N-terminal amine. Unique polyubiquitin (polyUb) compositions present recognition signals for specific ubiquitin-receptors which enables this one protein to be involved in many different cellular processes. Advances in proteomic methods have allowed the capture and identification of protein carbamates in vivo, and Ub was found carbamylated at lysines K48 and K33. This was shown to negatively regulate ubiquitin-mediated signaling by inhibiting polyUb chain formation. Here, we expand upon these observations by characterizing the carbamylation susceptibility for all Ub amines simultaneously. Using NMR methods which directly probe 15N resonances, we determined carbamylation rates under various environmental conditions and related them to the intrinsic pKas. Our results show that the relatively low pKas for half of the Ub amines are correlated with enhanced susceptibility to carbamylation under physiological conditions. Two of these carbamylated amines, not observed by chemical capture, appear to be physiologically relevant post-translational modifications. These findings point to a mechanism for varying the levels of CO2 due to intracellular localization, cellular stresses, and metabolism to affect certain polyUb-mediated signaling pathways.
Collapse
Affiliation(s)
- Westley Pawloski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742, United States
| | - Teppei Komiyama
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742, United States
| | - Christos Kougentakis
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
13
|
He NY, Chen LS, Sun AZ, Zhao Y, Yin SN, Guo FQ. A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis. NATURE PLANTS 2022; 8:434-450. [PMID: 35437002 DOI: 10.1038/s41477-022-01135-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
When confronted with heat stress, plants depend on the timely activation of cellular defences to survive by perceiving the rising temperature. However, how plants sense heat at the whole-plant level has remained unanswered. Here we demonstrate that shoot apical nitric oxide (NO) bursting under heat stress as a signal triggers cellular heat responses at the whole-plant level on the basis of our studies mainly using live-imaging of transgenic plants harbouring pHsfA2::LUC, micrografting, NO accumulation mutants and liquid chromatography-tandem mass spectrometry analysis in Arabidopsis. Furthermore, we validate that S-nitrosylation of the trihelix transcription factor GT-1 by S-nitrosoglutathione promotes its binding to NO-responsive elements in the HsfA2 promoter and that loss of function of GT-1 disrupts the activation of HsfA2 and heat tolerance, revealing that GT-1 is the long-sought mediator linking signal perception to the activation of cellular heat responses. These findings uncover a heat-responsive mechanism that determines the timing and execution of cellular heat responses at the whole-plant level.
Collapse
Affiliation(s)
- Ning-Yu He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Sha Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ai-Zhen Sun
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shui-Ning Yin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Fang-Qing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
14
|
Wu J, Meng X, Jiang W, Wang Z, Zhang J, Meng F, Yao X, Ye M, Yao L, Wang L, Yu N, Peng D, Xing S. Qualitative Proteome-Wide Analysis Reveals the Diverse Functions of Lysine Crotonylation in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:822374. [PMID: 35251091 PMCID: PMC8888884 DOI: 10.3389/fpls.2022.822374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The lysine crotonylation of histone proteins is a newly identified posttranslational modification with diversified cellular functions. However, there are few reports on lysine crotonylation of non-histone proteins in medicinal plant cells. By using high-resolution liquid chromatography-mass spectrometry (LC-MS) coupled with highly sensitive-specific immune-affinity antibody analysis, a whole crotonylation proteome analysis of Dendrobium huoshanense was performed. In total, 1,591 proteins with 4,726 lysine crotonylation sites were identified; among them, 11 conserved motifs were identified. Bioinformatic analyses linked crotonylated proteins to the drought stress response and multiple metabolic pathways, including secondary metabolite biosynthesis, transport and catabolism, energy production and conversion, carbohydrate transport and metabolism, translation, and ribosomal structure and biogenesis. This study contributes toward understanding the regulatory mechanism of polysaccharide biosynthesis at the crotonylation level even under abiotic stress.
Collapse
Affiliation(s)
- Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoxi Meng
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, United States
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, China
| | - Zhaojian Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoyan Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengjuan Ye
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Liang Yao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Longhai Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
15
|
Wang L, Li X, Wang M, Ma X, Song F, Hu J, Liang W, Liang W. Carbon Metabolism and the ROS Scavenging System Participate in Nostoc flagelliforme's Adaptive Response to Dehydration Conditions through Protein Acetylation. J Proteome Res 2022; 21:482-493. [PMID: 35020403 DOI: 10.1021/acs.jproteome.1c00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Acetylation represents an extensively occurring protein post-translational modification (PTM) that plays a key role in many cellular physiological and biochemical processes. However, studies on PTMs such as acetylation of lysine (LysAc) in cyanobacteria are still rare. In this study, a quantitative LysAc approach (acetylome) on the strains of Nostoc flagelliforme subjected to different dehydration treatments was conducted. We observed that starch contents were significantly accumulated due to dehydration treatments, and we identified 2474 acetylpeptides and 1060 acetylproteins based on acetylome analysis. Furthermore, an integrative analysis was performed on acetylome and nontargeted metabolism, and the results showed that many KEGG terms were overlapped for both omics analyses, including starch and sucrose metabolism, transporter activity, and carbon metabolism. In addition, time series clustering was analyzed, and some proteins related to carbon metabolism and the ROS scavenging system were significantly enriched in the list of differentially abundant acetylproteins (DAAPs). These protein expression levels were further tested by qPCR. A working model was finally proposed to show the biological roles of protein acetylation from carbon metabolism and the ROS scavenging system in response to dehydration in N. flagelliforme. We highlighted that LysAc was essential for the regulation of key metabolic enzymes in the dehydration stress response.
Collapse
Affiliation(s)
- Lingxia Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, P. R. China
| | - Xiaoxu Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Meng Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Xiaorong Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Fan Song
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Jinhong Hu
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Wangli Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, P. R. China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan 750021, P. R. China
| |
Collapse
|
16
|
Xia L, Kong X, Song H, Han Q, Zhang S. Advances in proteome-wide analysis of plant lysine acetylation. PLANT COMMUNICATIONS 2022; 3:100266. [PMID: 35059632 PMCID: PMC8760137 DOI: 10.1016/j.xplc.2021.100266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Guo J, Chai X, Mei Y, Du J, Du H, Shi H, Zhu JK, Zhang H. Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response. STRESS BIOLOGY 2022; 2:1. [PMID: 37676343 PMCID: PMC10442023 DOI: 10.1007/s44154-021-00024-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 09/08/2023]
Abstract
Lysine-ε-acetylation (Kac) is a post-translational modification (PTM) that is critical for metabolic regulation and cell signaling in mammals. However, its prevalence and importance in plants remain to be determined. Employing high-resolution tandem mass spectrometry, we analyzed protein lysine acetylation in five representative Arabidopsis organs with 2 ~ 3 biological replicates per organ. A total of 2887 Kac proteins and 5929 Kac sites were identified. This comprehensive catalog allows us to analyze proteome-wide features of lysine acetylation. We found that Kac proteins tend to be more uniformly expressed in different organs, and the acetylation status exhibits little correlation with the gene expression level, indicating that acetylation is unlikely caused by stochastic processes. Kac preferentially targets evolutionarily conserved proteins and lysine residues, but only a small percentage of Kac proteins are orthologous between rat and Arabidopsis. A large portion of Kac proteins overlap with proteins modified by other PTMs including ubiquitination, SUMOylation and phosphorylation. Although acetylation, ubiquitination and SUMOylation all modify lysine residues, our analyses show that they rarely target the same sites. In addition, we found that "reader" proteins for acetylation and phosphorylation, i.e., bromodomain-containing proteins and GRF (General Regulatory Factor)/14-3-3 proteins, are intensively modified by the two PTMs, suggesting that they are main crosstalk nodes between acetylation and phosphorylation signaling. Analyses of GRF6/14-3-3λ reveal that the Kac level of GRF6 is decreased under alkaline stress, suggesting that acetylation represses plant alkaline response. Indeed, K56ac of GRF6 inhibits its binding to and subsequent activation of the plasma membrane H+-ATPase AHA2, leading to hypersensitivity to alkaline stress. These results provide valuable resources for protein acetylation studies in plants and reveal that protein acetylation suppresses phosphorylation output by acetylating GRF/14-3-3 proteins.
Collapse
Affiliation(s)
- Jianfei Guo
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqiang Chai
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiamu Du
- Department of Biology, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Haining Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Jian-Kang Zhu
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center for Excellence in Plant Molecular Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
18
|
Füßl M, König AC, Eirich J, Hartl M, Kleinknecht L, Bohne AV, Harzen A, Kramer K, Leister D, Nickelsen J, Finkemeier I. Dynamic light- and acetate-dependent regulation of the proteome and lysine acetylome of Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:261-277. [PMID: 34709689 DOI: 10.1111/tpj.15555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The green alga Chlamydomonas reinhardtii is one of the most studied microorganisms in photosynthesis research and for biofuel production. A detailed understanding of the dynamic regulation of its carbon metabolism is therefore crucial for metabolic engineering. Post-translational modifications can act as molecular switches for the control of protein function. Acetylation of the ɛ-amino group of lysine residues is a dynamic modification on proteins across organisms from all kingdoms. Here, we performed mass spectrometry-based profiling of proteome and lysine acetylome dynamics in Chlamydomonas under varying growth conditions. Chlamydomonas liquid cultures were transferred from mixotrophic (light and acetate as carbon source) to heterotrophic (dark and acetate) or photoautotrophic (light only) growth conditions for 30 h before harvest. In total, 5863 protein groups and 1376 lysine acetylation sites were identified with a false discovery rate of <1%. As a major result of this study, our data show that dynamic changes in the abundance of lysine acetylation on various enzymes involved in photosynthesis, fatty acid metabolism, and the glyoxylate cycle are dependent on acetate and light. Exemplary determination of acetylation site stoichiometries revealed particularly high occupancy levels on K175 of the large subunit of RuBisCO and K99 and K340 of peroxisomal citrate synthase under heterotrophic conditions. The lysine acetylation stoichiometries correlated with increased activities of cellular citrate synthase and the known inactivation of the Calvin-Benson cycle under heterotrophic conditions. In conclusion, the newly identified dynamic lysine acetylation sites may be of great value for genetic engineering of metabolic pathways in Chlamydomonas.
Collapse
Affiliation(s)
- Magdalena Füßl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, Muenster, DE-48149, Germany
| | - Ann-Christine König
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Protein Science, Heidemannstr. 1, Munich, DE-80939, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, Muenster, DE-48149, Germany
| | - Markus Hartl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
- Mass Spectrometry Facility, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, Vienna, AT-1030, Austria
| | - Laura Kleinknecht
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
| | - Alexandra-Viola Bohne
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
| | - Anne Harzen
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
| | - Dario Leister
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
| | - Jörg Nickelsen
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
| | - Iris Finkemeier
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, Cologne, DE-50829, Germany
- Faculty of Biology, Ludwig-Maximilians-University, Grosshaderner Strasse 2-4, Munich, DE-82152, Germany
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 7, Muenster, DE-48149, Germany
| |
Collapse
|
19
|
Xu Q, Liu Q, Chen Z, Yue Y, Liu Y, Zhao Y, Zhou DX. Histone deacetylases control lysine acetylation of ribosomal proteins in rice. Nucleic Acids Res 2021; 49:4613-4628. [PMID: 33836077 PMCID: PMC8096213 DOI: 10.1093/nar/gkab244] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023] Open
Abstract
Lysine acetylation (Kac) is well known to occur in histones for chromatin function and epigenetic regulation. In addition to histones, Kac is also detected in a large number of proteins with diverse biological functions. However, Kac function and regulatory mechanism for most proteins are unclear. In this work, we studied mutation effects of rice genes encoding cytoplasm-localized histone deacetylases (HDAC) on protein acetylome and found that the HDAC protein HDA714 was a major deacetylase of the rice non-histone proteins including many ribosomal proteins (r-proteins) and translation factors that were extensively acetylated. HDA714 loss-of-function mutations increased Kac levels but reduced abundance of r-proteins. In vitro and in vivo experiments showed that HDA714 interacted with r-proteins and reduced their Kac. Substitutions of lysine by arginine (depleting Kac) in several r-proteins enhance, while mutations of lysine to glutamine (mimicking Kac) decrease their stability in transient expression system. Ribo-seq analysis revealed that the hda714 mutations resulted in increased ribosome stalling frequency. Collectively, the results uncover Kac as a functional posttranslational modification of r-proteins which is controlled by histone deacetylases, extending the role of Kac in gene expression to protein translational regulation.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qian Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070 Wuhan, China.,Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
20
|
Rubisco lysine acetylation occurs at very low stoichiometry in mature Arabidopsis leaves: implications for regulation of enzyme function. Biochem J 2020; 477:3885-3896. [PMID: 32959870 PMCID: PMC7557146 DOI: 10.1042/bcj20200413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/23/2022]
Abstract
Multiple studies have shown ribulose-1,5-bisphosphate carboxylase/oxygenase (E.C. 4.1.1.39; Rubisco) to be subject to Lys-acetylation at various residues; however, opposing reports exist about the biological significance of these post-translational modifications. One aspect of the Lys-acetylation that has not been addressed in plants generally, or with Rubisco specifically, is the stoichiometry at which these Lys-acetylation events occur. As a method to ascertain which Lys-acetylation sites on Arabidopsis Rubisco might be of regulatory importance to its catalytic function in the Calvin–Benson cycle, we purified Rubisco from leaves in both the day and night-time and performed independent mass spectrometry based methods to determine the stoichiometry of Rubisco Lys-acetylation events. The results indicate that Rubisco is acetylated at most Lys residues, but each acetylation event occurs at very low stoichiometry. Furthermore, in vitro treatments that increased the extent of Lys-acetylation on purified Rubisco had no effect on Rubisco maximal activity. Therefore, we are unable to confirm that Lys-acetylation at low stoichiometries can be a regulatory mechanism controlling Rubisco maximal activity. The results highlight the need for further use of stoichiometry measurements when determining the biological significance of reversible PTMs like acetylation.
Collapse
|
21
|
Bienvenut WV, Brünje A, Boyer J, Mühlenbeck JS, Bernal G, Lassowskat I, Dian C, Linster E, Dinh TV, Koskela MM, Jung V, Seidel J, Schyrba LK, Ivanauskaite A, Eirich J, Hell R, Schwarzer D, Mulo P, Wirtz M, Meinnel T, Giglione C, Finkemeier I. Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation. Mol Syst Biol 2020; 16:e9464. [PMID: 32633465 PMCID: PMC7339202 DOI: 10.15252/msb.20209464] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Protein acetylation is a highly frequent protein modification. However, comparatively little is known about its enzymatic machinery. N-α-acetylation (NTA) and ε-lysine acetylation (KA) are known to be catalyzed by distinct families of enzymes (NATs and KATs, respectively), although the possibility that the same GCN5-related N-acetyltransferase (GNAT) can perform both functions has been debated. Here, we discovered a new family of plastid-localized GNATs, which possess a dual specificity. All characterized GNAT family members display a number of unique features. Quantitative mass spectrometry analyses revealed that these enzymes exhibit both distinct KA and relaxed NTA specificities. Furthermore, inactivation of GNAT2 leads to significant NTA or KA decreases of several plastid proteins, while proteins of other compartments were unaffected. The data indicate that these enzymes have specific protein targets and likely display partly redundant selectivity, increasing the robustness of the acetylation process in vivo. In summary, this study revealed a new layer of complexity in the machinery controlling this prevalent modification and suggests that other eukaryotic GNATs may also possess these previously underappreciated broader enzymatic activities.
Collapse
Affiliation(s)
- Willy V Bienvenut
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Génétique Quantitative et ÉvolutionGif‐sur‐YvetteFrance
| | - Annika Brünje
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Jean‐Baptiste Boyer
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jens S Mühlenbeck
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Gautier Bernal
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute of Plant Sciences Paris‐SaclayGif‐sur‐YvetteFrance
| | - Ines Lassowskat
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Cyril Dian
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Eric Linster
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Trinh V Dinh
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Minna M Koskela
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
- Present address:
Institute of MicrobiologyTřeboňCzech Republic
| | - Vincent Jung
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
- Present address:
Institute IMAGINEParisFrance
| | - Julian Seidel
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Laura K Schyrba
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Aiste Ivanauskaite
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Jürgen Eirich
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| | - Rüdiger Hell
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Dirk Schwarzer
- Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
| | - Paula Mulo
- Department of BiochemistryMolecular Plant BiologyUniversity of TurkuTurkuFinland
| | - Markus Wirtz
- Centre for Organismal Studies HeidelbergUniversity of HeidelbergHeidelbergGermany
| | - Thierry Meinnel
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Carmela Giglione
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Iris Finkemeier
- Plant PhysiologyInstitute of Plant Biology and BiotechnologyUniversity of MuensterMuensterGermany
| |
Collapse
|
22
|
Xue C, Qiao Z, Chen X, Cao P, Liu K, Liu S, Ye L, Gong Z. Proteome-Wide Analyses Reveal the Diverse Functions of Lysine 2-Hydroxyisobutyrylation in Oryza sativa. RICE (NEW YORK, N.Y.) 2020; 13:34. [PMID: 32572646 PMCID: PMC7310055 DOI: 10.1186/s12284-020-00389-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/11/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lysine 2-hydroxyisobutyrylation (Khib), a newly identified post-translational modification, is known to regulate transcriptional activity in animals. However, extensive studies of the lysine 2-hydroxyisobutyrylome in plants and animals have yet to be performed. RESULTS In this study, using LC-MS/MS qualitative proteomics strategies, we identified 4163 Khib sites on 1596 modified proteins in rice (Oryza sativa) seedlings. Motif analysis revealed 10 conserved motifs flanking the Khib sites, and subcellular localization analysis revealed that 44% of the Khib proteins are localized in the chloroplast. Gene ontology function, KEGG pathway, and protein domain enrichment analyses revealed that Khib occurs on proteins involved in diverse biological processes and is especially enriched in carbon metabolism and photosynthesis. Among the modified proteins, 20 Khib sites were identified in histone H2A and H2B, while only one site was identified in histone H4. Protein-protein interaction (PPI) network analysis further demonstrated that Khib participates in diverse biological processes including ribosomal activity, biosynthesis of secondary metabolites, and metabolic pathways. In addition, a comparison of lysine 2-hydroxyisobutyrylation, acetylation, and crotonylation in the rice proteome showed that 45 proteins with only 26 common lysine sites are commonly modified by three PTMs. The crosstalk of modified sites and PPI among these PTMs may form a complex network with both similar and different regulatory mechanisms. CONCLUSIONS In summary, our study comprehensively profiles the lysine 2-hydroxyisobutyrylome in rice and provides a better understanding of its biological functions in plants.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhongying Qiao
- Suzhou Academy of Agricultural Sciences, North of Wangting Town, Suzhou, 215128, China
| | - Xu Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Penghui Cao
- Suzhou Academy of Agricultural Sciences, North of Wangting Town, Suzhou, 215128, China
| | - Kai Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lu Ye
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Yan Z, Shen Z, Gao ZF, Chao Q, Qian CR, Zheng H, Wang BC. A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153158. [PMID: 32240968 DOI: 10.1016/j.jplph.2020.153158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, New Jersey 08855, USA.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
24
|
Effect of phytohormones from different classes on gene expression of Chlorella sorokiniana under nitrogen limitation for enhanced biomass and lipid production. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101518] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Cao Y, Fan G, Wang Z, Gu Z. Phytoplasma-induced Changes in the Acetylome and Succinylome of Paulownia tomentosa Provide Evidence for Involvement of Acetylated Proteins in Witches' Broom Disease. Mol Cell Proteomics 2019; 18:1210-1226. [PMID: 30936209 PMCID: PMC6553929 DOI: 10.1074/mcp.ra118.001104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation and succinylation are post-translational modifications of proteins that have been shown to play roles in plants response to pathogen infection. Phytoplasma infection can directly alter multiple metabolic processes in the deciduous plant Paulownia and lead to Paulownia witches' broom (PaWB) disease, the major cause of Paulownia mortality worldwide. However, the extent and function of lysine aceylation and succinylation during phytoplasma infection have yet to be explored. Here, we investigated the changes in the proteome, acetylome, and succinylome of phytoplasma-infected Paulownia tomentosa seedlings using quantitative mass spectrometry. In total, we identified 8963 proteins, 2893 acetylated proteins (5558 acetylation sites), and 1271 succinylated proteins (1970 succinylation sites), with 425 (533 sites) simultaneously acetylated and succinylated. Comparative analysis revealed that 276 proteins, 546 acetylated proteins (741 acetylation sites) and 5 succinylated proteins (5 succinylation sites) were regulated in response to phytoplasma infection, suggesting that acetylation may be more important than succinylation in PaWB. Enzymatic assays showed that acetylation of specific sites in protochlorophyllide reductase and RuBisCO, key enzymes in chlorophyll and starch biosynthesis, respectively, modifies their activity in phytoplasma-infected seedlings. On the basis of these results, we propose a model to elucidate the molecular mechanism of responses to PaWB and offer a resource for functional studies on the effects of acetylation on protein function.
Collapse
Affiliation(s)
| | - Guoqiang Fan
- From the ‡Institute of Paulownia and
- §College of Forestry, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Zhe Wang
- From the ‡Institute of Paulownia and
| | - Zhibin Gu
- From the ‡Institute of Paulownia and
| |
Collapse
|
26
|
Lu M, Han J, Zhu B, Jia H, Yang T, Wang R, Deng WW, Zhang ZZ. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis). PLANTA 2019; 249:363-376. [PMID: 30209617 DOI: 10.1007/s00425-018-3007-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/05/2018] [Indexed: 05/08/2023]
Abstract
A normal tea plant with one albino branch was discovered. RNA sequencing, albinism phenotype and ultrastructural observations provided a valuable understanding of the albino mechanism in tea plants. Tea plants with a specific color (white or yellow) have been studied extensively. A normal tea plant (Camellia sinensis cv. quntizhong) with one albino branch was discovered in a local tea plantation in Huangshan, Anhui, China. The pure albino leaves on this special branch had accumulated a fairly high content of amino acids, especially theanine (45.31 mg/g DW), and had a low concentration of polyphenols and an extremely low chlorophyll (Chl) content compared with control leaves. Ultrastructural observation of an albino leaf revealed no chloroplasts, whereas it was viable in the control leaf. RNA sequencing and differentially expressed gene (DEG) analysis were performed on the albino leaves and on control leaves from a normal green branch. The related genes involved in theanine and polyphenol biosynthesis were also investigated in this study. DEG expression patterns in Chl biosynthesis or degradation, carotenoid biosynthesis or degradation, chloroplast development, and biosynthesis were influenced in the albino leaves. Chloroplast deletion in albino leaves had probably destroyed the balance of carbon and nitrogen metabolism, leading to a high accumulation of free amino acids and a low concentration of polyphenols in the albino leaves. The obtained results can provide insight into the mechanism underlying this special albino branch phenotype, and are a valuable contribution toward understanding the albino mechanism in tea plants.
Collapse
Affiliation(s)
- Mengqian Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jieyun Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Huiyan Jia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Rangjian Wang
- Tea Research Institute, Fujian Academy of Agricultural Science, Hutouyang, Shekou, Fuan, 355015, Fujian, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Zheng-Zhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
27
|
Xue C, Liu S, Chen C, Zhu J, Yang X, Zhou Y, Guo R, Liu X, Gong Z. Global Proteome Analysis Links Lysine Acetylation to Diverse Functions in Oryza Sativa. Proteomics 2019; 18. [PMID: 29106068 DOI: 10.1002/pmic.201700036] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 10/11/2017] [Indexed: 01/26/2023]
Abstract
Lysine acetylation (Kac) is an important protein post-translational modification in both eukaryotes and prokaryotes. Herein, we report the results of a global proteome analysis of Kac and its diverse functions in rice (Oryza sativa). We identified 1353 Kac sites in 866 proteins in rice seedlings. A total of 11 Kac motifs are conserved, and 45% of the identified proteins are localized to the chloroplast. Among all acetylated proteins, 38 Kac sites are combined in core histones. Bioinformatics analysis revealed that Kac occurs on a diverse range of proteins involved in a wide variety of biological processes, especially photosynthesis. Protein-protein interaction networks of the identified proteins provided further evidence that Kac contributes to a wide range of regulatory functions. Furthermore, we demonstrated that the acetylation level of histone H3 (lysine 27 and 36) is increased in response to cold stress. In summary, our approach comprehensively profiles the regulatory roles of Kac in the growth and development of rice.
Collapse
Affiliation(s)
- Chao Xue
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Shuai Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Jun Zhu
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Xibin Yang
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou, P. R. China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Rui Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
28
|
Liu GT, Jiang JF, Liu XN, Jiang JZ, Sun L, Duan W, Li RM, Wang Y, Lecourieux D, Liu CH, Li SH, Wang LJ. New insights into the heat responses of grape leaves via combined phosphoproteomic and acetylproteomic analyses. HORTICULTURE RESEARCH 2019; 6:100. [PMID: 31666961 PMCID: PMC6804945 DOI: 10.1038/s41438-019-0183-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
Heat stress is a serious and widespread threat to the quality and yield of many crop species, including grape (Vitis vinifera L.), which is cultivated worldwide. Here, we conducted phosphoproteomic and acetylproteomic analyses of leaves of grape plants cultivated under four distinct temperature regimes. The phosphorylation or acetylation of a total of 1011 phosphoproteins with 1828 phosphosites and 96 acetyl proteins with 148 acetyl sites changed when plants were grown at 35 °C, 40 °C, and 45 °C in comparison with the proteome profiles of plants grown at 25 °C. The greatest number of changes was observed at the relatively high temperatures. Functional classification and enrichment analysis indicated that phosphorylation, rather than acetylation, of serine/arginine-rich splicing factors was involved in the response to high temperatures. This finding is congruent with previous observations by which alternative splicing events occurred more frequently in grapevine under high temperature. Changes in acetylation patterns were more common than changes in phosphorylation patterns in photosynthesis-related proteins at high temperatures, while heat-shock proteins were associated more with modifications involving phosphorylation than with those involving acetylation. Nineteen proteins were identified with changes associated with both phosphorylation and acetylation, which is consistent with crosstalk between these posttranslational modification types.
Collapse
Affiliation(s)
- Guo-Tian Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- College of Horticulture, Northwest A&F University, Yangling, 712100 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - Jian-Fu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Xin-Na Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - Jin-Zhu Jiang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| | - Rui-Min Li
- College of Horticulture, Northwest A&F University, Yangling, 712100 China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - David Lecourieux
- Universite´ de Bordeaux, ISVV, Ecophysiologie et Ge´nomique Fonctionnelle de la Vigne, UMR 1287, F-33140 Villenave d’Ornon, France
- INRA, ISVV, Ecophysiologie et Ge´nomique Fonctionnelle de la Vigne, UMR 1287, F-33140 Villenave d’Ornon, France
| | - Chong-Huai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 China
| | - Shao-Hua Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100093 China
| | - Li-Jun Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
29
|
Pan D, Wang L, Chen S, Lv X, Lu S, Cheng CL, Tan F, Chen W. Protein acetylation as a mechanism for Kandelia candel's adaption to daily flooding. TREE PHYSIOLOGY 2018; 38:895-910. [PMID: 29301031 DOI: 10.1093/treephys/tpx162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
To explore the adaptation mechanisms of Kandelia candel (L.) Druce in response to daily flooding, a large-scale quantitative lysine acetylome was carried out using immunoaffinity enrichment of Lys-acetylated peptides and liquid chromatography linked to tandem mass spectrometry. A total of 1041 lysine acetylation (LysAc) sites, 1021 Lys-acetylated peptides and 617 Lys-acetylated proteins were identified. Six conserved sequence motifs of the LysAc sites, including a new motif KxxxxK, were detected. Among these proteins, 260 were differentially acetylated in response to flooding, which were preferentially predicted to participate in carbon metabolism and photosynthesis pathways based on KEGG pathway category enrichment analysis. Consistently, the transcriptional level of acetyltransferase and the consumption of acetyl-CoA were up-regulated under flooding conditions. Most of physiological parameters and mRNA expression levels related to carbon metabolism and photosynthesis were found to be insignificantly affected by flooding. Taken together, reversible protein LysAc is likely to be a post-translational mechanism contributing to the mangrove K. candel's adaptation to daily flooding.
Collapse
Affiliation(s)
- Dezhuo Pan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Lingxia Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
- College of Life Sciences, Ningxia University, Yinchuan 750021, PR China
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiaojie Lv
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Si Lu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chi-Lien Cheng
- Department of Biology, The University of Iowa, 210 Biology Building, Iowa City, IA 52242, USA
| | - Fanlin Tan
- Fujian Academy of Forestry, Fuzhou 350012, PR China
| | - Wei Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| |
Collapse
|
30
|
Xie C, Shen H, Zhang H, Yan J, Liu Y, Yao F, Wang X, Cheng Z, Tang TS, Guo C. Quantitative proteomics analysis reveals alterations of lysine acetylation in mouse testis in response to heat shock and X-ray exposure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:464-472. [DOI: 10.1016/j.bbapap.2017.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
31
|
Liu S, Yu F, Yang Z, Wang T, Xiong H, Chang C, Yu W, Li N. Establishment of Dimethyl Labeling-based Quantitative Acetylproteomics in Arabidopsis. Mol Cell Proteomics 2018; 17:1010-1027. [PMID: 29440448 DOI: 10.1074/mcp.ra117.000530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
Protein acetylation, one of many types of post-translational modifications (PTMs), is involved in a variety of biological and cellular processes. In the present study, we applied both CsCl density gradient (CDG) centrifugation-based protein fractionation and a dimethyl-labeling-based 4C quantitative PTM proteomics workflow in the study of dynamic acetylproteomic changes in Arabidopsis. This workflow integrates the dimethyl chemical labeling with chromatography-based acetylpeptide separation and enrichment followed by mass spectrometry (MS) analysis, the extracted ion chromatogram (XIC) quantitation-based computational analysis of mass spectrometry data to measure dynamic changes of acetylpeptide level using an in-house software program, named Stable isotope-based Quantitation-Dimethyl labeling (SQUA-D), and finally the confirmation of ethylene hormone-regulated acetylation using immunoblot analysis. Eventually, using this proteomic approach, 7456 unambiguous acetylation sites were found from 2638 different acetylproteins, and 5250 acetylation sites, including 5233 sites on lysine side chain and 17 sites on protein N termini, were identified repetitively. Out of these repetitively discovered acetylation sites, 4228 sites on lysine side chain (i.e. 80.5%) are novel. These acetylproteins are exemplified by the histone superfamily, ribosomal and heat shock proteins, and proteins related to stress/stimulus responses and energy metabolism. The novel acetylproteins enriched by the CDG centrifugation fractionation contain many cellular trafficking proteins, membrane-bound receptors, and receptor-like kinases, which are mostly involved in brassinosteroid, light, gravity, and development signaling. In addition, we identified 12 highly conserved acetylation site motifs within histones, P-glycoproteins, actin depolymerizing factors, ATPases, transcription factors, and receptor-like kinases. Using SQUA-D software, we have quantified 33 ethylene hormone-enhanced and 31 hormone-suppressed acetylpeptide groups or called unique PTM peptide arrays (UPAs) that share the identical unique PTM site pattern (UPSP). This CDG centrifugation protein fractionation in combination with dimethyl labeling-based quantitative PTM proteomics, and SQUA-D may be applied in the quantitation of any PTM proteins in any model eukaryotes and agricultural crops as well as tissue samples of animals and human beings.
Collapse
Affiliation(s)
- Shichang Liu
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China.,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| | - Tingliang Wang
- **Tsinghua-Peking Joint Center for Life Sciences, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hairong Xiong
- ‡‡College of Life Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Caren Chang
- §§Department of Cell Biology and Molecular Genetics, University of Maryland, Maryland 20742-5815
| | - Weichuan Yu
- §Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,¶Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ning Li
- From the ‡Division of Life Science, Energy Institute, Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China; .,‖The Hong Kong University of Science and Technology, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
32
|
Xu YX, Chen W, Ma CL, Shen SY, Zhou YY, Zhou LQ, Chen L. Proteome and Acetyl-Proteome Profiling of Camellia sinensis cv. 'Anjin Baicha' during Periodic Albinism Reveals Alterations in Photosynthetic and Secondary Metabolite Biosynthetic Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:2104. [PMID: 29312376 PMCID: PMC5732353 DOI: 10.3389/fpls.2017.02104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Tea leaf color is not only important from an aesthetics standpoint but is also related to tea quality. To investigate the molecular mechanisms that determine tea leaf color, we examined Camellia sinensis cv. 'Anjin Baicha' (an albino tea cultivar) by tandem mass tag isobaric labeling to generate a high-resolution proteome and acetyl-proteome atlas of three leaf developmental stages. We identified a total of 7,637 proteins and quantified 6,256; of these, 3,232 were classified as differentially accumulated proteins (DAPs). We also identified 3,161 lysine acetylation sites in 1,752 proteins and quantified 2,869 in 1,612 proteins. The acetylation levels at 468 sites were significantly altered across the three developmental stages during periodic albinism; the corresponding proteins were associated with a variety of biological processes. Interestingly, a large number of DAPs and acetylated proteins with increased/decreased acetylation were related to photosynthesis and secondary metabolite biosynthetic pathways, suggesting that the accumulation or acetylation level of these proteins regulates periodic albinism in 'Anjin Baicha.' Additionally, overlap between succinylome and acetylome among three 'Anjin Baicha' developmental stages were found. These data provide important insight into the mechanisms of leaf coloration in the tea plant. The mass spectrometry data have been deposited to Proteome X change via the PRIDE partner repository with the data set identifier PXD008134.
Collapse
Affiliation(s)
- Yan-Xia Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wei Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Si-Yan Shen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yan-Yan Zhou
- Jingjie PTM Biolab (Hangzhou) Co., Ltd., Hangzhou, China
| | - Lian-Qi Zhou
- Jingjie PTM Biolab (Hangzhou) Co., Ltd., Hangzhou, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
33
|
Hartl M, Füßl M, Boersema PJ, Jost JO, Kramer K, Bakirbas A, Sindlinger J, Plöchinger M, Leister D, Uhrig G, Moorhead GB, Cox J, Salvucci ME, Schwarzer D, Mann M, Finkemeier I. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis. Mol Syst Biol 2017; 13:949. [PMID: 29061669 PMCID: PMC5658702 DOI: 10.15252/msb.20177819] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases have central functions in regulating stress defenses and development in plants. However, the knowledge about the deacetylase functions is largely limited to histones, although these enzymes were found in diverse subcellular compartments. In this study, we determined the proteome‐wide signatures of the RPD3/HDA1 class of histone deacetylases in Arabidopsis. Relative quantification of the changes in the lysine acetylation levels was determined on a proteome‐wide scale after treatment of Arabidopsis leaves with deacetylase inhibitors apicidin and trichostatin A. We identified 91 new acetylated candidate proteins other than histones, which are potential substrates of the RPD3/HDA1‐like histone deacetylases in Arabidopsis, of which at least 30 of these proteins function in nucleic acid binding. Furthermore, our analysis revealed that histone deacetylase 14 (HDA14) is the first organellar‐localized RPD3/HDA1 class protein found to reside in the chloroplasts and that the majority of its protein targets have functions in photosynthesis. Finally, the analysis of HDA14 loss‐of‐function mutants revealed that the activation state of RuBisCO is controlled by lysine acetylation of RuBisCO activase under low‐light conditions.
Collapse
Affiliation(s)
- Markus Hartl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Mass Spectrometry Facility, Max F. Perutz Laboratories (MFPL), Vienna Biocenter (VBC), University of Vienna, Vienna, Austria
| | - Magdalena Füßl
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Paul J Boersema
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Jan-Oliver Jost
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Katharina Kramer
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ahmet Bakirbas
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Magdalena Plöchinger
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Glen Uhrig
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Greg Bg Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jürgen Cox
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael E Salvucci
- US Department of Agriculture, Agricultural Research Service, Arid-Land Agricultural Research Center, Maricopa, AZ, USA
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Iris Finkemeier
- Plant Proteomics, Max Planck Institute for Plant Breeding Research, Cologne, Germany .,Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University Munich, Martinsried, Germany.,Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| |
Collapse
|
34
|
Sun H, Liu X, Li F, Li W, Zhang J, Xiao Z, Shen L, Li Y, Wang F, Yang J. First comprehensive proteome analysis of lysine crotonylation in seedling leaves of Nicotiana tabacum. Sci Rep 2017; 7:3013. [PMID: 28592803 PMCID: PMC5462846 DOI: 10.1038/s41598-017-03369-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/25/2017] [Indexed: 12/23/2022] Open
Abstract
Histone crotonylation is a new lysine acylation type of post-translational modification (PTM) enriched at active gene promoters and potential enhancers in yeast and mammalian cells. However, lysine crotonylation in nonhistone proteins and plant cells has not yet been studied. In the present study, we performed a global crotonylation proteome analysis of Nicotiana tabacum (tobacco) using high-resolution LC-MS/MS coupled with highly sensitive immune-affinity purification. A total of 2044 lysine modification sites distributed on 637 proteins were identified, representing the most abundant lysine acylation proteome reported in the plant kingdom. Similar to lysine acetylation and succinylation in plants, lysine crotonylation was related to multiple metabolism pathways, such as carbon metabolism, the citrate cycle, glycolysis, and the biosynthesis of amino acids. Importantly, 72 proteins participated in multiple processes of photosynthesis, and most of the enzymes involved in chlorophyll synthesis were modified through crotonylation. Numerous crotonylated proteins were implicated in the biosynthesis, folding, and degradation of proteins through the ubiquitin-proteasome system. Several crotonylated proteins related to chromatin organization are also discussed here. These data represent the first report of a global crotonylation proteome and provide a promising starting point for further functional research of crotonylation in nonhistone proteins.
Collapse
Affiliation(s)
- Hangjun Sun
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaowei Liu
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fangfang Li
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Wei Li
- Baoshan Branch, Yunnan tobacco company, Baoshan, 678000, China
| | - Jing Zhang
- Baoshan Branch, Yunnan tobacco company, Baoshan, 678000, China
| | - Zhixin Xiao
- Hongyunhonghe Tobacco (Group) Co., Ltd., Kunming, 650231, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
35
|
Lv Y. Proteome-wide profiling of protein lysine acetylation in Aspergillus flavus. PLoS One 2017; 12:e0178603. [PMID: 28582408 PMCID: PMC5459447 DOI: 10.1371/journal.pone.0178603] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/16/2017] [Indexed: 01/18/2023] Open
Abstract
Protein lysine acetylation is a prevalent post-translational modification that plays pivotal roles in various biological processes in both prokaryotes and eukaryotes. Aspergillus flavus, as an aflatoxin-producing fungus, has attracted tremendous attention due to its health impact on agricultural commodities. Here, we performed the first lysine-acetylome mapping in this filamentous fungus using immune-affinity-based purification integrated with high-resolution mass spectrometry. Overall, we identified 1383 lysine-acetylation sites in 652 acetylated proteins, which account for 5.18% of the total proteins in A. flavus. According to bioinformatics analysis, the acetylated proteins are involved in various cellular processes involving the ribosome, carbon metabolism, antibiotic biosynthesis, secondary metabolites, and the citrate cycle and are distributed in diverse subcellular locations. Additionally, we demonstrated for the first time the acetylation of fatty acid synthase α and β encoded by aflA and aflB involved in the aflatoxin-biosynthesis pathway (cluster 54), as well as backbone enzymes from secondary metabolite clusters 20 and 21 encoded by AFLA_062860 and AFLA_064240, suggesting important roles for acetylation associated with these processes. Our findings illustrating abundant lysine acetylation in A. flavus expand our understanding of the fungal acetylome and provided insight into the regulatory roles of acetylation in secondary metabolism.
Collapse
Affiliation(s)
- Yangyong Lv
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
- * E-mail:
| |
Collapse
|
36
|
Wei W, Liu T, Li X, Wang R, Zhao W, Zhao G, Zhao S, Zhou Z. Lysine acetylation regulates the function of the global anaerobic transcription factor FnrL in Rhodobacter sphaeroides. Mol Microbiol 2017; 104:278-293. [PMID: 28118511 DOI: 10.1111/mmi.13627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2017] [Indexed: 01/04/2023]
Abstract
The metabolism of the purple non-sulfur bacterium Rhodobacter sphaeroides is versatile and it can grow under various conditions. Here, we report evidence that the anaerobic photosynthetic metabolism of R. sphaeroides is regulated by protein lysine acetylation. Using a proteomic approach, 59 acetylated peptides were detected. Among them is the global anaerobic transcription factor FnrL, which regulates the biosynthetic pathway of tetrapyrroles and synthesis of the photosynthetic apparatus. Lysine 223 of FnrL was identified as acetylated. We show that all three lysines in the DNA binding domain (K223, K213 and K175) of FnrL can be acetylated by acetyl-phosphate in vitro. A bacterial deacetylase homolog, RsCobB can deacetylate FnrL in vitro. The transcription of genes downstream of FnrL decreased when the DNA binding domain of FnrL was acetylated, as revealed by chromatin immunoprecipitation and acetylation-mimicking mutagenesis. An increasing number of acetylated lysines resulted in a further decrease in DNA binding ability. These results demonstrate that the lysine acetylation can fine tune the function of the oxygen-sensitive FnrL; thus, it might regulate anaerobic photosynthetic metabolism of R. sphaeroides.
Collapse
Affiliation(s)
- Wei Wei
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tong Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China
| | - Xinfeng Li
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ruofan Wang
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wei Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guoping Zhao
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shimin Zhao
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences and Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
37
|
Grabsztunowicz M, Koskela MM, Mulo P. Post-translational Modifications in Regulation of Chloroplast Function: Recent Advances. FRONTIERS IN PLANT SCIENCE 2017; 8:240. [PMID: 28280500 PMCID: PMC5322211 DOI: 10.3389/fpls.2017.00240] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Post-translational modifications (PTMs) of proteins enable fast modulation of protein function in response to metabolic and environmental changes. Phosphorylation is known to play a major role in regulating distribution of light energy between the Photosystems (PS) I and II (state transitions) and in PSII repair cycle. In addition, thioredoxin-mediated redox regulation of Calvin cycle enzymes has been shown to determine the efficiency of carbon assimilation. Besides these well characterized modifications, recent methodological progress has enabled identification of numerous other types of PTMs in various plant compartments, including chloroplasts. To date, at least N-terminal and Lys acetylation, Lys methylation, Tyr nitration and S-nitrosylation, glutathionylation, sumoylation and glycosylation of chloroplast proteins have been described. These modifications impact DNA replication, control transcriptional efficiency, regulate translational machinery and affect metabolic activities within the chloroplast. Moreover, light reactions of photosynthesis as well as carbon assimilation are regulated at multiple levels by a number of PTMs. It is likely that future studies will reveal new metabolic pathways to be regulated by PTMs as well as detailed molecular mechanisms of PTM-mediated regulation.
Collapse
Affiliation(s)
| | | | - Paula Mulo
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|
38
|
Shen Y, Issakidis-Bourguet E, Zhou DX. Perspectives on the interactions between metabolism, redox, and epigenetics in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5291-5300. [PMID: 27531885 DOI: 10.1093/jxb/erw310] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Epigenetic modifications of chromatin usually involve consumption of key metabolites and redox-active molecules. Primary metabolic flux and cellular redox states control the activity of enzymes involved in chromatin modifications, such as DNA methylation, histone acetylation, and histone methylation, which in turn regulate gene expression and/or enzymatic activity of specific metabolic and redox pathways. Thus, coordination of metabolism and epigenetic regulation of gene expression is critical to control growth and development in response to the cellular environment. Much has been learned from animal and yeast cells with regard to the interplay between metabolism and epigenetic regulation, and now the metabolic control of epigenetic pathways in plants is an increasing area of study. Epigenetic mechanisms are largely similar between plant and mammalian cells, but plants display very important differences in both metabolism and metabolic/redox signaling pathways. In this review, we summarize recent developments in the field and discuss perspectives of studying interactions between plant epigenetic and metabolism/redox systems, which are essential for plant adaptation to environmental conditions.
Collapse
Affiliation(s)
- Yuan Shen
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-sud 11, 91400 Orsay, France
| | | | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-sud 11, 91400 Orsay, France
| |
Collapse
|